
Cheelee Security Analysis

by Pessimistic

This report is public

December 29, 2022

Abstract ...3

Disclaimer ...3

Summary ..3

General recommendations ...3

Project overview ...4

Project description ..4

Codebase update #1 ...4

Codebase update #2 ...4

Codebase update #3 ...4

Audit process ..5

Manual analysis ..6

Critical issues ..6

C01. Bug in vesting token release (fixed) ...6

C02. Incorrect reward calculation (fixed) ...6

C03. Possibility of deleting vesting info (fixed) ..7

Medium severity issues ...8

M01. No guarantees for vested tokens (fixed) ..8

M02. No tests for crucial scenarios ...8

M03. Reentrancy (fixed) ..8

M04. Reentrancy (fixed) ..8

M05. Discrepancy with the documentation (fixed) ..9

M06. Frontrunning the vesting schedule setup (fixed) ..9

M07. Code logic (fixed) ...9

M08. Bug in vesting cliff check (fixed) ...9

Low severity issues ...10

L01. Bad event naming (fixed) ..10

L02. Code logic (fixed) ..10

L03. Code quality (commented) ..10

L04. Code style (fixed) ..11

L05. Constants (fixed) ...11

L06. Excessive inheritance list (fixed) ...11

L07. Mark variable as immutable (fixed) ...11

L08. Mark arguments as indexed (fixed) ...11

L09. Missing check (fixed) ...12

L10. Missing check (fixed) ...12

Blockchain Security Analysis by Pessimistic 1

L11. Missing check (fixed) ...12

L12. No NatSpec (fixed) ..12

L13. Redundant code (fixed) ...12

L14. Initialization of the implementation contract (fixed) ...13

Notes ...14

N01. Overpowered role ...14

N02. Code logic ...15

Blockchain Security Analysis by Pessimistic 2

Abstract
In this report, we consider the security of smart contracts of Cheelee project. Our task is to
find and describe security issues in the smart contracts of the platform.

Disclaimer
The audit does not give any warranties on the security of the code. A single audit cannot be
considered enough. We always recommend proceeding with several independent audits and
a public bug bounty program to ensure the security of smart contracts. Besides, a security
audit is not investment advice.

Summary
In this report, we considered the security of Cheelee smart contracts. We described the
audit process in the section below.

The initial audit showed several critical issues: Bug in vesting release,
Incorrect reward calculation, Possibility of deleting vesting info. The initial audit also revealed
several issues of medium severity: No guarantees for vested tokens,
No tests for crucial scenarios, as well as two Reentrancy issues (M03, M04). Moreover,
several low-severity issues were found.

The quality of the code is mediocre. The developers follow the best practices, however, the
initial codebase contained various serious issues, and the code was not ready for the
deployment.

In the codebase update, all of the critical and most of the medium and low severity issues
were fixed. However, tests are still not covering crucial scenarios (M02) and developers
introduced two new issues of medium severity: M06 and M07.

In the second codebase update, issues M06 and M07 were fixed. Moreover, the developers
also fixed the remaining low severity issues. However, this update contained a new bug,
which was fixed later.

In the third codebase update, the developers made several contracts upgradeable. We
checked the correctness of the new code and added one issue of low severity.

General recommendations
We recommend writing additional tests.

Blockchain Security Analysis by Pessimistic 3

https://cheelee.io/
https://cheelee.io/

Project overview

Project description
For the audit, we were provided with Cheelee project on a public GitHub repository, commit
ed94d2e1bc36634fd725fabd8e3e283617e6d8f9.

The scope of the audit includes everything.

The up-to-date documentation for the project includes
Tech-samrt-contracts-v0.5.pdf, sha1sum
adc3623583d3674ca8b4ed5143bf188e75d242b8. The initial version of the documentation
contained a discrepancy with the code (see M05 issue), but it was fixed shortly after the
audit.

All 19 tests pass successfully. The code coverage is 82.5%.

The total LOC of audited sources is 867.

Codebase update #1
After the audit, we were provided with commit
edf8c77d00f2e1fc004fe5723dc0c7e2a0b3497c. In the update the developers fixed most of
the issues, implemented new tests, as well as added comments to the code. However, the
developers introduced two new issues of medium severity: M06 and M07. In addition to this,
tests are still not covering crucial scenarios.

All 22 tests pass successfully. The code coverage is 94.63%.

