
Cudos contest
Findings & Analysis Report

2022-09-02

Table of contents
Overview

About C4

Wardens

Summary

Scope

Severity Criteria

Medium Risk Findings (6)

[M-01] Missing check in the updateValset function

[M-02] Admin drains all ERC based user funds using withdrawERC20()

[M-03] The Gravity.sol should have pause/unpause functionality

[M-04] Protocol doesn’t handle fee on transfer tokens

[M-05] Calls inside loops that may address DoS

[M-06] Non-Cudos Erc20 funds sent through sendToCosmos() will be

lost.

Low Risk and Non-Critical Issues

Low Risk Issues

1 Validator signing address of zero not rejected, allowing anyone to sign

2 Unbounded loops may run out of gas

https://code4rena.com/

3 deployERC20() does not have a reentrancy guard

4 Comment does not match the behavior of the code

5 abi.encodePacked() should not be used with dynamic types when

passing the result to a hash function such as keccak256()

Non-critical Issues

1 Best practice is to prevent signature malleability

2 Inconsistent variable naming convention

3 Inconsistent tabs vs spaces

4 if(should be if (to match other lines in the file

5 Misleading function name

6 Avoid the use of sensitive terms in favor of neutral ones

7 public functions not called by the contract should be declared

external instead

8 2**<n> - 1 should be re-written as type(uint<n>).max

9 constant s should be defined rather than using magic numbers

10 Use a more recent version of solidity

11 Variable names that consist of all capital letters should be reserved for

const / immutable variables

12 Non-library/interface files should use fixed compiler versions, not

floating ones

13 Typos

14 File does not contain an SPDX Identifier

15 File is missing NatSpec

16 Event is missing indexed fields

17 Consider making the bridge ‘pausable’

Gas Optimizations

G-01

G-02

G-03

G-04

G-05

G-06

G-07

G-08

G-09

G-10

Disclosures

Code4rena (C4) is an open organization consisting of security researchers, auditors,

developers, and individuals with domain expertise in smart contracts.

A C4 audit contest is an event in which community participants, referred to as

Wardens, review, audit, or analyze smart contract logic in exchange for a bounty

provided by sponsoring projects.

During the audit contest outlined in this document, C4 conducted an analysis of the

Cudos smart contract system written in Solidity. The audit contest took place

between May 3—May 9 2022.

64 Wardens contributed reports to the Cudos contest:

1. defsec

2. sorrynotsorry

3. CertoraInc (egjlmn1, OriDabush, ItayG, and shakedwinder)

4. p_crypt0

5. IllIllI

6. dirk_y

Overview

About C4

Wardens

https://twitter.com/defsec_
https://twitter.com/CertoraInc
https://twitter.com/ori_dabush

7. 0xDjango

8. GermanKuber

9. WatchPug (jtp and ming)

10. 0x1337

11. dipp

12. jah

13. danb

14. cccz

15. GimelSec (rayn and sces60107)

16. Dravee

17. hubble (ksk2345 and shri4net)

18. kirk-baird

19. reassor

20. AmitN

21. csanuragjain

22. wuwe1

23. jayjonah8

24. 0xkatana

25. 0x1f8b

26. Funen

27. MaratCerby

28. gzeon

29. robee

30. oyc_109

31. ch13fd357r0y3r

32. ellahi

33. ilan

34. Waze

https://twitter.com/WatchPug_
https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/jah_s3
https://twitter.com/danbinnun
https://twitter.com/rayn731
https://twitter.com/JustDravee
https://twitter.com/kirkthebaird
https://www.amitnave.com/
https://twitter.com/csanuragjain
https://twitter.com/wuwe19
https://instagram.com/vanensurya
https://twitter.com/MaratCerby
https://twitter.com/gzeon
https://twitter.com/ch13fd357r0y3r
https://twitter.com/ellahinator

35. hake

36. simon135

37. delfin454000

38. JC

39. Hawkeye (0xwags and 0xmint)

40. orion

41. m9800

42. shenwilly

43. cryptphi

44. broccolirob

45. kebabsec (okkothejawa and FlameHorizon)

46. 0xNazgul

47. AlleyCat

48. slywaters

49. 0xf15ers (remora and twojoy)

50. rfa

51. peritoflores

52. 0v3rf10w

53. hansfriese

54. nahnah

55. jonatascm

This contest was judged by Albert Chon.

Final report assembled by liveactionllama.

The C4 analysis yielded an aggregated total of 6 unique vulnerabilities. Of these

vulnerabilities, 0 received a risk rating in the category of HIGH severity and 6

received a risk rating in the category of MEDIUM severity.

Summary

https://twitter.com/sm4rtcontr4ct
https://twitter.com/Zcropakx
https://twitter.com/shenwilly_
https://twitter.com/0xbroccolirob
https://twitter.com/FlameHorizon1
https://twitter.com/0xNazgul
https://www.instagram.com/riyan_rfa/
https://twitter.com/_0v3rf10w
https://twitter.com/hansfriese
https://www.linkedin.com/in/jonatas-cmartins/
https://github.com/albertchon
https://twitter.com/liveactionllama

Additionally, C4 analysis included 41 reports detailing issues with a risk rating of

LOW severity or non-critical. There were also 33 reports recommending gas

optimizations.

All of the issues presented here are linked back to their original finding.

The code under review can be found within the C4 Cudos contest repository, and

is composed of 2 smart contracts written in the Solidity programming language and

includes 615 lines of Solidity code.

C4 assesses the severity of disclosed vulnerabilities according to a methodology

based on OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and

low/non-critical.

