
01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 1/14

ConsenSys / 0x-audit-report-2019-05

audit report for the 0x ERC1155Proxy contract

 1 star 1 fork

Code Issues Pull requests Actions Projects Wiki Security Insights

View code

0x ERC1155Proxy Audit
0 July 2019 Update
1 Summary
2 System Overview

2.1 Detailed Design
3 Audit Scope
4 Security Specification

4.1 Actors
4.2 Trust Model
4.3 Important Security Properties

5 Key Observations/Recommendations
6 Issues

6.1 Asset data manipulation can lead to unexpected trade outcomes
6.2 Check for invalid offsets and lengths
6.3 Consider using safeTransferFrom for single-asset transfers
6.4 Copying more data than necessary
6.5 For consistency and simplicity, assetDataOffset should account for the
function selector

Appendix 1 - Disclosure

 Star Watch

 master

smarx … on 22 Jul 2019

README.md

https://github.com/ConsenSys
https://github.com/ConsenSys/0x-audit-report-2019-05
https://github.com/ConsenSys/0x-audit-report-2019-05/stargazers
https://github.com/ConsenSys/0x-audit-report-2019-05/network/members
https://github.com/ConsenSys/0x-audit-report-2019-05
https://github.com/ConsenSys/0x-audit-report-2019-05/issues
https://github.com/ConsenSys/0x-audit-report-2019-05/pulls
https://github.com/ConsenSys/0x-audit-report-2019-05/actions
https://github.com/ConsenSys/0x-audit-report-2019-05/projects
https://github.com/ConsenSys/0x-audit-report-2019-05/wiki
https://github.com/ConsenSys/0x-audit-report-2019-05/security
https://github.com/ConsenSys/0x-audit-report-2019-05/pulse
https://github.com/ConsenSys/0x-audit-report-2019-05/blob/master/static-content/diligence.png
https://github.com/ConsenSys/0x-audit-report-2019-05/commits?author=smarx
https://github.com/ConsenSys/0x-audit-report-2019-05/commit/be965b20bd22ea5fa66c2645a6e27cd8dd036d33
https://github.com/ConsenSys/0x-audit-report-2019-05/commits/master
https://github.com/smarx

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 2/14

0 July 2019 Update

As of July 2019, there is a new Solidity-based version of the ERC1155Proxy contract.
ConsenSys Diligence has conducted an audit of this new contract and found it to be
functionality equivalent to the original.

The only security concern with the new code is the use of LibBytes.sliceDestructive ,
which is written in assembly and takes a hard dependency on the memory layout for bytes
arrays. Inline assembly is inherently risky, but most of the risk here is that future versions of
Solidity might change the way bytes arrays are represented in memory. This is a
maintenance problem rather than a concern with the current code.

The Solidity alternative would require copying the data byte by byte, which would increase
gas costs linearly with the size of the data. The assembly solution was deemed worth the
risk because it reduces this to a constant cost in a relatively simple way. Due to a number of
teams' dependencies on the current memory layout, we believe it is unlikely that Solidity will
break this in the future in a minor release. Explicit tests for memory layout are being added
by the 0x team to ensure that such changes would be immediately detected.

1 Summary

ConsenSys Diligence conducted a security audit on the new 0x ERC1155Proxy contract. 0x is
a decentralized exchange protocol, and the ERC1155Proxy adds multi-token support in the
form of the emerging ERC-1155 standard.

Project Name: 0x ERC1155Proxy contract
Client Name: 0x
Client Contact: Amir Bandeali
Lead Auditor: Steve Marx
Co-auditors: Sergii Kravchenko
Date: 2019-05-20

2 System Overview

A typical order in an exchange involves two transfers: one from the order maker to the order
taker, and one in the opposite direction. Each transfer can be described by the following
parameters:

a from address
a to address
an asset to be transferred
the amount to be transferred

https://github.com/0xProject/0x-monorepo/blob/77484dc69eea1f4f1a8397590199f3f2489751d2/contracts/asset-proxy/contracts/src/ERC1155Proxy.sol
https://github.com/0xProject/0x-monorepo/blob/d35a053efdc8f49815ca80be0c278475c6af5238/contracts/utils/contracts/src/LibBytes.sol#L196-L226
https://0x.org/
https://eips.ethereum.org/EIPS/eip-1155

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 3/14

In the 0x exchange, assets are described by asset data byte sequences, which allows for
quite a bit of flexibility. In a simple token exchange, the asset data simply describes what
token contract should be invoked, but more elaborate assets can be described.