Codebase update #2
After the code recheck, the developers provided commit
049fe1b1b6e3af0cdfa5854e6cdb662bdd3cd9b5. In the update, the developers fixed issues
introduced in the previous codebase update. Moreover, they fixed several low severity issues
found during the initial audit. However, the developers introduced a new bug, which was fixed
later in commit 7959e95da68330ba57e027eb86a6d19227d6044c. The developers changed
tests for MultiVesting contract to match the new functionality, however we still suggest
adding more tests for other parts of the project.

All 22 tests pass successfully. The code coverage is 94.98%.

Codebase update #3
For the third update, the developers provided commit
9ee167c7ec024344df9854ec29187131ed0ebf5d. In the update, the developers added
upgradeability functionality and covered it with tests.

All 25 tests pass successfully. The code coverage is 95.67%.

Blockchain Security Analysis by Pessimistic 4

https://github.com/cheelee-inc/smartcontracts/
https://github.com/cheelee-inc/smartcontracts/tree/ed94d2e1bc36634fd725fabd8e3e283617e6d8f9
https://github.com/cheelee-inc/smartcontracts/tree/edf8c77d00f2e1fc004fe5723dc0c7e2a0b3497c
https://github.com/cheelee-inc/smartcontracts/tree/049fe1b1b6e3af0cdfa5854e6cdb662bdd3cd9b5
https://github.com/cheelee-inc/smartcontracts/tree/7959e95da68330ba57e027eb86a6d19227d6044c
https://github.com/cheelee-inc/smartcontracts/tree/9ee167c7ec024344df9854ec29187131ed0ebf5d

Audit process
We started the audit on November 15 and finished on November 25, 2022.

We inspected the materials provided for the audit. Then, we contacted the developers for an
introduction to the project.

We manually analyzed all the contracts within the scope of the audit and checked their logic.
Among other, we verified the following properties of the contracts:

We checked the correctness of the formulas used in staking and vesting contracts (see
critical issues).

We checked that tokens from the treasury could not be stolen.

We checked whether the project complies with the documentation (see
Discrepancy with the documentation issue).

We scanned the project with the static analyzer Slither with our own set of rules and then
manually verified all the occurrences found by the tool.

We ran tests and calculated the code coverage.

We combined in a private report all the verified issues we found during the manual audit or
discovered by automated tools.

After the initial audit, we received a new commit with the updated codebase.

We checked if the issues from the initial audit were fixed. We also reviewed new tests and
whether they cover scenarios from critical issues found during the initial audit. We also
checked whether the final version of the documentation complies with the code.

After that, we updated the report with the new found issues and notes on previous ones.

After the recheck, we made a call with the developers and discussed new found issues and
possible solutions for them. Afterwards we received a new version of the code. We checked
the fixes for the remaining issues and whether new functionality introduced new ones. We
notified developers about a new bug and checked how it was fixed later.

After the second recheck, the developers contacted us to ensure that Openzeppelin
upgradeable library is used correctly. We did not find any major issues. We recommended
preventing implementation contract initialization as described in L14 issue. The issue was
fixed later.

We combined our work result in the current version of the report.

Blockchain Security Analysis by Pessimistic 5

https://github.com/crytic/slither

Manual analysis
The contracts were completely manually analyzed, their logic was checked. Besides, the
results of the automated analysis were manually verified. All the confirmed issues are
described below.

Critical issues
Critical issues seriously endanger project security. They can lead to loss of funds or other
catastrophic consequences. The contracts should not be deployed before these issues are
fixed.

C01. Bug in vesting token release (fixed)
In MultiVesting.sol there is a bug in release function, that allows draining all funds from
the contract. Line 80 calculates releasable amount and uses msg.sender as a
_beneficiary argument for _releasable function call. However, this releasable value is
not added to msg.sender's released amount, but to an arbitrary address' at line 87. As a
result, a malicious user is able to provide _beneficiaryAddress different from the
msg.sender and their released value would not be updated.

The issue has been fixed and is not present in the latest version of the code.

C02. Incorrect reward calculation (fixed)
In Staking contract, line 176 should update the amount of already claimed tokens. This value
is used at line 168 in earned function: the new reward is equal to the total unlocked reward
amount minus the amount of already claimed tokens. In reality, line 176 uses = operator
instead of +=. That means alreadyCollected variable stores the amount of tokens
unlocked during the previous call to _collect function and not the amount of claimed
tokens by the user.

