
Covalent contest
Findings & Analysis Report

2021-11-19

Table of contents
Overview

About C4

Wardens

Summary

Scope

Severity Criteria

High Risk Findings (2)

[H-01] Usage of an incorrect version of Ownbale library can potentially

malfunction all onlyOwner functions

[H-02] unstake should update exchange rates first

Medium Risk Findings (3)

[M-01] reward tokens could get lost due to rounding down

[M-02] Incorrect updateGlobalExchangeRate implementation

[M-03] Validator can fail to receive commission reward in

redeemAllRewards

Low Risk Findings (4)

Non-Critical Findings (11)

https://code4rena.com/

Gas Optimizations (18)

Disclosures

Code4rena (C4) is an open organization consisting of security researchers, auditors,

developers, and individuals with domain expertise in smart contracts.

A C4 code contest is an event in which community participants, referred to as

Wardens, review, audit, or analyze smart contract logic in exchange for a bounty

provided by sponsoring projects.

During the code contest outlined in this document, C4 conducted an analysis of

Covalent smart contract system written in Solidity. The code contest took place

between October 19—October 21 2021.

14 Wardens contributed reports to the Covalent code contest:

1. cmichel

2. WatchPug (jtp and ming)

3. jonah1005

4. xYrYuYx

5. pants

6. hickuphh3

7. gpersoon

8. ye0lde

9. pauliax

10. harleythedog

11. pmerkleplant

12. defsec

13. csanuragjain

Overview

About C4

Wardens

https://twitter.com/cmichelio
https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/jonah1005w
https://twitter.com/xYrYuYx
https://twitter.com/HickupH
https://twitter.com/gpersoon
https://twitter.com/_ye0lde
https://twitter.com/SolidityDev
https://twitter.com/merkleplant_eth
https://twitter.com/defsec_
https://twitter.com/csanuragjain

This contest was judged by Alex the Entreprenerd.

Final report assembled by CloudEllie and moneylegobatman.

The C4 analysis yielded an aggregated total of 9 unique vulnerabilities and 38 total

findings. All of the issues presented here are linked back to their original finding.

Of these vulnerabilities, 2 received a risk rating in the category of HIGH severity, 3

received a risk rating in the category of MEDIUM severity, and 4 received a risk

rating in the category of LOW severity.

C4 analysis also identified 11 non-critical recommendations and 18 gas

optimizations.

The code under review can be found within the C4 Covalent contest repository,

and is composed of 17 smart contracts written in the Solidity programming language

and includes 442 lines of Solidity code..

C4 assesses the severity of disclosed vulnerabilities according to a methodology

based on OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and low.

High-level considerations for vulnerabilities span the following key areas when

conducting assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Summary

Scope

Severity Criteria

https://twitter.com/GalloDaSballo
https://twitter.com/CloudEllie1
https://twitter.com/money_lego
https://github.com/code-423n4/2021-10-covalent
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Further information regarding the severity criteria referenced throughout the

submission review process, please refer to the documentation provided on the C4

website.

Submitted by WatchPug

DelegatedStaking.sol L62-L63

Based on the context and comments in the code, the DelegatedStaking.sol

contract is designed to be deployed as an upgradeable proxy contract.

However, the current implementation is using an non-upgradeable version of the

Ownbale library: @openzeppelin/contracts/access/Ownable.sol instead of the

upgradeable version: @openzeppelin/contracts-

upgradeable/access/OwnableUpgradeable.sol .

A regular, non-upgradeable Ownbale library will make the deployer the default

owner in the constructor. Due to a requirement of the proxy-based upgradeability

system, no constructors can be used in upgradeable contracts. Therefore, there will

be no owner when the contract is deployed as a proxy contract.

As a result, all the onlyOwner functions will be inaccessible.

Use @openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol and

@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol instead.

