
DEDAUB.COM

Chainlink VRF V2 audit
Smart Contract Security Assessment

30.09.2021

DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform a security audit on the 2nd version of the VRF
smart contracts, on branch “develop” of https://github.com/smartcontractkit/chainlink
at commit hash 7547b562579b4f201994fd85fb50d799ae1d918a. Two senior auditors
worked over the codebase over one week. The audit examined the contracts:

● contracts/src/v0.8/dev/VRFConsumerBaseV2.sol
● contracts/src/v0.8/dev/VRF.sol. This contract was mostly inspected as a diff from

the v1 (v0.6/VRF.sol) to v2 (v0.8/dev/VRF.sol) and the cryptographic operations
were mostly considered trusted since this code has been well-audited and tested
before.

● contracts/src/v0.8/dev/VRFCoordinatorV2.sol
● any other functionality highly related with these contracts, but without exhaustive

inspection. Specifically, the offchain operations written in vrf_coordinator_v2.go.

SETTING AND CAVEATS
The exhaustively audited code base is of small size, at around 1KLoC, but with extensive
interactions and protocol-level complexity. The code and accompanying artifacts (e.g.,
test suite, documentation) are of excellent quality, developed with high professional
standards.

We emphasized protocol-level considerations, in addition to code review. The items
below can be considered context notes, possibly to inform future design, or
documentation for the benefit of external users.

1) It may not be clear to users what Verified Random Functions truly verify and,
consequently, what are the threats. We find statements concerning guarantees
even if a Chainlink oracle (“node”) is compromised to be hard to interpret
correctly. E.g., the following in the past Chainlink VRF documentation:

○ The proof is published and verified on-chain before it can be used by any
consuming applications. This process ensures that the results cannot be
tampered with nor manipulated by anyone, including oracle operators,

01

https://github.com/smartcontractkit/chainlink

DEDAUB.COM

miners, users and even smart contract developers.
[https://docs.chain.link/docs/chainlink-vrf/]

○ The fundamental benefit of using Chainlink VRF is its verifiable randomness.
Even if a node is compromised, it cannot manipulate and/or supply biased
answers — the on-chain cryptographic proof would fail. The worst case
scenario is that the compromised node does not return a response to a
request[...] Even in the unlikely scenario that a node is compromised, its
resulting randomness cannot be manipulated.
[https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/]

What the above seem to imply is not accurate. If a Chainlink node’s VRF secret key
is compromised, the VRF becomes a mere deterministic pseudo-random
generator. Its randomness is then, at best, on-chain randomness, which has
well-known issues. Certainly the collusion of a miner and an oracle operator can
open the door to attacks.

2) The current design does not accept a seed from the user of the VRF functionality.
This is ideal for the usual case, but it is limiting for highly sophisticated clients.
Specifically, the typical client contract only has access to on-chain information.
In this case, accepting a seed from the client is pointless: the current approach of
the VRF functionality both gets the most obtainable in terms of on-chain
randomness (by taking the blockhash of a block not mined at the time of the
request) and would destroy any seed provided by the caller in the process.
However, a more advanced API can be envisioned (perhaps in addition to the
current one) that allows the caller to supply their own randomness in the form of
a seed. (Such a seed should not then be hashed with a blockhash, or a miner can
bias the outcome.) This approach permits, for instance, the use of two separate
off-chain randomness sources. If the VRF oracle accepts randomness from the
user (in addition to employing its own secret key) the result is a better
randomness guarantee: biasing the random outcome would require
compromising both randomness sources (i.e., both the secret key of the Chainlink
VRF oracle, and the other source of randomness).

02

https://docs.chain.link/docs/chainlink-vrf/
https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/

DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL Can be profitably exploited by any knowledgeable third party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
01) User or system funds can be lost when third party systems
misbehave.
02) DoS, under specific conditions.
03) Part of the functionality becomes unusable due to programming
error.

LOW Examples:
01) Breaking important system invariants, but without apparent
consequences.
02) Buggy functionality for trusted users where a workaround exists.
03) Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

03

DEDAUB.COM

CRITICAL SEVERITY:
[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

H1
Client can cause fulfillRandomWords transactions without
getting charged.

Resolved

[We collect in this issue a couple of different threads, as analyzed in our discussions
with developers. These can be considered separate issues, but with related threats.
Remedies are also being discussed in our channel with developers.]

Without precise accounting of the subscription balances and outstanding expenses for
request, it is possible for a client to make randomness requests and not be able to pay
for the delivery of the results. This will cause the fulfillRandomWords call (initiated
off-chain) to fail with a transaction revert. However, a) this creates work and causes a
gas expense for the caller account, allowing DoS attacks; b) the randomness is
publicly broadcast, so it can indeed be harvested and used.

Two such scenarios include:
- The client calls requestRandomWords but, before the fulfillRandomWords

response, the client issues a defundSubscription.
- Even if defundSubscription is accounted for off-chain, an extreme scenario is

for the client to act as an attacker, watch the mempool for
fulfillRandomWords transactions, and try to front-run them with
defundSubscription to avoid charges.

Many more attacks along these lines can be drafted, and the developers have already
supplemented our list with more.