This bug allows to drain all funds from the contract. Imagine malicious user sends 3
transactions with the call to collect function in the same block:

Blockchain Security Analysis by Pessimistic 6

1. The first transaction works as expected, and the user receives all unlocked reward.
Since status[_option][_addr].alreadyCollected equals to zero, _earned
value and line 168 equals to all unlocked reward and user receives in. Note, that
status[_option][msg.sender].alreadyCollected value is set to _earned
value, i.e. all available reward.

2. The second transaction also works as expected since
status[_option][msg.sender].alreadyCollected value equals to _amount
at line 168 and _earned amount equals to zero. However, line 176 sets
alreadyCollected variable to zero.

3. That is why the third transaction will work in the same way as the first one: since
alreadyCollected amount is zero, the user will receive all unlocked rewards.

The issue has been fixed and is not present in the latest version of the code.

C03. Possibility of deleting vesting info (fixed)
In MultiVesting.sol, anyone is able to call updateBeneficiary function and provide an
arbitrary _newBeneficiary argument. As a result, information about the vesting of
_newBeneficiary will be overridden by the information of _oldBeneficiary. Not only
this allows to reduce reward for the _newBeneficiary, but also to delete all information
about it in case when beneficiary[_oldBeneficiary] is empty.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 7

Medium severity issues
Medium issues can influence project operation in the current implementation. Bugs, loss of
potential income, and other non-critical failures fall into this category, as well as potential
problems related to incorrect system management. We highly recommend addressing them.

M01. No guarantees for vested tokens (fixed)
In the code there is no guarantees that the balance of MultiVesting contract is sufficient for
the vesting. Since total vested amount can be increased at any time with the vest function,
we recommend ensuring that the contract contains enough tokens.

The issue has been fixed and is not present in the latest version of the code.

M02. No tests for crucial scenarios
The code coverage is 82.5%. Usually, we consider that as a good coverage. However,
despite the high coverage, the code contains some crucial bugs in default scenarios (see
critical issues). That is why we recommend reviewing and rewriting tests in a better way.

In codebase updates the developers increased code coverage to 94.98%. Still, we
recommend covering more scenarios.

M03. Reentrancy (fixed)
In NFTSale contract, it is possible to bypass the check of redeem supply at line 109 with the
reentrancy attack. Line 124 contains receiveNFT call that invokes onERC721Received
hook. Since this is an external call, this hook allows to reenter the contract prior to redeem
supply update at line 125. We recommend updating the redeemed variable prior to external
calls in order to mitigate possible reentrancy attack and following the CEI pattern in redeem
function of NFTSale contract.

The issue has been fixed and is not present in the latest version of the code.

M04. Reentrancy (fixed)
In NFTSale contract, it is possible to bypass the check of purchase supply at line 134 with
the reentrancy attack. Line 150 contains receiveNFT call that invokes
onERC721Received hook. Since this is an external call, this hook allows to reenter the
contract prior to redeem supply update at line 151. We recommend updating the purchased
variable prior to external calls in order to mitigate possible reentrancy attack and following the
CEI pattern in purchase function of NFTSale contract.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 8

M05. Discrepancy with the documentation (fixed)
The documentation states that the owner of CHEEL and LEE tokens should be able to burn
tokens from any address. However, in the code, the owner is able to burn tokens only from
his address. We contacted the developers, and they confirmed that the correct behavior was
implemented in the code. Still, we recommend fixing the documentation.

The developers updated the documentation.

M06. Frontrunning the vesting schedule setup (fixed)
There are possible frontrun attacks on the vest function in MultiVesting contract with the
use of updateBeneficiary function.

Malicious user is able to prevent changes to their vesting schedule by moving their vesting to
a new address prior to the call of vest function by the owner. As a result, the transaction
with the vest function will fail as it tries to change the vesting schedule of an old account.

Moreover, a malicious user is able to prevent one other user from participating in vesting.
They can fill other user's vesting information with their own by calling updateBeneficiary
function. As a result, the attempt to vest tokens to a new user will fail since they already have
some vesting information. Note that this issue can be resolved by either affected user or
owner moving that vesting to some other address.

The issue has been fixed and is not present in the latest version of the code.

M07. Code logic (fixed)
In MultiVesting contract, vest function checks if the contract holds
sumVesting + _amount tokens and the _amount is added to the sumVesting. However,
sumVesting is not subtracted when tokens are released in release function. This means
sumVesting does not account for released tokens, and the contract will require to hold
tokens more than needed in case when owner adds new vesting after somebody already
claimed a reward.