And change the initialize() function to:

High Risk Findings (2)

[H-01] Usage of an incorrect version of Ownbale library can
potentially malfunction all onlyOwner functions

// this is used to have the contract upgradeable
function initialize(uint128 minStakedRequired) public initializer {

Recommendation

https://code423n4.com/
https://github.com/code-423n4/2021-10-covalent/blob/ded3aeb2476da553e8bb1fe43358b73334434737/contracts/DelegatedStaking.sol#L62-L63
https://github.com/code-423n4/2021-10-covalent-findings/issues/45

kitti-katy (Covalent) confirmed

GalloDaSballo (judge) commented:

Agree with the finding, when using Upgradeable Proxies it’s important to use the

adequate libraries that will be compatible with initializable contracts

GalloDaSballo (judge) commented:

The sponsor has mitigated the issue

kitti-katy (Covalent) patched

Submitted by cmichel

The unstake function does not immediately update the exchange rates. It first

computes the validatorSharesRemove = tokensToShares(amount, v.exchangeRate)

with the old exchange rate.

Only afterwards, it updates the exchange rates (if the validator is not disabled):

function initialize(uint128 minStakedRequired) public initializer {
 __Ownable_init();
 ...
}

[H-02] unstake should update exchange rates first

// @audit shares are computed here with old rate
uint128 validatorSharesRemove = tokensToShares(amount, v.exchangeRate
require(validatorSharesRemove > 0, "Unstake amount is too small");

if (v.disabledEpoch == 0) {
 // @audit rates are updated here
 updateGlobalExchangeRate();
 updateValidator(v);
 // ...

https://github.com/code-423n4/2021-10-covalent-findings/issues/45
https://github.com/code-423n4/2021-10-covalent-findings/issues/45#issuecomment-955111019
https://github.com/code-423n4/2021-10-covalent-findings/issues/45#issuecomment-955111738
https://github.com/code-423n4/2021-10-covalent/pull/23
https://github.com/code-423n4/2021-10-covalent-findings/issues/57

More shares for the amount are burned than required and users will lose rewards in

the end.

Demonstrating that users will lose rewards:

1. Assume someone staked 1000 amount and received 1000 shares , and

v.exchangeRate = 1.0 . (This user is the single staker)

2. Several epochs pass, interest accrues, and 1000 tokens accrue for the

validator, tokensGivenToValidator = 1000 . User should be entitled to 1000 in

principal + 1000 in rewards = 2000 tokens.

3. But user calls unstake(1000) , which sets validatorSharesRemove =

tokensToShares(amount, v.exchangeRate) = 1000 / 1.0 = 1000 . Afterwards,

the exchange rate is updated: v.exchangeRate += tokensGivenToValidator /

totalShares = 1.0 + 1.0 = 2.0 . The staker is updated with s.shares -=

validatorSharesRemove = 0 and s.staked -= amount = 0 . And the user

receives their 1000 tokens but notice how the user’s shares are now at zero as

well.

4. User tries to claim rewards calling redeemAllRewards which fails as the

rewards are 0.

If the user had first called redeemAllRewards and unstake afterwards they’d have

received their 2000 tokens.

The exchange rates always need to be updated first before doing anything. Move

the updateGlobalExchangeRate() and updateValidator(v) calls to the beginning of

the function.

kitti-katy (Covalent) confirmed

GalloDaSballo (judge) commented:

}

Impact

POC

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-covalent-findings/issues/57
https://github.com/code-423n4/2021-10-covalent-findings/issues/57#issuecomment-955111691

Agree with the finding, using the old exchange rate ends up burning more shares

than what would be correct The sponsor has mitigated the issue

Submitted by gpersoon, also found by hickuphh3, xYrYuYx, and jonah1005

The function depositRewardTokens divides the “amount” of tokens by

allocatedTokensPerEpoch to calculate the endEpoch . When “amount” isn’t a

multiple of allocatedTokensPerEpoch the result of the division will be rounded

down, effectively losing a number of tokens for the rewards.

For example if allocatedTokensPerEpoch is set to 3e18 and “amount” is 100e18 then

endEpoch will be increased with 33e18 and the last 1e18 tokens are lost.