An ERC-1155 trade is an example of a more complex asset. The asset data for an ERC-1155
transfer actually specifies multiple individual assets in arbitrary proportions that should be
transferred. The asset data for an ERC-1155 transfer is as follows:

the address of an ERC-1155 compatible contract
an array of asset ids
an array of values, representing the number of units of each asset to be transferred

The new 0x ERC1155Proxy contract is a translation layer that receives a transfer with the
above asset data, multiplies each member of the values array by the amount specified in
the transfer, and translates that data into a call to safeBatchTransferFrom on an ERC-1155
compatible contract.

2.1 Detailed Design

The ERC1155Proxy is a single contract, written largely in Solidity assembly for efficiency. The
following tables, adapted from comments in the code, describe the translation that is
performed from the contract's input to the safeBatchTransferFrom call it ultimately makes:

Input call data

Area Offset (**) Length Contents

Header 0 4 function selector

Params 4 * 32 function parameters:

4 1. offset to assetData (*)

36 2. from

68 3. to

100 4. amount

Data assetData:

132 32 assetData Length

164 (see below) assetData Contents

Asset data

Area Offset Length Contents

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 4/14

Area Offset Length Contents

Header 0 4 assetProxyId

Params 4 * 32 function parameters:

4 1. address of ERC1155 contract

36 2. offset to ids (*)

68 3. offset to values (*)

100 4. offset to data (*)

Data ids:

132 32 1. ids Length

164 a 2. ids Contents

values:

164 + a 32 1. values Length

196 + a b 2. values Contents

data

196 + a + b 32 1. data Length

228 + a + b c 2. data Contents

Call data for safeBatchTransferFrom

Area Offset (**) Length Contents

Header 0 4 safeBatchTransferFrom selector

Params 5 * 32 function parameters:

4 1. from address

36 2. to address

68 3. offset to ids (*)

100 4. offset to values (*)

132 5. offset to data (*)

Data ids:

164 32 1. ids Length

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 5/14

Area Offset (**) Length Contents

196 a 2. ids Contents

values:

196 + a 32 1. values Length

228 + a b 2. values Contents

data

228 + a + b 32 1. data Length

260 + a + b c 2. data Contents

(*): offset is computed from start of function parameters, so offset by an additional 4 bytes
in the call data.

(**): the Offset column is computed assuming no call data compression; offsets in the data
area are dynamic and should be evaluated in real-time.

3 Audit Scope

This audit covered just the ERC1155Proxy contract, located in the following file:

File SHA-1 hash

ERC1155Proxy.sol 7c8cf8de642403ac884bf4bbaa7e20d4ea902e91

The audit team evaluated that the contract is secure, resilient, and working according to its
specifications. The audit activities can be grouped into the following three broad categories:

1. Security: Identifying security related issues within the contract.
2. Architecture: Evaluating the system architecture through the lens of established smart

contract best practices.
3. Code quality: A full review of the contract source code. The primary areas of focus

include:
Correctness
Readability
Scalability
Code complexity
Quality of test coverage

4 Security Specification

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 6/14

This section describes, from a security perspective, the expected behavior of the system
under audit. It is not a substitute for documentation. The purpose of this section is to
identify specific security properties that were validated by the audit team.

4.1 Actors

The relevant actors are as follows:

0x exchange maintainers
Traders participating in the exchange
ERC-1155 contract maintainers

4.2 Trust Model

In any smart contract system, it's important to identify what trust is expected/required
between various actors. For this audit, we established the following trust model:

The 0x platform does not need to trust traders nor the assets they're trading.
Traders do not need to trust each other.

4.3 Important Security Properties

The following is a non-exhaustive list of security properties that were verified in this audit:

Only authorized callers can invoke the ERC1155Proxy contract.
A malicious ERC-1155 contract cannot harm traders or the 0x platform itself.
Malicious traders cannot harm the 0x platform.
Traders are expected to determine that a trade is desirable before accepting it. This
includes verifying that the ERC-1155 contract involved works as expected.
That said, a malicious trader should not be able to force or trick another trader into an
asset transfer they don't want.

5 Key Observations/Recommendations

The code is written in assembly. This makes the contract harder to read, but it allows for
significant efficiency gains.
The contract has low complexity with very few branches.
The code is straightforward and well commented.
Test coverage is good, including edge cases and negative tests for error conditions.
Only one major issue was identified and is described in the following section.

6 Issues

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 7/14

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to whether
to address such issues.
Medium issues are objective in nature but are not security vulnerabilities. These should
be addressed unless there is a clear reason not to.
Major issues are security vulnerabilities that may not be directly exploitable or may
require certain conditions in order to be exploited. All major issues should be
addressed.
Critical issues are directly exploitable security vulnerabilities that need to be fixed.

The following table contains all the issues discovered during the audit, ordered based on
their severity.