High-level considerations for vulnerabilities span the following key areas when

conducting assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Further information regarding the severity criteria referenced throughout the

submission review process, please refer to the documentation provided on the C4

website.

Submitted by CertoraInc, also found by 0x1337, cccz, danb, dipp, dirk_y, hubble,

jah, and WatchPug

Scope

Severity Criteria

Medium Risk Findings (6)

[M-01] Missing check in the updateValset function

https://github.com/code-423n4/2022-05-cudos
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://code4rena.com/
https://github.com/code-423n4/2022-05-cudos-findings/issues/123

Gravity.sol#L276-L358

The updateValset function don’t check that the sum of the powers of the new

validators in the new valset is greater than the threshold, which can lead to

unwanted behavior.

There are 2 main problems that can occur in that situation:

1. The sum of the new validators’ powers will be lower than the

state_powerThreshold

2. The sum of the new validators’ power will overflow and become lower than the

state_powerThreshold

The second case is less dangerous, because it won’t stuck the system in every case

(only in specific cases where every sum of validators’ power is less than the

threshold). The first case is very dangerous though. It can lead to the system

becoming stuck and to all of the tokens on the cudos chain to become locked for

users, because the validators won’t have enough power to approve any operation -

whether it is transferring tokens or updating the valset.

For the first case, consider the current validators set containing 100 validators with

each ones power being equal to 10, and the threshold is 900 (91+ validators are

needed for approvement). Now the updateValset function is being called with 100

validators with each ones power being equal to 1. This will lead to a state where no

matter how much validators have signed a message, the sum of the powers won’t

pass the threshold and the action won’t be able to be executed. This will cause all

the tokens in the cudos blockchain become locked, and will DoS all the actions of

the gravity contract - including updating the valset.

For the second case, consider the new validators set will have 128 validators, each

validator’s power is equal to 2**249 and _powerThreshold = 2**256 - 1 . In this

case the system will be stuck too, because every sum of validators’ power won’t pass

the threshold.

Remix and VS Code

Proof of Concept

Tools Used

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L276-L358

Add a check in the updateValset to assure that the sum of the new powers is

greater than the threshold.

V-Staykov (Cudos) disputed and commented:

This check is done on the Gravity module side and since the message is also signed

there by the validators, we can consider it to be always as per the module, unless

there are malicious validators with more voting power than the threshold.

If the message is considered correct this means that the values of the power are

normalized which is in the core of the power threshold calculation. When they are

normalized this means that the sum of the validator set will always equal 100% of

the power which is more than the threshold.

Here is a link to the power normalization in the Gravity module side.

Albert Chon (judge) decreased severity to Medium and commented:

Agreed with @V-Staykov - this would only fail if 2/3+ of the validator stake weight

were controlled by malicious validators, at which point all bets are off.

Submitted by pcrypt0, also found by 0x1337, AmitN, csanuragjain, danb, dirky,

GermanKuber, IllIllI, kirk-baird, and WatchPug

Gravity.sol#L632-L638

Gravity.sol#L595-L609

Ability for admin to drain all ERC20 funds stored in contract at will, meaning all

ERC20 based Cudos tokens (and any other ERC20 tokens stored in the contract)

could be extracted by anyone with admin role and later sold, leaving users funds

bridged on Cudos Cosmos chain with no ERC20 representation stored across the

bridge - similar in impact as the wormhole hack.

Recommended Mitigation Steps

[M-02] Admin drains all ERC based user funds using
withdrawERC20()

https://github.com/code-423n4/2022-05-cudos-findings/issues/123#issuecomment-1123596915
https://github.com/code-423n4/2022-05-cudos/blob/main/module/x/gravity/keeper/keeper_valset.go#L206
https://github.com/code-423n4/2022-05-cudos-findings/issues/123#issuecomment-1128642000
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L632-L638
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L595-L609
https://github.com/code-423n4/2022-05-cudos-findings/issues/14

This issue ought to fall within the limits the team allocated on assessing the

governance role setups, since it describes a full-fledged security risk regarding

users’ funds. Crucially, this function is not in the original Gravity Bridge contract for

Gravity.sol.

Furthermore, the function has not been commented and does not appear in the

documentation, suggesting that it has perhaps not yet been reasoned through by

the development team and it’s critical this is flagged in the security audit.

Firstly, User with admin role granted waits until CUDOS bridge has decent TVL from

users bridging their CUDOS tokens from Ethereum to the CUDOS Cosmos chain,

Secondly, User manually calls withdrawERC20(address _tokenAddress) with the

ERC token address of the CUDOS token

Thirdly, withdrawERC20() function checks if user has admin role and if so withdraws

all the tokens of a given token address straight to the admin’s personal wallet

Fourth, user exchanges CUDOS on DEX and then sends funds to tornado cash,

leaving all user funds at risk.

Proof of Concept

 function withdrawERC20(
address _tokenAddress)
external {
require(cudosAccessControls.hasAdminRole(msg.
uint256 totalBalance = IERC20(_tokenAddress).b
IERC20(_tokenAddress).safeTransfer(msg.sender

}

 require(cudosAccessControls.hasAdminRole(msg.sender),
uint256 totalBalance = IERC20(_tokenAddress).balanceOf
IERC20(_tokenAddress).safeTransfer(msg.sender , totalB

Tools Used

https://github.com/Gravity-Bridge/Gravity-Bridge/blob/f65d9da692c1af76f8188bd17b55dea58c1d8723/solidity/contracts/Gravity.sol

My own logical reasoning and discussion with team on Discord for confirmation of

admin roles and function’s logic.

Delete the function or alternatively, send all funds to the ‘0’ address to burn rather

than give them to the admin.