A similar problem occurs here:

in setAllocatedTokensPerEpoch() , with the recalculation of endEpoch

in takeOutRewardTokens() , with the retrieval of tokens

in _stake(), when initializing endEpoch (e.g. when endEpoch ==0)

DelegatedStaking.sol L90-L98

DelegatedStaking.sol L368-L383

In depositRewardTokens() add, in the beginning of function, before the if

statement:

In takeOutRewardTokens() add:

Medium Risk Findings (3)

[M-01] reward tokens could get lost due to rounding down

Impact

Proof of Concept

Recommended Mitigation Steps

require(amount % allocatedTokensPerEpoch == 0,"Not multiple");

https://github.com/code-423n4/2021-10-covalent/blob/ded3aeb2476da553e8bb1fe43358b73334434737/contracts/DelegatedStaking.sol#L90-L98
https://github.com/code-423n4/2021-10-covalent/blob/ded3aeb2476da553e8bb1fe43358b73334434737/contracts/DelegatedStaking.sol#L368-L383
https://github.com/code-423n4/2021-10-covalent-findings/issues/10

Update setAllocatedTokensPerEpoch() to something like:

kitti-katy (Covalent) confirmed:

Agreed, the original assumption was that the owner would always make sure the

take out and deposit amount is multiple of emission rate. But yes, this is good to add

the check. Also it is not that risky since the emission rate wouldn’t be that high per

epoch and the loss will always be less than the emission rate.

GalloDaSballo (judge) commented:

Agree with the finding, since it’s a rounding error the max loss in rewards can at

most be 1 less than the denominator

That said, this is a Medium Severity Finding as per the doc: 2 — Med: Assets not at

direct risk, but the function of the protocol or its availability could be

impacted, or leak value with a hypothetical attack path with stated

assumptions, but external requirements.

Where in this case the rounding is a way to leak value (loss of yield)

Submitted by xYrYuYx

require(amount % allocatedTokensPerEpoch == 0,"Not multiple");

if (`endEpoch` != 0) {
...
uint128 futureRewards = ...
require(futureRewards % amount ==0,"Not multiple");
...\
} else { // to prevent issues with _stake()
require(rewardsLocked % allocatedTokensPerEpoch==0,"Not multiple");
}

[M-02] Incorrect updateGlobalExchangeRate implementation

https://github.com/code-423n4/2021-10-covalent-findings/issues/10#issuecomment-948903386
https://github.com/code-423n4/2021-10-covalent-findings/issues/10#issuecomment-957018348
https://github.com/code-423n4/2021-10-covalent-findings/issues/17

UpdateGlobalExchangeRate has incorrect implementation when totalGlobalShares

is zero.

If any user didn’t start stake, totalGlobalShares is 0, and every stake it will

increase. but there is possibility that totalGlobalShares can be 0 amount later by

unstake or disable validator.

This is my test case to proof this issue: C4_issues.js L76

In my test case, I disabled validator to make totalGlobalShares to zero. And in this

case, some reward amount will be forever locked in the contract. After disable

validator, I mined 10 blocks, and 4 more blocks mined due to other function calls, So

total 14 CQT is forever locked in the contract.

Hardhat test

Please think again when totalGlobalShares is zero.

kitti-katy (Covalent) acknowledged:

That is right, and I think the best solution would be to add a validator instance who is

the owner and stake some low amount of tokens in it. This way we can make sure

there is no such situation when totalGlobalShares becomes 0 and if everyone

unstaked, the owner could take out reward tokens and then unstake / redeem

rewards.

Not sure. That could even be marked as “high risk”. if the situation happens and not

handled right away (taking out reward tokens), then there could be more significant

financial loss.

kitti-katy (Covalent) commented:

marked resolved as it will be manually handled

Impact

Proof of Concept

Tools Used

Recommended Mitigation Steps

https://github.com/xYrYuYx/C4-2021-10-covalent/blob/main/test/c4-tests/C4_issues.js#L76
https://github.com/code-423n4/2021-10-covalent-findings/issues/17#issuecomment-948913401
https://github.com/code-423n4/2021-10-covalent-findings/issues/17#issuecomment-950028436

GalloDaSballo (judge) commented:

The issue found by the warden is straightforward: Through mix of unstaking and the

use of disableValidator the warden was able to lock funds, making them

irredemeable

It seems to me that this is caused by the fact that unstake as well as

disableValidator will reduce the shares: https://github.com/code-423n4/2021-

10-

covalent/blob/a8368e7982d336a4b464a53cfe221b2395da801f/contracts/Deleg

atedStaking.sol#L348`

I would recommend separating the shares accounting from the activation of

validator, simply removing the subtraction of global shares in disableValidator

would allow them to claim those shares.