Chapter Issue Title
Issue
Status

Severity

6.1
Asset data manipulation can lead to unexpected
trade outcomes

Closed Major

6.2 Check for invalid offsets and lengths Closed Minor

6.3
Consider using safeTransferFrom for single-asset
transfers

Closed Minor

6.4 Copying more data than necessary Closed Minor

6.5
For consistency and simplicity, assetDataOffset
should account for the function selector

Closed Minor

6.1 Asset data manipulation can lead to unexpected trade outcomes

Severity Status Remediation Comment

Major Closed Fixed in https://github.com/0xProject/0x-monorepo/pull/1837.

Description

The ERC1155Proxy doesn't perform any validation on the asset data. This is presumably
because it's up to traders to decide whether they like a proposed trade or not. However,
even if traders examine the ABI-encoded asset data carefully, they can end up performing
an unexpected trade due to a combination of data manipulation by the contract and a lack
of validation around ABI encoded values.

Example

https://github.com/0xProject/0x-monorepo/pull/1837

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 8/14

Suppose the ids and values provided in the asset data are identical because their offsets
in the ABI-encoded asset data are the same:

byte range contents

0-4 assetProxyId

4-36 address of ERC1155 contract

36-68 128 (offset to ids)

68-100 128 (offset to values)

Even a trader who is diligent about checking the ABI-encoded asset data will see that this
data properly decodes to a reasonable trade. E.g. token IDs [1, 2] and values [1, 2].

Now if they trade with an amount of 2, they might expect to trade token IDs [1, 2] with
amounts [2, 4] because each value is multiplied by the specified amount.

However, due to the offsets pointing to the same data, they'll actually trade token IDs [2, 4]
with amounts [2, 4]. The following loop is doing multiplication in place and thus affecting
both arrays:

code/contracts/asset-proxy/contracts/src/ERC1155Proxy.sol:L187-L210

for { let tokenValueOffset := valuesBegin }
 lt(tokenValueOffset, valuesEnd)
 { tokenValueOffset := add(tokenValueOffset, 32) }
{
 // Load token value and generate scaled value
 let tokenValue := mload(tokenValueOffset)
 let scaledTokenValue := mul(tokenValue, amount)

 // Revert if `amount` != 0 and multiplication resulted in an overflow
 if iszero(or(
 iszero(amount),
 eq(div(scaledTokenValue, amount), tokenValue)
)) {
 // Revert with `Error("UINT256_OVERFLOW")`
 mstore(0, 0x08c379a000)
 mstore(32, 0x0000002000
 mstore(64, 0x0000001055494e543235365f4f564552464c4f57000000000000000000000000
 mstore(96, 0)
 revert(0, 100)
 }

 // There was no overflow, update `tokenValue` with its scaled counterpart
 mstore(tokenValueOffset, scaledTokenValue)
}

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 9/14

Note that it's also possible to only partially overlap the IDs and values and thus only
multiply some of them. It's also possible to cause the data array to be multiplied instead.

This issue is partially mitigated by the fact that the function selector (hardcoded), the
ERC1155 contract address (stored safely on the stack early on), and the from and to

parameters (copied directly from call data after the loop) cannot be manipulated.

Remediation

We recommend doing some validation of the ABI-encoded asset data. Specifically, each
different field in the data should have to occupy non-overlapping regions in the call data.
With such validation in place, simple ABI decoding of the asset data should reveal exactly
what will be traded.

6.2 Check for invalid offsets and lengths

Severity Status Remediation Comment

Minor Closed

Fixed in https://github.com/0xProject/0x-monorepo/pull/1837.
No check was added for walking past the end of the passed-in
call data, but this is handled at the EVM level by just returning
zeros, which seems harmless.

Description

If the values offset is near the end of call data, you can end up reading some bogus values
(e.g. the function selector as some asset value). In some sense, this is just what the data says,
but note that Solidity has some sanity checks that don’t let this sort of thing happen. E.g.
although at the EVM level you can read call data beyond calldatasize and get zeros,
Solidity when decoding an array checks the length and just refuses.

It would make sense for this code to perform similar checks.

Remediation

Perhaps there should be some sanity checks around offsets and lengths. E.g. offsets should
be within calldatasize , array lengths shouldn’t overflow when converted to byte lengths,
and adding the byte length to the offset should also not exceed calldatasize .

6.3 Consider using safeTransferFrom for single-asset transfers

Severity Status Remediation Comment

Minor Closed
From the client: We intend on continuing to use batch transfers
for this implementation. Depending on how it gets used, we may
create a separate single transfer version in the future.

https://github.com/0xProject/0x-monorepo/pull/1837

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 10/14

Description

ERC-1155 contract has two different functions for transferring items/tokens:
safeBatchTransferFrom for performing multiple transfers inside one transaction and
safeTransferFrom for a single transfer. They emit different events and call different callback

functions.