Change withdrawERC20 to:

maptuhec (Cudos) acknowledged and commented:

The reason we have created this functions is that, if the bridge stop working, the

funds for the users would be locked, and there is no chance to withdraw them.

CUDOS have no intention and incentive to maliciously withdraw the ERC20 tokes,

because that would lead to losing the trust in its clients and thus killing their own

network. The best way for handling this is to communicate this with the community

so they can be aware.

Albert Chon (judge) decreased severity to Medium

Submitted by defsec

In case a hack is occuring or an exploit is discovered, the team (or validators in this

case) should be able to pause functionality until the necessary changes are made to

Recommended Mitigation Steps

function burnERC20(
address _tokenAddress)
external {
require(cudosAccessControls.hasAdminRole(msg.sender), "Recipie
uint256 totalBalance = IERC20(_tokenAddress).balanceOf(addres
- IERC20(_tokenAddress).safeTransfer(msg.sender , totalBalance

 + IERC20(_tokenAddress).safeTransfer(address(0) , totalBalance
}

[M-03] The Gravity.sol should have pause/unpause
functionality

https://github.com/code-423n4/2022-05-cudos-findings/issues/14#issuecomment-1123247894
https://github.com/code-423n4/2022-05-cudos-findings/issues/14
https://github.com/code-423n4/2022-05-cudos-findings/issues/139

the system. Additionally, the gravity.sol contract should be manged by proxy so that

upgrades can be made by the validators.

Because an attack would probably span a number of blocks, a method for pausing

the contract would be able to interrupt any such attack if discovered.

To use a thorchain example again, the team behind thorchain noticed an attack was

going to occur well before the system transferred funds to the hacker. However, they

were not able to shut the system down fast enough. (According to the incidence

report here).

Gravity.sol#L175

Pause functionality on the contract would have helped secure the funds quickly.

mlukanova (Cudos) confirmed

V-Staykov (Cudos) resolved and commented:

PR: CudoVentures/cosmos-gravity-bridge#18

Submitted by wuwe1, also found by cccz, defsec, dipp, Dravee, GermanKuber,

GimelSec, jah, reassor, and WatchPug

Gravity.sol#L600

Since the _tokenContract can be any token, it is possible that loans will be created

with tokens that support fee on transfer. If a fee on transfer asset token is chosen,

other user’s funds might be drained.

1. Assume transfer fee to be 5% and Gravity.sol has 200 token.

Proof of Concept

Recommended Mitigation Steps

[M-04] Protocol doesn’t handle fee on transfer tokens

Proof of Concept

https://github.com/HalbornSecurity/PublicReports/blob/master/Incident%20Reports/Thorchain_Incident_Analysis_July_23_2021.pdf
https://github.com/code-423n4/2022-05-cudos/blob/main/solidity/contracts/Gravity.sol#L175
https://github.com/code-423n4/2022-05-cudos-findings/issues/139
https://github.com/code-423n4/2022-05-cudos-findings/issues/139#issuecomment-1128537997
https://github.com/CudoVentures/cosmos-gravity-bridge/pull/18
https://github.com/code-423n4/2022-05-cudos/blob/main/solidity/contracts/Gravity.sol#L600
https://github.com/code-423n4/2022-05-cudos-findings/issues/3

2. Alice sendToCosmos 100 token. Now, Gravity.sol has 295 token.

3. Alice calls the send-to-eth method to withdraw 100 token.

4. Gravity.sol ends up having 195 token.

Change to

mlukanova (Cudos) acknowledged and commented:

Token transfers are restricted to the Cudos token which doesn’t support fee on

transfer. Will be fixed with issue #58.

Submitted by sorrynotsorry

Calls to external contracts inside a loop are dangerous (especially if the loop index

can be user-controlled) because it could lead to DoS if one of the calls reverts or

execution runs out of gas. Reference

Recommended Mitigation Steps

function sendToCosmos(
address _tokenContract,
bytes32 _destination,
uint256 _amount

) public nonReentrant {
 uint256 oldBalance = IERC20(_tokenContract).balanceOf

IERC20(_tokenContract).safeTransferFrom(msg.sender, ad
 uint256 receivedAmout = IERC20(_tokenContract).balance

state_lastEventNonce = state_lastEventNonce.add(1);
emit SendToCosmosEvent(

_tokenContract,
msg.sender,
_destination,
receivedAmout,
state_lastEventNonce

);
}

[M-05] Calls inside loops that may address DoS

https://github.com/code-423n4/2022-05-cudos-findings/issues/3#issuecomment-1123721942
https://github.com/code-423n4/2022-05-cudos-findings/issues/58
https://swcregistry.io/docs/SWC-113
https://github.com/code-423n4/2022-05-cudos-findings/issues/126

Gravity.sol#L453-L456

Gravity.sol#L568-L573

Gravity.sol#L579-L581

Avoid combining multiple calls in a single transaction, especially when calls are

executed as part of a loop.

Always assume that external calls can fail.

Implement the contract logic to handle failed calls.

mlukanova (Cudos) acknowledged

Albert Chon (judge) commented:

Would really only happen for malicious/non-standard ERC-20 tokens which could

then just be ignored by the orchestrator. No way of getting around doing the

transfers for each token.

Submitted by p_crypt0, also found by CertoraInc

No checks for non-Cudos tokens mean that non-Cudos ERC20 tokens will be lost to

the contract, with the user not having any chance of retrieving them.

However, the admin can retrieve them through withdrawERC20.

Impact is that users lose their funds, but admins gain them.

The mistakes could be mitigated on the contract, by checking against a list of

supported tokens, so that users don’t get the bad experience of losing funds and

CUDOS doesn’t have to manually refund users

Recommended Mitigation Steps

[M-06] Non-Cudos Erc20 funds sent through
sendToCosmos() will be lost.