Better accounting of outstanding randomness requests and subscription balances
(both on-chain and off-chain) can mitigate the problem.

04

DEDAUB.COM

MEDIUM SEVERITY:
[No medium severity issues]

LOW SEVERITY:

ID Description STATUS

L1 Struct Consumer can be simplified. Resolved

There is little reason to keep subId both in the key and in the value of the s_consumers
mapping.

struct Consumer {
uint64 subId;
uint64 nonce;

}
mapping(address => mapping(uint64 => Consumer)) /* consumer */ /* subId */

private s_consumers;

The information could be kept in a boolean, or encoded in the nonce field. (E.g., start
nonces from 1, to denote an allocated consumer with 0 requests.)

L2 Unreachable code in getRandomnessFromProof Dismissed

Under the current definition of the Chainlink blockhash store, the following is dead
code (condition never true). The call to get the blochhash would have reverted.

blockHash = BLOCKHASH_STORE.getBlockhash(rc.blockNum);
if (blockHash == bytes32(0)) {

revert BlockhashNotInStore(rc.blockNum);
}

Admittedly, it is good to code defensively relative to external calls, so the check is not
without merit.

L3 Extraneous check in fulfillRandomWords Resolved

05

DEDAUB.COM

The check

if (gasPreCallback < rc.callbackGasLimit) {
revert InsufficientGasForConsumer(gasPreCallback, rc.callbackGasLimit);

}

is unnecessary, given the stronger check that follows inside the call to
callWithExactGas, with gasAmount being rc.callbackGasLimit:

assembly {
let g := gas()
...
if iszero(gt(sub(g, div(g, 64)), gasAmount)) {

revert(0, 0)
} ...

L4 The meaning of MIN_GAS_LIMIT is unclear Resolved

Code comments describe MIN_GAS_LIMIT as:

// The minimum gas limit that could be requested for a callback.
// Set to 5k to ensure plenty of room to make the call itself.
uint256 public constant MIN_GAS_LIMIT = 5_000;

and

/**
...

* The minimum amount of gasAmount is MIN_GAS_LIMIT.

(With gasAmount being the callbackGasLimit.)
However, MIN_GAS_LIMIT is never compared against the callback gas limit, only
against the currently available gas. Our interpretation was that it intends to account for
the gas of other VRFCoordinatorV2 contract operations outside the client callback. If
so, the limit of 5000 is too low.

06

DEDAUB.COM

OTHER/ ADVISORY ISSUES:
This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Variable s_fallbackWeiPerUnitLink left out of Config Dismissed

It is unclear why variable s_fallbackWeiPerUnitLink is not included in the Config
structure, since it is essentially handled as one of the variables therein. For example,
the return statement of getConfig():

return (
config.minimumRequestConfirmations,
config.fulfillmentFlatFeeLinkPPM,
config.maxGasLimit,
config.stalenessSeconds,
config.gasAfterPaymentCalculation,
config.minimumSubscriptionBalance,
s_fallbackWeiPerUnitLink

);

Is there some benefit in keeping the size of Config down to one word, given that it
seems to be always read/written together with s_fallbackWeiPerUnitLink ?

A2 Gas optimizations using unchecked wrapper Dismissed

In VRFCoordinatorV2.sol there are a number of safe mathematical operations that
could be made more gas efficient if wrapped in unchecked{}
In fulfillRandomWords:

s_subscriptions[rc.subId].balance -= payment;
s_withdrawableTokens[s_provingKeys[keyHash]] += payment;

In OracleWithdraw:

07

DEDAUB.COM

s_withdrawableTokens[msg.sender] -= amount;
s_totalBalance -= amount;

In defundSubscription:
s_subscriptions[subId].balance -= amount;
s_totalBalance -= amount

In cancelSubscription:
s_totalBalance -= balance

However, this recommendation could slightly downgrade readability and clarity.

A3 Function ordering inside contracts Dismissed

Consider adopting the official style guide for function ordering within a contract.
In order of priority:
external > public > internal > private and view > pure within the same visibility group.
https://docs.soliditylang.org/en/v0.8.7/style-guide.html#order-of-functions

A4 Floating pragma INFO

Use of a floating pragma: The floating pragma pragma solidity ^0.8.0; is used, allowing
contracts to be compiled with any version of the Solidity compiler that is greater or
equal to v0.8.0 and lower than v.0.9.0. Although the differences between these
versions should be small, for deployment, floating pragmas should ideally be avoided
and the pragma be fixed.

A5 Compiler known issues INFO

Solidity compiler v0.8.0, at the time of writing, has some known bugs
(SignedImmutables, ABIDecodeTwoDimensionalArrayMemory, KeccakCaching). We
believe that none of them affects the code: no immutable signed integer variables are
declared, no multidimensional arrays seem to be used in the audited contracts, and no
keccak hashing of constant memory arrays takes place.

08

https://docs.soliditylang.org/en/v0.8.7/style-guide.html#order-of-functions
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

DEDAUB.COM

09

DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public
bug bounty program.

ABOUT DEDAUB
Dedaub offers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the
contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

010

