
DEDAUB.COM

Chainlink Uniswap
Anchored View Audit
Smart Contract Security Assessment

Nov 29, 2021

DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform a security audit on an updated version of
Compound’s Uniswap Anchored View smart contract on branch
feature/14246-uni-v3-native-twap at commit hash
c2bd41df808f49ea5a3bd7abc78d8d5745a28b3d. The additional code can be found in
this pull request. The audit also examined any other functionality highly related to
UniswapAnchoredView.sol contract. Specifically, contracts UniswapConfig.sol and
UniswapLib.sol. Two auditors worked over the codebase for a week.

SETTING & CAVEATS
The Uniswap Anchored View (UAV) is an oracle employed as part of the Compound Open
Price Feed architecture and also leveraged by other protocols (e.g., Yearn). The UAV
receives prices from Chainlink, but does not let them deviate from the Uniswap
time-weighted average price (TWAP) by more than a certain factor (currently 15%). Also,
it has two special cases:

● Under the owner’s direction, the price of an asset is taken from the Uniswap TWAP
alone;

● some tokens (USDC, USDT, TUSD) are considered to be 1-1 with the US dollar.
Others (SAI) are considered to be at a fixed ratio with ETH. No authority can
change this equivalence, even if Chainlink and Uniswap were to agree otherwise.

The functionality we audited concerns the update of the UAV for use with Uniswap v3,
leveraging the new Uniswap v3 TWAP functionality.

The audit considered all layers, from protocol-level security threats down to math
calculations. We spent significant time verifying correct scaling and Uniswap math.
However, one should be aware that functional correctness relative to low-level
calculations (including units, scaling, quantities returned from external protocols) is
generally most effectively done through thorough testing rather than human auditing.
Since the project has an extensive test suite (which we did not audit) we expect that this
angle is well-covered.

Similarly, we trust that any documented environmental setting is configured correctly.
This, for instance, includes all parameters in the configuration (e.g., “reporterMultiplier”
for every token), as well as the assumptions stated in the constructor code (“the system

https://github.com/smartcontractkit/open-oracle/pull/3

DEDAUB.COM

must run for at least a single anchorPeriod before using; … this contract will not be voted
in by governance until prices have been updated through `validate`”).

In addition to the above, the deployer should be aware that, compared to the original
UAV, the setting up of the contract for Uniswap v3 needs to include the expansion of the
observations array of the Uniswap pool to enough positions to accommodate the
pool’s transactions that have occurred in the last anchorPeriod. This requires calling
increaseObservationCardinalityNext() on the pool. For instance, the BAT pool
currently contains only a single observation, therefore attempts at computing TWAP will
revert if there has been any BAT swap more recently than anchorPeriod seconds ago.

PROTOCOL-LEVEL CONSIDERATIONS
In inspecting the code for Uniswap v3, we did not observe any new protocol-level
considerations, relative to the existing, deployed, and heavily used (over 50K
transactions per month) current UAV. Although it is rather awkward for us to be offering
protocol-level comments over widely used functionality, we believe that, as part of a
comprehensive security audit, we should do so, at the danger of sounding a little “too
cautious”.

The trust model of the protocol is never clearly spelled out. There is not a clear “ultimate
authority”. Chainlink pricing is considered more trusted for precise prices, but not
authoritative enough to supersede Uniswap pricing outside pre-set bounds. The Owner
can set Uniswap pricing as the only authority, per case. This is the main idea of the UAV,
therefore it is not open to objection. However, there are nuances that we are not certain
are completely thought out. The Uniswap price is denominated in USDC (since the ETH
price is computed relative to USDC and other assets are relative to ETH), whereas the
Chainlink price is over US dollars. Therefore, USDC is trusted to always be equivalent to
US dollars. Furthermore, other assets (USDT, TUSD) are, under current deployment
parameters, considered to be always equivalent to US dollars, with no ability to
supersede this price. This means that the trust base of the oracle includes, at least:
Uniswap, USDC, USDT, TUSD. Financial, coding, or governance threats in the above will
likely severely affect Compound (or any other user of the Oracle). It may seem extreme
to warn of potential issues in some of the most trusted services on the Ethereum
blockchain. However, it is wise to be aware of the attack surface, which is not always

https://etherscan.io/address/0xae614a7a56cb79c04df2aeba6f5dab80a39ca78e/advanced#readContract

DEDAUB.COM

obvious. (E.g., USDC is institutionally well-trusted, but, on-chain, its minting is
ultimately governed by a single EOA. USDT is alleged to have systemic risks. TUSD is
governed by a 2-of-4 multisig.) Considering the abundance of real-world and on-chain
information (Chainlink + Uniswap v3 TWAP) in this oracle, it seems to us strange to place
blind trust on all three of these stablecoins.