Proof of Concept

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L453-L456
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L568-L573
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L579-L581
https://github.com/code-423n4/2022-05-cudos-findings/issues/126
https://github.com/code-423n4/2022-05-cudos-findings/issues/126#issuecomment-1128730455
https://github.com/code-423n4/2022-05-cudos-findings/issues/58

User sends 100 ETH through sendToCosmos, hoping to retrieve 100 synthetic ETH

on Cudos chain but finds that funds never appear.

Gravity.sol#L595-L609

Admin can retrieve these funds should they wish, but user never gets them back

because the contract does not check whether the token is supported.

Gravity.sol#L632-L638

Logic and discussion with @germanimp (Cudos)

function sendToCosmos(
address _tokenContract,
bytes32 _destination,
uint256 _amount

) public nonReentrant {
IERC20(_tokenContract).safeTransferFrom(msg.sender, ad
state_lastEventNonce = state_lastEventNonce.add(1);
emit SendToCosmosEvent(

_tokenContract,
msg.sender,
_destination,
_amount,
state_lastEventNonce

);
}

function withdrawERC20(
address _tokenAddress)
external {
require(cudosAccessControls.hasAdminRole(msg.sender),
uint256 totalBalance = IERC20(_tokenAddress).balanceOf
IERC20(_tokenAddress).safeTransfer(msg.sender , totalB

}

Tools Used

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L595-L609
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L632-L638

Add checks in sendToCosmos to check the incoming tokenAddress against a

supported token list, so that user funds don’t get lost and admin don’t need to

bother refunding.

mlukanova (Cudos) confirmed

V-Staykov (Cudos) resolved and commented:

PR: CudoVentures/cosmos-gravity-bridge#21

Note: there were originally 7 items judged as Medium severity. After judging was

finalized, further input from the sponsor was provided to the judge for

reconsideration. Ultimately, the judge decreased issue #143 to non-critical.

For this contest, 41 reports were submitted by wardens detailing low risk and non-

critical issues. The report highlighted below by IllIllI received the top score from the

judge.

The following wardens also submitted reports: 0x1337, jayjonah8, GimelSec,

dirk_y, GermanKuber, CertoraInc, ch13fd357r0y3r, kirk-baird, MaratCerby,

gzeon, dipp, robee, 0xkatana, Hawkeye, sorrynotsorry, orion, hubble, jah, defsec,

Waze, ilan, m9800, hake, shenwilly, AmitN, danb, Dravee, cccz, cryptphi, 0x1f8b,

broccolirob, ellahi, Funen, 0xDjango, WatchPug, kebabsec, simon135, JC,

oyc_109, and delfin454000.

Title Instances

1 Validator signing address of zero not rejected, allowing anyone to sign 1

2 Unbounded loops may run out of gas 1

3 deployERC20() does not have a reentrancy guard 1

4 Comment does not match the behavior of the code 2

Recommended Mitigation Steps

Low Risk and Non-Critical Issues

Low Risk Issues

https://github.com/code-423n4/2022-05-cudos-findings/issues/58
https://github.com/code-423n4/2022-05-cudos-findings/issues/58#issuecomment-1128525099
https://github.com/CudoVentures/cosmos-gravity-bridge/pull/21
https://github.com/code-423n4/2022-05-cudos-findings/issues/143#issuecomment-1231179143
https://github.com/code-423n4/2022-05-cudos-findings/issues/145
https://github.com/code-423n4/2022-05-cudos-findings/issues/51
https://github.com/code-423n4/2022-05-cudos-findings/issues/18
https://github.com/code-423n4/2022-05-cudos-findings/issues/74
https://github.com/code-423n4/2022-05-cudos-findings/issues/105
https://github.com/code-423n4/2022-05-cudos-findings/issues/153
https://github.com/code-423n4/2022-05-cudos-findings/issues/118
https://github.com/code-423n4/2022-05-cudos-findings/issues/29
https://github.com/code-423n4/2022-05-cudos-findings/issues/59
https://github.com/code-423n4/2022-05-cudos-findings/issues/90
https://github.com/code-423n4/2022-05-cudos-findings/issues/112
https://github.com/code-423n4/2022-05-cudos-findings/issues/129
https://github.com/code-423n4/2022-05-cudos-findings/issues/40
https://github.com/code-423n4/2022-05-cudos-findings/issues/55
https://github.com/code-423n4/2022-05-cudos-findings/issues/164
https://github.com/code-423n4/2022-05-cudos-findings/issues/124
https://github.com/code-423n4/2022-05-cudos-findings/issues/1
https://github.com/code-423n4/2022-05-cudos-findings/issues/130
https://github.com/code-423n4/2022-05-cudos-findings/issues/17
https://github.com/code-423n4/2022-05-cudos-findings/issues/149
https://github.com/code-423n4/2022-05-cudos-findings/issues/91
https://github.com/code-423n4/2022-05-cudos-findings/issues/135
https://github.com/code-423n4/2022-05-cudos-findings/issues/168
https://github.com/code-423n4/2022-05-cudos-findings/issues/80
https://github.com/code-423n4/2022-05-cudos-findings/issues/25
https://github.com/code-423n4/2022-05-cudos-findings/issues/116
https://github.com/code-423n4/2022-05-cudos-findings/issues/39
https://github.com/code-423n4/2022-05-cudos-findings/issues/152
https://github.com/code-423n4/2022-05-cudos-findings/issues/35
https://github.com/code-423n4/2022-05-cudos-findings/issues/136
https://github.com/code-423n4/2022-05-cudos-findings/issues/20
https://github.com/code-423n4/2022-05-cudos-findings/issues/175
https://github.com/code-423n4/2022-05-cudos-findings/issues/133
https://github.com/code-423n4/2022-05-cudos-findings/issues/93
https://github.com/code-423n4/2022-05-cudos-findings/issues/88
https://github.com/code-423n4/2022-05-cudos-findings/issues/104
https://github.com/code-423n4/2022-05-cudos-findings/issues/57
https://github.com/code-423n4/2022-05-cudos-findings/issues/30
https://github.com/code-423n4/2022-05-cudos-findings/issues/110
https://github.com/code-423n4/2022-05-cudos-findings/issues/27
https://github.com/code-423n4/2022-05-cudos-findings/issues/87