The issue has been fixed and is not present in the latest version of the code.

M08. Bug in vesting cliff check (fixed)
There is a bug in MultiVesting contract. Lines 102-107 contain a check for the cliff period.
According to revert message, the statement ensures that new cliff ends no later than the
previous one in case of vesting schedule change. However, this statement has incorrect
comparison operator. Moreover, this check can be only reached in case when
beneficiary[_beneficiaryAddress].amount is zero, i.e. only during vesting
schedule initialization. Hence, this check is redundant in the current version of the code.

This issue has been fixed with commit 7959e95da68330ba57e027eb86a6d19227d6044c.

Blockchain Security Analysis by Pessimistic 9

Low severity issues
Low severity issues do not directly affect project operation. However, they might lead to
various problems in future versions of the code. We recommend fixing them or explaining
why the team has chosen a particular option.

L01. Bad event naming (fixed)
In NFTSale contract, the Pause event is used for pausing redeems, and the Redeem event is
emitted when purchases are paused. These event names might be misleading. Consider
renaming them.

The issue has been fixed and is not present in the latest version of the code.

L02. Code logic (fixed)
In MultiVesting.sol, vest function overrides the user's vesting start, duration, and
cliff parameters, even if the user has already participated in vesting process. As a result,
there might be the following situations:

If the user cliff period from the previous vesting has ended, they might need to wait for
a new one in case they receive more tokens via vest function. This happens due to
the check at line 69.

Since vest function overwrites both vesting start and duration parameters, this
can reduce the speed of token vesting despite the higher total amount. As a result, the
user might stop receiving tokens for some time in case when the previous vesting
speed was higher, and the user should have received more tokens at some time
according to previous vesting parameters.

Moreover, these issues might cause unexpected reverts due to line 112 in case when the
user claimed something prior to changing vesting schedule.

The owner still has an ability to change the vesting schedule. However, the developers
introduced several restrictions: vesting amount cannot be changed and new vesting cliff
should end no later than the previous one. Moreover, they fixed the unexpected reverts issue
by adding an additional check for that case. To sum up, we consider this issue as fixed.

L03. Code quality (commented)
In the project, there are hardcoded variables GNOSIS, that are marked as constant. We
recommend avoiding using hardcoded addresses and marking them as immutable in order
to make the testing process easier.

The developers decided to use hardcoded addresses since gnosis wallets are already
deployed. Moreover, this approach negates the risk of changing these addresses during the
deployment.

Blockchain Security Analysis by Pessimistic 10

L04. Code style (fixed)
The common way to add token URI to the NFT is to override _baseURI method from
ERC721.sol. Instead, the code overrides tokenURI method in NFT contract. Moreover,
OpenZeppelin's version of tokenURI function checks that the token with the provided
tokenId exists. The version in NFT.sol is able to return a valid URI for the nonexistent
token, which may lead to potential problems on offchain integrations.

The issue has been fixed and is not present in the latest version of the code.

L05. Constants (fixed)
Variables Name, EIP712_VERSION, NFT_PASS_TYPEHASH, and PASS_TYPEHASH are
available at the compile time and do not need to be changed later. Consider making them
constant in Treasury contract.

The issue has been fixed and is not present in the latest version of the code.

L06. Excessive inheritance list (fixed)
ERC721Enumerable already inherits from the ERC721. We recommend removing ERC721
from the inheritance list. Besides, it will allow removing overridden boilerplate
functions: _beforeTokenTransfer, supportsInterface at line 10 in NFT contract.

The issue has been fixed and is not present in the latest version of the code.

L07. Mark variable as immutable (fixed)
Variable nftContract is set during deployment and never changes again. Consider
marking it as immutable in order to reduce gas consumption at line 34 in NFTSale contract.

The issue has been fixed and is not present in the latest version of the code.

L08. Mark arguments as indexed (fixed)
We recommend marking the following arguments as indexed in order to increase user
experience:

tokenId and receiver arguments in ReceiveNFT event in NFT.sol

beneficiary and oldBeneficiary arguments in UpdateBeneficiary event in
MultiVesting.sol

beneficiary argument in Vested event in MultiVesting.sol

The issues have been fixed and are not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 11

L09. Missing check (fixed)
In Staking.sol in getRegisteredUsersSample function we recommend checking that
_from parameter is lower than _to and _to parameter is lower than registeredUsers
length.