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL Can be profitably exploited by any knowledgeable third party
attacker to drain a portion of the system’s or users’ funds OR the
contract does not function as intended and severe loss of funds
may result.

HIGH Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
01) User or system funds can be lost when third party systems
misbehave.
02) DoS, under specific conditions.
03) Part of the functionality becomes unusable due to programming
error.

LOW Examples:
01) Breaking important system invariants, but without apparent
consequences.
02) Buggy functionality for trusted users where a workaround exists.
03) Security issues which may manifest when the system evolves.

DEDAUB.COM

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

CRITICAL SEVERITY
[No critical severity issues]

HIGH SEVERITY:
[No high severity issues]

MEDIUM SEVERITY:
[No medium severity issues]

LOW SEVERITY:
ID Description STATUS

L1 Suboptimal code (UniswapConfig::getTokenConfig) RESOLVED

The code of UniswapConfig::getTokenConfig has the form:

if (i == 0) {
underlying = underlying00;
symbolHash = symbolHash00;
baseUnit = baseUnit00;
priceSource = priceSource00;
fixedPrice = fixedPrice00;
uniswapMarket = uniswapMarket00;
reporter = reporter00;
reporterMultiplier = reporterMultiplier00;

}
if (i == 1) {

underlying = underlying01;
symbolHash = symbolHash01;
baseUnit = baseUnit01;
priceSource = priceSource01;
fixedPrice = fixedPrice01;
uniswapMarket = uniswapMarket01;
reporter = reporter01;
reporterMultiplier = reporterMultiplier01;

}
… // 35 cases

https://github.com/smartcontractkit/open-oracle/pull/7/commits/a4ae4a870c91d3a2a0a4ce0019d71e8e763a9b24

DEDAUB.COM

Given the large number of cases, turning the ifs into else-ifs will result in
non-negligible savings.

OTHER/ ADVISORY ISSUES:
This section details issues that are not thought to directly affect the functionality of the
project, but we recommend addressing them.

ID Description STATUS

A1 Unused code RESOLVED

In UniswapLib.sol, the struct Slot0 definition is not being used. It is recommended
that it be removed as it is dead code.

A2 Code simplification RESOLVED

In UniswapConfig.sol, all getTokenConfigBy* functions have a check that the
index is not type(uint).max, however this is redundant as getTokenConfig already
covers this case by checking that index < numTokens.
For example:

function getTokenConfigBySymbolHash(bytes32 symbolHash) public view returns
(TokenConfig memory) {

uint index = getSymbolHashIndex(symbolHash);

// Dedaub: Redundant check; getTokenConfig checks that index < numTokens.
// That check covers the case where index == type(uint).max
if (index != type(uint).max) {

return getTokenConfig(index);
}
revert("token config not found");

}

Can be simplified to:

function getTokenConfigBySymbolHash(bytes32 symbolHash) public view returns
(TokenConfig memory) {

uint index = getSymbolHashIndex(symbolHash);

https://github.com/smartcontractkit/open-oracle/pull/7/commits/6b745544d2a7959f458d217c5522e6ef192c74aa
https://github.com/smartcontractkit/open-oracle/pull/7/commits/067de1776ffd5e681d2fff12543c2fa0835472ca

DEDAUB.COM

return getTokenConfig(index);
}

A3 Redundant trailing modifier parentheses DISMISSED

There are a couple of instances where even zero-argument modifiers are used with
parentheses, even though they can be omitted. For example, in
UniswapAnchoredView::activateFailover:

function activateFailover(bytes32 symbolHash) external onlyOwner() {
...