Title Instances

5 abi.encodePacked() should not be used with dynamic types when passing the

result to a hash function such as keccak256()
1

Total: 6 instances over 5 classes

(see lower down in this report for the summary table of the Non-critical findings)

ecrecover() returns 0 when the signature does not match. If the validators

approve a valset including an address of 0 , then anyone will be able to sign

messages for that signer, since invalid sigatures will return zero, and will match the

zero address.

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L185

The call to ecrecover() costs 3000 gas per call, and if there are too many

validators, the update of the validator set may pass, but large batches will fail

[1] Validator signing address of zero not rejected, allowing
anyone to sign

File: solidity/contracts/Gravity.sol #1

185 return _signer == ecrecover(messageDigest, _v, _r, _s

[2] Unbounded loops may run out of gas

File: solidity/contracts/Gravity.sol #1

219 function checkValidatorSignatures(
220 // The current validator set and their powers
221 address[] memory _currentValidators,
222 uint256[] memory _currentPowers,
223 // The current validator's signatures
224 uint8[] memory _v,
225 bytes32[] memory _r,
226 bytes32[] memory _s,

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L185

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L219-L239

deployERC20() increments the state_lastEventNonce so it’s possible for the nonce

to be incremented by a transfer hook. I don’t see a way to exploit this given the code

in scope, but perhaps some other area relies on event nonces happening in a

specific order in relation to the other events.

227 // This is what we are checking they have signed
228 bytes32 _theHash,
229 uint256 _powerThreshold
230) private pure {
231 uint256 cumulativePower = 0;
232
233 for (uint256 i = 0; i < _currentValidators.length; i++
234 // If v is set to 0, this signifies that it wa
235 // (In a valid signature, it is either 27 or 2
236 if (_v[i] != 0) {
237 // Check that the current validator ha
238 require(
239 verifySig(_currentValidators[

[3] deployERC20() does not have a reentrancy guard

File: solidity/contracts/Gravity.sol #1

611 function deployERC20(
612 string memory _cosmosDenom,
613 string memory _name,
614 string memory _symbol,
615 uint8 _decimals
616) public {
617 // Deploy an ERC20 with entire supply granted to Gravi
618 CosmosERC20 erc20 = new CosmosERC20(address(this), _na
619
620 // Fire an event to let the Cosmos module know
621 state_lastEventNonce = state_lastEventNonce.add(1);

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L219-L239

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L611-L621

Both of the functions below have require(isOrchestrator(msg.sender)) , and

orchestrators are the first signer, so not just anyone can call these

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L362-L364

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L274-L276

Use abi.encode() instead which will pad items to 32 bytes, which will prevent hash

collisions (e.g. abi.encodePacked(0x123,0x456) => 0x123456 =>

abi.encodePacked(0x1,0x23456) , but abi.encode(0x123,0x456) =>

[4] Comment does not match the behavior of the code

File: solidity/contracts/Gravity.sol #1

362 // Anyone can call this function, but they must supply valid
363 // the batch.
364 function submitBatch (

File: solidity/contracts/Gravity.sol #2

274 // Anyone can call this function, but they must supply valid
275 // the new valset.
276 function updateValset(

[5] abi.encodePacked() should not be used with dynamic
types when passing the result to a hash function such as
keccak256()

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L611-L621
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L362-L364
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L274-L276
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html#non-standard-packed-mode

0x0...1230...456). “Unless there is a compelling reason, abi.encode should be

preferred”. If there is only one argument to abi.encodePacked() it can often be cast

to bytes() or bytes32() instead.

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L182-L184

Title Instances

1 Best practice is to prevent signature malleability 1

2 Inconsistent variable naming convention 2

3 Inconsistent tabs vs spaces 3

4 if(should be if (to match other lines in the file 1

5 Misleading function name 1

6 Avoid the use of sensitive terms in favor of neutral ones 4

7 public functions not called by the contract should be declared external
instead

10

8 2**<n> - 1 should be re-written as type(uint<n>).max 1

9 constant s should be defined rather than using magic numbers 3

10 Use a more recent version of solidity 1

11 Variable names that consist of all capital letters should be reserved for
const / immutable variables

1

12 Non-library/interface files should use fixed compiler versions, not floating
ones

2

13 Typos 1

File: solidity/contracts/Gravity.sol #1

182 bytes32 messageDigest = keccak256(
183 abi.encodePacked("\x19Ethereum Signed Message
184);

Non-critical Issues

https://ethereum.stackexchange.com/questions/30912/how-to-compare-strings-in-solidity#answer-82739
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L182-L184