The ERC1155Proxy only uses safeBatchTransferFrom , even for single transfers, which we
assume are the most common transfers. This function is less efficient for single transfers and
emits batch events and calls batch callbacks.

Remediation

Consider differentiating between single and batch transfers and calling the corresponding
functions of ERC-1155 contract.

6.4 Copying more data than necessary

Severity Status Remediation Comment

Minor Closed
No longer an issue in https://github.com/0xProject/0x-
monorepo/pull/1837.

Description

The following code copies some data to memory at bytes 32-68 that's not actually needed:

code/contracts/asset-proxy/contracts/src/ERC1155Proxy.sol:L156-L165

Later on, memory at bytes 0-68 is overwritten:

code/contracts/asset-proxy/contracts/src/ERC1155Proxy.sol:L218-L225

// This corresponds to the beginning of the Data Area for Table #3.
// Computed by:
// 4 (function selector)
// + assetDataOffset
// + 32 (length of assetData)
calldatacopy(
 32, // aligned such that "offset to ids" is at the correc
 add(36, assetDataOffset), // beginning of asset data contents
 assetDataLength // length of asset data
)

mstore(0, 0x2eb2c2d600)

// Copy `from` and `to` fields from Table #1 to Table #3

https://github.com/0xProject/0x-monorepo/pull/1837

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 11/14

There's no need to copy those extra 36 bytes. The intent of the code is clearer if those bytes
are not being copied.

Remediation

In the initial copy, just start at offset 68 and copy 36 bytes less:

Note that the subtraction allows for an integer underflow that doesn't matter... the caller can
specify an arbitrary assetDataLength anyway.

6.5 For consistency and simplicity, assetDataOffset should account
for the function selector

Severity Status Remediation Comment

Minor Closed Fixed in https://github.com/0xProject/0x-monorepo/pull/1837.

Description

The following code has to deal with adding 4 bytes for the function selector twice:

code/contracts/asset-proxy/contracts/src/ERC1155Proxy.sol:L148-L165

calldatacopy(
 4, // aligned such that `from` and `to` are at the correct location for
 36, // beginning of `from` field from Table #1
 64 // 32 bytes for `from` + 32 bytes for `to` field
)

calldatacopy(
 68, // aligned such that "offset to ids" is at the correct location for Table htt
 add(72, assetDataOffset), // asset data starting at "offset to ids"
 sub(assetDataLength, 36) // length of asset data after the first 36 bytes
)

// Load offset to `assetData`
let assetDataOffset := calldataload(4)

// Load length in bytes of `assetData`, computed by:
// 4 (function selector)
// + assetDataOffset
let assetDataLength := calldataload(add(4, assetDataOffset))

// This corresponds to the beginning of the Data Area for Table #3.
// Computed by:
// 4 (function selector)

https://github.com/0xProject/0x-monorepo/pull/1837

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 12/14

It's simpler to account for the function selector once at variable initialization:

This would also be more consistent with the way valuesOffset is handled:

code/contracts/asset-proxy/contracts/src/ERC1155Proxy.sol:L180

Remediation

Add 4 to assetDataOffset up front and simplify the subsequent calculations.

Appendix 1 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The Reports
may be distributed through other means, including via ConsenSys publications and other
distributions.

// + assetDataOffset
// + 32 (length of assetData)
calldatacopy(
 32, // aligned such that "offset to ids" is at the correc
 add(36, assetDataOffset), // beginning of asset data contents
 assetDataLength // length of asset data
)

let assetDataOffset := add(4, calldataload(4)) // account for function selector here
let assetDataLength := calldataload(assetDataOffset) // no add(4, ...)
calldatacopy(32, add(32, assetDataOffset), assetDataLength) // the more natural 32 in

let valuesOffset := add(mload(100), 4) // add 4 for calldata offset

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 13/14

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the
potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for
Clients and published with their consent. The scope of our review is limited to a review of
Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) -- on its
GitHub account (https://github.com/ConsenSys). CD hopes that by making these analyses
publicly available, it can help the blockchain ecosystem develop technical best practices in
this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive
responsibility of such web sites' owners. You agree that ConsenSys and CD are not
responsible for the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party Web sites.
Except as described below, a hyperlink from this web Site to another web site does not
imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the Web
Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

https://github.com/ConsenSys

01.06.2021 ConsenSys/0x-audit-report-2019-05: audit report for the 0x ERC1155Proxy contract

https://github.com/ConsenSys/0x-audit-report-2019-05#readme 14/14

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

Releases

No releases published

Packages

No packages published

https://github.com/ConsenSys/0x-audit-report-2019-05/releases
https://github.com/orgs/ConsenSys/packages?repo_name=0x-audit-report-2019-05