The issue has been fixed and is not present in the latest version of the code.

L10. Missing check (fixed)
In Staking.sol in setOption and addOption functions, we recommend checking that
_minValue is not greater than _maxValue.

The issue has been fixed and is not present in the latest version of the code.

L11. Missing check (fixed)
In Staking.sol in deposit function we recommend checking that provided option number is
valid. If a user provides an incorrect option number with the amount equal to zero, the
function will not revert, which might be confusing.

The issue has been fixed and is not present in the latest version of the code.

L12. No NatSpec (fixed)
The codebase of the project does not have any comments. There are no descriptions for
contracts and functions. We recommend covering the code with NatSpec comments, as it
helps to avoid errors and accelerates the development process in the project.

The issue has been fixed and is not present in the latest version of the code.

L13. Redundant code (fixed)
According to receiveNFT function in NFT contract, the caller of receiveNFT should own
NFT token if that token exists (line 39). That is why in Treasury.sol , lines 100-101 are
redundant since treasury should already own tokens in scenarios where approval is
applicable.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 12

L14. Initialization of the implementation contract (fixed)
The common pattern for upgradeable contracts is to move all the contract initialization into
initialize function. This allows to initialize proxy storage. However, there is an attack
vector that exploits initialize function by making a call directly to the logic contract. The
current implementation is safe from this type of attack. Nevertheless, we recommend
preventing logic contract initialization in order to make future versions of the code more
secure.

The issue has been fixed with commit eb85b9b1e0b22e7b8851aad16fa4b9136863d280.

Blockchain Security Analysis by Pessimistic 13

Notes

N01. Overpowered role
The system relies heavily on the following roles:

In NFT contract:

Owner can:

mint new tokens

update the token URI

update the NFTSale and Treasury addresses

NFTSale, Treasury can mint new tokens.

In NFTSale contract:

Owner can:

set a signer

update redeem and purchase supplies

pause redeems and purchases

Signer can sign messages that allow a user to purchase or redeem an NFT
token.

In Staking contract, the owner can add a new staking option, modify or pause existing
staking options.

In Treasury contract:

Owner can:

set a signer

set withdrawal limits on tokens

update the proxy contract

Signer can sign messages that allow to withdraw tokens from the treasury.

Blockchain Security Analysis by Pessimistic 14

In MultiVesting contract:

Owner can:

set a seller

withdraw all funds on emergency situations

disable emergency withdrawals

Seller can vest new tokens.

In CHEEL contract, the owner can mint new tokens.

In LEE contract, the owner can mint new tokens.

Note that the project developers transfer ownership to the Gnosis Safe wallet.

Comment from the developers:

The team of Cheelee has been working on the resolution of centralization risk to ensure the
transparency and authenticity of our business.

Gnosis Safe was chosen as it is the most trusted platform to manage digital assets with their
multi-signature format for crypto projects and teams.

The purpose of having signatures to confirm every transaction is to lower the risk of having
unauthorized access to company crypto assets and all Cheelee smart contracts. There are a
total of 3 signatures from 5 required to authorize transactions in order to enhance the security
in Cheelee as well as keeping the smart contracts decentralized.

N02. Code logic
In Treasury.sol users must provide a signature in order to withdraw tokens. The signature
includes the nonce field. This field prevents a malicious user from using the same signature
twice. However, usually, nonces allow to invalidate old signatures. For example, in Ethereum
transactions with nonces less than 15 cannot be mined if transaction with nonce 14 has been
mined. Note that in Treasury.sol there is a mechanism for invalidating old signatures: each
signature has ttl. The problem with that approach is that developers should not give the user
another signature for withdrawing NFT until the previous one is invalidated due to ttl.

Comment from the developers: Developers do not allow to have another signature for the
same amount of tokens or an NFT during the TTL of a previous signature. However it is out
of scope of the contracts and provided by the backend infrastructure of the project.

Blockchain Security Analysis by Pessimistic 15

This analysis was performed by Pessimistic:

Evgeny Marchenko, Senior Security Engineer
Pavel Kondratenkov, Security Engineer
Yhtyyar Sahatov, Junior Security Engineer
Irina Vikhareva, Project Manager

December 29, 2022

Blockchain Security Analysis by Pessimistic 16