Title Instances

14 File does not contain an SPDX Identifier 2

15 File is missing NatSpec 2

16 Event is missing indexed fields 5

17 Consider making the bridge ‘pausable’ 1

Total: 41 instances over 17 classes

Use OpenZeppelin’s ECDSA contract rather than calling ecrecover() directly

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L182-L185

Most state variables use the state_ prefix in their variable name. There are some

that don’t. Use the prefix everywhere, and manually add public getters where

necessary

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

[1] Best practice is to prevent signature malleability

File: solidity/contracts/Gravity.sol #1

182 bytes32 messageDigest = keccak256(
183 abi.encodePacked("\x19Ethereum Signed Message
32", _theHash)
184);
185 return _signer == ecrecover(messageDigest, _v, _r, _s

[2] Inconsistent variable naming convention

File: solidity/contracts/Gravity.sol #1

63 CudosAccessControls public cudosAccessControls;

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L182-L185
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L63

vity.sol#L63

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L65

Most lines use tabs, but some use spaces, which leads to alignment issues

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L128-L134

File: solidity/contracts/Gravity.sol #2

65 mapping(address => bool) public whitelisted;

[3] Inconsistent tabs vs spaces

File: solidity/contracts/Gravity.sol #1

128 for (uint256 i = 0; i < _users.length; i++) {
129 require(
130 _users[i] != address(0),
131 "User is the zero address"
132);
133 whitelisted[_users[i]] = _isWhitelisted;
134 }

File: solidity/contracts/Gravity.sol #2

117 require(
118 whitelisted[msg.sender] || cudosAccessControls.hasAdm
119 "The caller is not whitelisted for this operation"
120);
121 _;

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L63
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L65
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L128-L134

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L117-L121

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L647-L649

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L264

onlyWhitelisted() should be onlyWhitelistedOrAdmin()

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L116

File: solidity/contracts/Gravity.sol #3

647 address[] memory _validators,
648 uint256[] memory _powers,
649 CudosAccessControls _cudosAccessControls

[4] if(should be if (to match other lines in the file

File: solidity/contracts/Gravity.sol #1

264 if(_newValset.validators[i] == _sender) {

[5] Misleading function name

File: solidity/contracts/Gravity.sol #1

116 modifier onlyWhitelisted() {

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L117-L121
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L647-L649
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L264
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L116

Use allowlist rather than whitelist

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L116

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L65

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L109

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

[6] Avoid the use of sensitive terms in favor of neutral ones

File: solidity/contracts/Gravity.sol #1

116 modifier onlyWhitelisted() {

File: solidity/contracts/Gravity.sol #2

65 mapping(address => bool) public whitelisted;

File: solidity/contracts/Gravity.sol #3

109 event WhitelistedStatusModified(

File: solidity/contracts/Gravity.sol #4

124 function manageWhitelist(

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L116
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L65
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L109
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L124

vity.sol#L124

Contracts are allowed to override their parents’ functions and change the visibility

from external to public .

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L124-L127

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L140

[7] public functions not called by the contract should be
declared external instead

File: solidity/contracts/Gravity.sol #1

124 function manageWhitelist(
125 address[] memory _users,
126 bool _isWhitelisted
127) public onlyWhitelisted {

File: solidity/contracts/Gravity.sol #2

140 function testMakeCheckpoint(ValsetArgs memory _valsetArgs, byt

File: solidity/contracts/Gravity.sol #3

144 function testCheckValidatorSignatures(
145 address[] memory _currentValidators,
146 uint256[] memory _currentPowers,
147 uint8[] memory _v,
148 bytes32[] memory _r,
149 bytes32[] memory _s,
150 bytes32 _theHash,

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L124
https://docs.soliditylang.org/en/latest/contracts.html#function-overriding
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L124-L127
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L140

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L144-L151

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L166

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L170

151 uint256 _powerThreshold

File: solidity/contracts/Gravity.sol #4

166 function lastBatchNonce(address _erc20Address) public view ret

File: solidity/contracts/Gravity.sol #5

170 function lastLogicCallNonce(bytes32 _invalidation_id) public v

File: solidity/contracts/Gravity.sol #6

276 function updateValset(
277 // The new version of the validator set
278 ValsetArgs memory _newValset,
279 // The current validators that approve the change
280 ValsetArgs memory _currentValset,
281 // These are arrays of the parts of the current valida
282 uint8[] memory _v,
283 bytes32[] memory _r,
284 bytes32[] memory _s
285) public nonReentrant {

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L144-L151
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L166
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L170

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L276-L285

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L364-L380

File: solidity/contracts/Gravity.sol #7

364 function submitBatch (
365 // The validators that approve the batch
366 ValsetArgs memory _currentValset,
367 // These are arrays of the parts of the validators sig
368 uint8[] memory _v,
369 bytes32[] memory _r,
370 bytes32[] memory _s,
371 // The batch of transactions
372 uint256[] memory _amounts,
373 address[] memory _destinations,
374 uint256[] memory _fees,
375 uint256 _batchNonce,
376 address _tokenContract,
377 // a block height beyond which this batch is not valid
378 // used to provide a fee-free timeout
379 uint256 _batchTimeout
380) public nonReentrant {

File: solidity/contracts/Gravity.sol #8

479 function submitLogicCall(
480 // The validators that approve the call
481 ValsetArgs memory _currentValset,
482 // These are arrays of the parts of the validators sig
483 uint8[] memory _v,
484 bytes32[] memory _r,
485 bytes32[] memory _s,
486 LogicCallArgs memory _args
487) public nonReentrant {

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L276-L285
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L364-L380

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L479-L487

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L595-L599

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L611-L615

Earlier versions of solidity can use uint<n>(-1) instead. Expressions not including

the - 1 can often be re-written to accomodate the change (e.g. by using a >

rather than a >= , which will also save some gas)

File: solidity/contracts/Gravity.sol #9

595 function sendToCosmos(
596 address _tokenContract,
597 bytes32 _destination,
598 uint256 _amount
599) public nonReentrant {