The function disableValidator can be called by either the validator or the owner,

while onlyOwner can add a new validator

The owner has the ability to perform this type of griefing, as well as a group of

validators if they so chose

Due to the specifics of the grief I will rate it of Medium Severity, as per the docs: 2 —

Med: Assets not at direct risk, but the function of the protocol or its

availability could be impacted, or leak value with a hypothetical attack

path with stated assumptions, but external requirements.

In this case we have a way to leak value (lock funds) with specific condition

(malicious owner or multiple griefing validators)

Submitted by jonah1005

[M-03] Validator can fail to receive commission reward in
redeemAllRewards

Impact

https://github.com/code-423n4/2021-10-covalent-findings/issues/17#issuecomment-962730124
https://github.com/code-423n4/2021-10-covalent/blob/a8368e7982d336a4b464a53cfe221b2395da801f/contracts/DelegatedStaking.sol#L348%60
https://github.com/code-423n4/2021-10-covalent-findings/issues/65

Validator can fail to receive commission reward by calling redeemAllRewards .

There’s a check in redeemAllRewards

The validator’s tx might be reverted here even if he got some commission reward to

receive.

We can trigger the bug by setting commisionRate to 1e18 - 1

(DelegatedStaking.sol L275-L276)

Though this may rarely happen and the validator can redeem the reward through

redeemRewards , this may cause some issues when the validator is handled by a

contract.

I consider calling redeemRewards in redeemAllReawards as a more succinct way to

do this.

kitti-katy (Covalent) acknowledged:

I don’t think there will ever be a commission rate set to almost 100%. Since it is

changed by the owner we will make sure the input is correct.

GalloDaSballo (judge) commented:

Agree with the finding and understand the sponsors take.

As per the docs for contests: 2 — Med: Assets not at direct risk, but the

function of the protocol or its availability could be impacted, or leak

value with a hypothetical attack path with stated assumptions, but external

requirements.

uint128 rewards = sharesToTokens(s.shares, v.exchangeRate) - s.staked
require(rewards > 0, "Nothing to redeem");

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-covalent/blob/main/contracts/DelegatedStaking.sol#L275-L276
https://github.com/code-423n4/2021-10-covalent-findings/issues/65#issuecomment-948954017
https://github.com/code-423n4/2021-10-covalent-findings/issues/65#issuecomment-957813671

This fall as a medium severity

A simple mitigation would be to limit the commisionRate to less than the value that

causes issues

[L-01] addValidator() : Validator’s commission rate should be checked to not

exceed divider Submitted by hickuphh3, also found by cmichel, jonah1005,

and pauliax

[L-02] Line 127 lack of precision Submitted by pants

[L-03] addValidatior doesn’t check new validator address != 0 Submitted by

pants

[L-04] Unbounded iteration over validators array Submitted by cmichel

[N-01] Typos Submitted by WatchPug, also found by hickuphh3 and ye0lde

[N-02] Unnecessary require checker Submitted by xYrYuYx

[N-03] Inconsistent definition of integer sizes in function

getDelegatorDetails() Submitted by pmerkleplant

[N-04] Unclear definition of validatorId ’s integer size Submitted by

pmerkleplant

[N-05] Misleading parameter name Submitted by WatchPug

[N-06] Code Style: private/internal function names should be prefixed with

_ Submitted by WatchPug

[N-07] Code duplication Submitted by WatchPug

[N-08] Make more data accessible Submitted by hickuphh3

[N-09] getValidatorsDetails is getting disabled validators as well Submitted

by csanuragjain

[N-10] emit staked should be at stake function and not _stake. Submitted by

pants

[N-11] emit initialize Submitted by pants

Low Risk Findings (4)