}

This pattern can be found in:
● UniswapAnchoredView::activateFailover
● UniswapAnchoredView::deactivateFailover
● Ownable::transferOwnership

A4 Reporter sanity check for fixed price assets RESOLVED

In the UniswapAnchoredView constructor, fixed price assets (either ETH or USD
pegged) check that the provided uniswap market is zero, however the reporter field is
unchecked. It is recommended that the reporter be also required to be zero, for
consistency:

else {
require(uniswapMarket == address(0), "only reported prices utilize an

anchor");

// Dedaub: Check that reporter is also 0
require(config.reporter == address(0), "only reported prices utilize a

reporter");
}

A5 Key functionality is cryptic (fetchAnchorPrice) RESOLVED

The correctness of the calculation in UniswapAnchoredView::fetchAnchorPrice is
very hard to establish. More comments would help. Specifically, the code reads:

https://github.com/smartcontractkit/open-oracle/pull/7/commits/08a9c26536b4172563e28214fc3e91650b07ddcb
https://github.com/smartcontractkit/open-oracle/pull/7/commits/a36fe75b247503dadffaf3fb5293509571a30069

DEDAUB.COM

function fetchAnchorPrice(TokenConfig memory config, uint conversionFactor)
internal virtual view returns (uint) {

uint256 twap = getUniswapTwap(config);
uint rawUniswapPriceMantissa = twap;
uint unscaledPriceMantissa = rawUniswapPriceMantissa * conversionFactor;
uint anchorPrice = unscaledPriceMantissa * config.baseUnit / ethBaseUnit /

expScale;
return anchorPrice;

}

The correctness of this calculation depends on the following understanding, which
should be documented in code comments, or the functionality is entirely cryptic. (We
note that the original UAV code had similar comments, although the ones below are
our own.)

● getUniswapTwap returns the price between the baseUnits of the two tokens in a
pair, scaled to e18

● rawUniswapPriceMantissa * config.baseUnit : price of 1 token (instead of one
baseUnit of token), relative to baseUnit of the other token. Still scaled at e18

● unscaledPriceMantissa * config.baseUnit / expScale : (mathematically,
not in integer arithmetic) price of 1 token relative to baseUnit of the other,
scaled at 1

● unscaledPriceMantissa * conversionFactor * config.baseUnit /

ethBaseUnit / expScale :
○ in the case of ETH-USDC, conversionFactor is ethBaseUnit, and the

above happens to return 1 ETH's price in USDC with 6 decimals of
precision, just because the USDC unit has 6 decimals

○ in the case of other tokens, the conversionFactor is the 6-decimal
ETH-USDC price, hence the result is the price of 1 token relative to 1 ETH,
at 6-decimal precision.

A6 Compiler warning RESOLVED

The Solidity compiler is issuing a warning for the
UniswapAnchoredView::priceInternal function, that the return variable may be
unassigned. While this is a false warning, it can be easily suppressed with a simple
refactoring of the form:

function priceInternal(TokenConfig memory config) internal view returns (uint) {

https://github.com/smartcontractkit/open-oracle/pull/7/commits/b0220b84621d53819968b87bc81714e57bb53af7

DEDAUB.COM

if (config.priceSource == PriceSource.REPORTER) return
prices[config.symbolHash].price

else if (config.priceSource == PriceSource.FIXED_USD) return
config.fixedPrice;

else {
uint usdPerEth = prices[ethHash].price;
require(usdPerEth > 0, "ETH price not set, cannot convert to dollars");
return usdPerEth * config.fixedPrice / ethBaseUnit;

}
}

A7 Redundant code (UniswapConfig::getTokenConfig) RESOLVED

The expression:

((isUniswapReversed >> i) & uint256(1)) == 1 ? true : false

can be shortened to the more elegant:

((isUniswapReversed >> i) & uint256(1)) == 1

A8 Floating pragma RESOLVED

The floating pragma pragma solidity ^0.8.7; is used in most contracts, allowing
them to be compiled with any version of the Solidity compiler v0.8.* after, and
including, v0.8.7. Although the differences between these versions are small, floating
pragmas should be avoided and the pragma should be fixed to the version that will be
used for the contract deployment (Solidity version 0.8.7 at the audit commit hash).

A9 Compiler known issues INFO

The contracts were compiled with the Solidity compiler v0.8.7 which, at the time of
writing, have some known bugs. We inspected the bugs listed for version 0.8.7 and
concluded that the subject code is unaffected.

https://github.com/smartcontractkit/open-oracle/pull/7/commits/361cac637d70f0a288cb883219d61dfb7f82212b
https://github.com/smartcontractkit/open-oracle/pull/7/commits/86d61d313967e9f62e4d5d275cfb457fba6e4230
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public
bug bounty program.

ABOUT DEDAUB
Dedaub offers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the
contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