File: solidity/contracts/Gravity.sol #10

611 function deployERC20(
612 string memory _cosmosDenom,
613 string memory _name,
614 string memory _symbol,
615 uint8 _decimals

[8] 2**<n> - 1 should be re-written as type(uint<n>).max

File: solidity/contracts/CosmosToken.sol #1

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L479-L487
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L595-L599
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L611-L615

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Cos

mosToken.sol#L5

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L202

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L433

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L535

5 uint256 MAX_UINT = 2**256 - 1;

[9] constant s should be defined rather than using magic
numbers

File: solidity/contracts/Gravity.sol #1

202 bytes32 methodName = 0x636865636b706f696e7400000000000

File: solidity/contracts/Gravity.sol #2

433 0x7472616e73616374696f

File: solidity/contracts/Gravity.sol #3

535 0x6c6f67696343616c6c000000000000000000

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/CosmosToken.sol#L5
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L202
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L433
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L535

Use a solidity version of at least 0.8.4 to get bytes.concat() instead of

abi.encodePacked(<bytes>,<bytes>) Use a solidity version of at least 0.8.12 to get

string.concat() instead of abi.encodePacked(<str>,<str>)

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L1

If the variable needs to be different based on which class it comes from, a

view / pure function should be used instead (e.g. like this).

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Cos

mosToken.sol#L5

[10] Use a more recent version of solidity

File: solidity/contracts/Gravity.sol #1

1 pragma solidity ^0.6.6;

[11] Variable names that consist of all capital letters should be
reserved for const / immutable variables

File: solidity/contracts/CosmosToken.sol #1

5 uint256 MAX_UINT = 2**256 - 1;

[12] Non-library/interface files should use fixed compiler
versions, not floating ones

File: solidity/contracts/CosmosToken.sol #1

1 pragma solidity ^0.6.6;

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L1
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/76eee35971c2541585e05cbf258510dda7b2fbc6/contracts/token/ERC20/extensions/draft-IERC20Permit.sol#L59
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/CosmosToken.sol#L5

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Cos

mosToken.sol#L1

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L1

invaldiation https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L564

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Cos

mosToken.sol#L0

File: solidity/contracts/Gravity.sol #2

1 pragma solidity ^0.6.6;

[13] Typos

File: solidity/contracts/Gravity.sol #1

564 // Update invaldiation nonce

[14] File does not contain an SPDX Identifier

File: solidity/contracts/CosmosToken.sol #1

0 pragma solidity ^0.6.6;

File: solidity/contracts/Gravity.sol #2

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/CosmosToken.sol#L1
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L1
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L564
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/CosmosToken.sol#L0

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L0

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Cos

mosToken.sol

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol

Each event should use three indexed fields if there are three or more fields

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L73-L77

0 pragma solidity ^0.6.6;

[15] File is missing NatSpec

File: solidity/contracts/CosmosToken.sol (various lines) #1

File: solidity/contracts/Gravity.sol (various lines) #2

[16] Event is missing indexed fields

File: solidity/contracts/Gravity.sol #1

73 event TransactionBatchExecutedEvent(
74 uint256 indexed _batchNonce,
75 address indexed _token,
76 uint256 _eventNonce
77);

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L0
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/CosmosToken.sol
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L73-L77

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L85-L93

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L94-L101

File: solidity/contracts/Gravity.sol #2

85 event ERC20DeployedEvent(
86 // FYI: Can't index on a string without doing a bunch
87 string _cosmosDenom,
88 address indexed _tokenContract,
89 string _name,
90 string _symbol,
91 uint8 _decimals,
92 uint256 _eventNonce
93);

File: solidity/contracts/Gravity.sol #3

94 event ValsetUpdatedEvent(
95 uint256 indexed _newValsetNonce,
96 uint256 _eventNonce,
97 uint256 _rewardAmount,
98 address _rewardToken,
99 address[] _validators,
100 uint256[] _powers
101);

File: solidity/contracts/Gravity.sol #4

102 event LogicCallEvent(
103 bytes32 _invalidationId,
104 uint256 _invalidationNonce,
105 bytes _returnData,
106 uint256 _eventNonce

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L85-L93
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L94-L101

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L102-L107

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L109-L113

Having this ability would help to mitigate attacks and would ameleorate the need for

this withdrawERC20() to be all-or-nothing

https://github.com/code-423n4/2022-05-

cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gra

vity.sol#L632-L638

107);

File: solidity/contracts/Gravity.sol #5

109 event WhitelistedStatusModified(
110 address _sender,
111 address[] _users,
112 bool _isWhitelisted
113);

[17] Consider making the bridge ‘pausable’

File: solidity/contracts/Gravity.sol #1

632 function withdrawERC20(
633 address _tokenAddress)
634 external {
635 require(cudosAccessControls.hasAdminRole(msg.sender),
636 uint256 totalBalance = IERC20(_tokenAddress).balanceOf
637 IERC20(_tokenAddress).safeTransfer(msg.sender , total
638 }

https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L102-L107
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L109-L113
https://github.com/code-423n4/2022-05-cudos/blob/de39cf3cd1f1e1cf211819b06d4acf6a043acda0/solidity/contracts/Gravity.sol#L632-L638

V-Staykov (Cudos) commented:

This is particularly high quality.

For this contest, 33 reports were submitted by wardens detailing gas optimizations.

The report highlighted below by GermanKuber received the top score from the

judge.