Non-Critical Findings (11)

https://github.com/code-423n4/2021-10-covalent-findings/issues/20
https://github.com/code-423n4/2021-10-covalent-findings/issues/36
https://github.com/code-423n4/2021-10-covalent-findings/issues/35
https://github.com/code-423n4/2021-10-covalent-findings/issues/59
https://github.com/code-423n4/2021-10-covalent-findings/issues/42
https://github.com/code-423n4/2021-10-covalent-findings/issues/3
https://github.com/code-423n4/2021-10-covalent-findings/issues/70
https://github.com/code-423n4/2021-10-covalent-findings/issues/68
https://github.com/code-423n4/2021-10-covalent-findings/issues/60
https://github.com/code-423n4/2021-10-covalent-findings/issues/55
https://github.com/code-423n4/2021-10-covalent-findings/issues/46
https://github.com/code-423n4/2021-10-covalent-findings/issues/22
https://github.com/code-423n4/2021-10-covalent-findings/issues/9
https://github.com/code-423n4/2021-10-covalent-findings/issues/34
https://github.com/code-423n4/2021-10-covalent-findings/issues/33

[G-01] Move Function _stake Validator Declaration Submitted by ye0lde

[G-02] Adding unchecked directive can save gas Submitted by WatchPug,

also found by pauliax and ye0lde

[G-03] Long Revert Strings Submitted by ye0lde

[G-04] Update function access Submitted by xYrYuYx, also found by

WatchPug, defsec, harleythedog, pants, and pauliax

[G-05] Recommend to use OZ SafeERC20 library Submitted by xYrYuYx, also

found by cmichel, defsec, and pants

[G-06] Declare variable CQT as constant Submitted by pmerkleplant, also

found by harleythedog

[G-07] Change lines to save gas Submitted by pants

[G-08] Change order of lines to save gas in setAllocatedTokensPerEpoch

Submitted by pants

[G-09] getDelegatorDetails declaration inside a loop Submitted by pants

[G-10] Cache storage variables in the stack can save gas Submitted by

WatchPug, also found by harleythedog and pants

[G-11] ++i is more gas efficient than i++ in loops forwarding Submitted by

pants

[G-12] delegatorCoolDown Submitted by pants

[G-13] state variable divider could be set immutable. Submitted by pants, also

found by WatchPug and jonah1005

[G-14] takeOutRewardTokens() : Optimise epochs calculation and comparison

Submitted by hickuphh3, also found by WatchPug

[G-15] reset rewardsLocked to 0 when no longer used Submitted by gpersoon

[G-16] Check validatorId < validatorsN can be done earlier Submitted by

WatchPug

[G-17] Avoid unnecessary storage read can save gas Submitted by WatchPug

[G-18] unnecessary assert when dealing with CQT Submitted by jonah1005

Gas Optimizations (18)

Disclosures

https://github.com/code-423n4/2021-10-covalent-findings/issues/89
https://github.com/code-423n4/2021-10-covalent-findings/issues/52
https://github.com/code-423n4/2021-10-covalent-findings/issues/19
https://github.com/code-423n4/2021-10-covalent-findings/issues/2
https://github.com/code-423n4/2021-10-covalent-findings/issues/1
https://github.com/code-423n4/2021-10-covalent-findings/issues/67
https://github.com/code-423n4/2021-10-covalent-findings/issues/75
https://github.com/code-423n4/2021-10-covalent-findings/issues/73
https://github.com/code-423n4/2021-10-covalent-findings/issues/39
https://github.com/code-423n4/2021-10-covalent-findings/issues/53
https://github.com/code-423n4/2021-10-covalent-findings/issues/37
https://github.com/code-423n4/2021-10-covalent-findings/issues/29
https://github.com/code-423n4/2021-10-covalent-findings/issues/27
https://github.com/code-423n4/2021-10-covalent-findings/issues/26
https://github.com/code-423n4/2021-10-covalent-findings/issues/13
https://github.com/code-423n4/2021-10-covalent-findings/issues/51
https://github.com/code-423n4/2021-10-covalent-findings/issues/49
https://github.com/code-423n4/2021-10-covalent-findings/issues/63

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart

contracts. Security researchers are rewarded at an increasing rate for finding higher-

risk issues. Contest submissions are judged by a knowledgeable security researcher

and solidity developer and disclosed to sponsoring developers. C4 does not

conduct formal verification regarding the provided code but instead provides final

verification.

C4 does not provide any guarantee or warranty regarding the security of this

project. All smart contract software should be used at the sole risk and responsibility

of users.

Top

An open organization | Twitter | Discord | GitHub | Medium | Newsletter | Media kit |

code4rena.eth

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://medium.com/code4rena
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