The following wardens also submitted reports: IllIllI, defsec, 0xkatana, Dravee,

0x1f8b, Funen, 0xNazgul, CertoraInc, AlleyCat, slywaters, 0xf15ers, oyc_109,

robee, 0xDjango, rfa, peritoflores, 0v3rf10w, WatchPug, ellahi, MaratCerby,

simon135, GimelSec, hake, gzeon, delfin454000, ilan, JC, sorrynotsorry,

hansfriese, Waze, nahnah, and jonatascm.

In the sendToCosmos() function it is not validated that _amount != 0, therefore the

state_lastEventNonce could be made to grow only by spending gas. If they go up to

type(uint256).max could it cause an overflow and DoS system wide?

An if could be added inside the for loop to transfer if only the following condition is

met if(_destinations[i]!= address(0) && _amounts[i] != 0).

An if could be added before transferring the fees with if(totalFee != 0).

An if could be added before transferring the totalBalance with if(totalBalance!= 0).

Gas is saved if the variable in storage: state_lastValsetNonce is not set to zero, since

it is its default value (the tests in remix said a difference of 2246).

Gas Optimizations

[G-01]

[G-02]

[G-03]

[G-04]

[G-05]

https://github.com/code-423n4/2022-05-cudos-findings/issues/145#issuecomment-1122538703
https://github.com/code-423n4/2022-05-cudos-findings/issues/156
https://github.com/code-423n4/2022-05-cudos-findings/issues/147
https://github.com/code-423n4/2022-05-cudos-findings/issues/141
https://github.com/code-423n4/2022-05-cudos-findings/issues/54
https://github.com/code-423n4/2022-05-cudos-findings/issues/96
https://github.com/code-423n4/2022-05-cudos-findings/issues/23
https://github.com/code-423n4/2022-05-cudos-findings/issues/86
https://github.com/code-423n4/2022-05-cudos-findings/issues/66
https://github.com/code-423n4/2022-05-cudos-findings/issues/121
https://github.com/code-423n4/2022-05-cudos-findings/issues/38
https://github.com/code-423n4/2022-05-cudos-findings/issues/12
https://github.com/code-423n4/2022-05-cudos-findings/issues/82
https://github.com/code-423n4/2022-05-cudos-findings/issues/26
https://github.com/code-423n4/2022-05-cudos-findings/issues/41
https://github.com/code-423n4/2022-05-cudos-findings/issues/92
https://github.com/code-423n4/2022-05-cudos-findings/issues/148
https://github.com/code-423n4/2022-05-cudos-findings/issues/169
https://github.com/code-423n4/2022-05-cudos-findings/issues/151
https://github.com/code-423n4/2022-05-cudos-findings/issues/103
https://github.com/code-423n4/2022-05-cudos-findings/issues/132
https://github.com/code-423n4/2022-05-cudos-findings/issues/89
https://github.com/code-423n4/2022-05-cudos-findings/issues/31
https://github.com/code-423n4/2022-05-cudos-findings/issues/76
https://github.com/code-423n4/2022-05-cudos-findings/issues/81
https://github.com/code-423n4/2022-05-cudos-findings/issues/111
https://github.com/code-423n4/2022-05-cudos-findings/issues/113
https://github.com/code-423n4/2022-05-cudos-findings/issues/134
https://github.com/code-423n4/2022-05-cudos-findings/issues/109
https://github.com/code-423n4/2022-05-cudos-findings/issues/125
https://github.com/code-423n4/2022-05-cudos-findings/issues/117
https://github.com/code-423n4/2022-05-cudos-findings/issues/84
https://github.com/code-423n4/2022-05-cudos-findings/issues/166
https://github.com/code-423n4/2022-05-cudos-findings/issues/46

It would save 20,000 gas if instead of using a modifier a view function was used.

L118/L233/L263/L453/L568/L579/L660 - Instead of using i++, you could use ++i

unchecked and save 20,000 gas in 10 iterations.

L118/233/L263/L453/L568/L579/L660 - It would save 2,000 gas in the for if instead

of “uint256 i = 0;” were “uint256 i ;”

L231 - It would save 2,000 gas in the for if instead of “uint256 cumulativePower =

0;;” were “uint256 cumulativePower;”

L659 - Gas is saved if the variable in storage: state_lastValsetNonce is not set to

zero, since it is its default value (the tests in remix said a difference of 2246).

V-Staykov (Cudos) commented:

[G-01]: Marked it with “disagree with severity” because this is not a gas optimization

issue. It seems to be low/mid finding. It is indeed a valid issue, but mitigating it with

just checking if the amount is not zero doesn’t seem good, since an attack can then

be made with _amount= 1e-18 lets say and still be cheap enough.

[G-04]: Disputed. This seems totally not worth it, since this function is to be used in

very rare cases, i.e. changing the contract, and only by admin, who would not do it if

he is not sure there are funds worth withdrawing from the contract. That said,

adding a check would only cause more gas consumed.

[G-06]: Disputed. This does not describe what it refers to and I personally don’t

understand it. It seems not helpful at all.

[G-06]

[G-07]

[G-08]

[G-09]

[G-10]

Disclosures

https://github.com/code-423n4/2022-05-cudos-findings/issues/156#issuecomment-1122387518

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart

contracts. Security researchers are rewarded at an increasing rate for finding higher-

risk issues. Contest submissions are judged by a knowledgeable security researcher

and solidity developer and disclosed to sponsoring developers. C4 does not

conduct formal verification regarding the provided code but instead provides final

verification.

C4 does not provide any guarantee or warranty regarding the security of this

project. All smart contract software should be used at the sole risk and responsibility

of users.

Top

An open organization | Twitter | Discord | GitHub | Medium | Newsletter | Media kit |

code4rena.eth

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://medium.com/code4rena
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

