
 DeGate
 Security Assessment

 March 30, 2022

 Prepared for:
 DeGate DAO
 DeGate

 Prepared by:
 Devashish Tomar, Shaun Mirani, and Will Song

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 DeGate Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to DeGate
 under the terms of the project statement of work and has been made public at DeGate’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and mutually agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 DeGate Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Project Summary 6

 Project Goals 7

 Project Targets 8

 Project Coverage 9

 Codebase Maturity Evaluation 10

 Summary of Findings 12

 Detailed Findings 13

 1. Lax boundaries between normalTokens and reservedTokens arrays 13

 2. Missing range checks in MulDivGadget 16

 3. Poor code management practices 19

 Detailed Findings (Previous Audit) 20

 4. Token management difficulties caused by the addition of arbitrary tokens 20

 5. Initialization functions can be front-run 23

 6. Circuit crashes when invalid blocks are generated by the operator 25

 7. Saving large JSON integers could result in interoperability issues 27

 8. Lack of contract existence check on delegatecall will result in unexpected behavior
 29

 9. Numerical comparison gadget does not support very large numbers 31

 10. Solidity compiler optimizations can be problematic 33

 Trail of Bits 3 DeGate Security Assessment
 PUBLIC

 11. Circuits rely on undefined behavior in libff 34

 A. Vulnerability Categories 37

 B. Code Maturity Categories 39

 C. Token Integration Checklist 41

 D. Code Quality Recommendations 44

 E. Fix Log 46

 Trail of Bits 4 DeGate Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 DeGate engaged Trail of Bits to review the security of its smart contracts. From February 7
 to February 22, 2022, a team of three consultants conducted a security review of the
 client-provided source code, with six person-weeks of effort. On March 7, 2022, we started
 an additional week of review focused on the circuits and gadgets built using ethsnarks .
 Details of the project’s timeline, test targets, and coverage are provided in subsequent
 sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with partial knowledge of the target system, including access to the circuit source
 code, smart contract source code, and documentation. We performed automated analysis
 and a manual review of the code, in addition to running system elements.

 Summary of Findings
 The audit uncovered significant flaws that could impact system confidentiality, integrity, or
 availability. These include incorrect ERC20 token handling, undefined behavior in circuits,
 and unclear gadget limitations.

 This report includes the findings of a December 2021 audit of the DeGate protocol. A
 summary of the findings of both audits is provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 4

 Medium 3

 Low 1

 Informational 2

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Configuration 1

 Data Validation 3

 Cryptography 1

 Undefined Behavior 6

 Trail of Bits 5 DeGate Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Sam Greenup , Project Manager
 dan@trailofbits.com sam.greenup@trailofbits.com

 The following engineers were associated with this project:

 Shaun Mirani , Consultant Devashish Tomar , Consultant
 shaun.mirani@trailofbits.com devashish.tomar@trailofbits.com

 Will Song , Consultant
 will.song@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 February 7, 2022 Pre-project kickoff call

 February 11, 2022 Delivery of status report

 February 22, 2022 Delivery of final report; report readout meeting

 March 30, 2022 Delivery of public report

 Trail of Bits 6 DeGate Security Assessment
 PUBLIC

mailto:dan@trailofbits.com
mailto:shaun.mirani@trailofbits.com
mailto:devashish.tomar@trailofbits.com
mailto:shaun.mirani@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the DeGate smart
 contracts. Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Do the system components have appropriate access controls?

 ● Is it possible to manipulate the system by front-running transactions?

 ● Is it possible for participants to steal or lose tokens or shares?

 ● Are there any circumstances under which arithmetic errors could affect the system?

 ● Are any of the system components vulnerable to denial-of-service attacks, and could
 any be used in phishing?

 ● Does the exchange bookkeeping arithmetic hold?

 ● Are critical events logged?

 ● Are the off-chain computations that use circuits implemented correctly?

 ● Is each circuit variable in generate_r1cs_constraints properly constrained?

 ● Does every circuit and gadget correctly implement the corresponding
 zero-knowledge statement?

 ● Do the circuits use the low-level gadgets correctly and safely?

 Trail of Bits 7 DeGate Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 DeGate Protocol

 Repository https://github.com/degatedev/degate-protocols

 Version 7d5e66a1e22d7657c888463256e0175119745621

 Type Decentralized Exchange

 Platforms Solidity, C++

 Trail of Bits 8 DeGate Security Assessment
 PUBLIC

https://github.com/degatedev/degate-protocols

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches and their results include the following:

 ● A review of the addition and handling of ERC20 tokens revealed several issues that
 could affect the DeGate exchange’s behavior and users; these include a failure to
 ensure that tokens are registered to the appropriate list (i.e., the normal or reserved
 list) (TOB-DeGate-1) and the incorrect handling of non-standard tokens
 (TOB-DeGate-4).

 ● Analysis of the circuits revealed undefined behavior (TOB-DeGate-11),
 interoperability issues caused by the use of JSON integers (TOB-DeGate-7), and
 gadget limitations (TOB-DeGate-9). Detailed analysis of the circuits’ correctness
 yielded a finding regarding the range checks of a gadget used in fee calculations
 (TOB-DeGate-2).

 ● A manual review of the processing of block deposits and withdrawals enabled us to
 assess the ways in which assets flow into the DeGate protocol and users interact
 on-chain; we did not find any issues.

 ● Validation of the external interactions did not reveal any reentrancy risks.

 ● A review of the functions for front-running opportunities did not reveal any critical
 concerns, although a user could front-run a call to an initialization function to
 disrupt a contract’s deployment (TOB-DeGate-5).

 ● A review of the issues discovered in our previous DeGate audit determined that
 several circuit and smart contract issues remain unresolved (TOB-DeGate-4 ,
 TOB-DeGate-5 , TOB-DeGate-6 , TOB-DeGate-7 , TOB-DeGate-8 , TOB-DeGate-9 ,
 TOB-DeGate-10 , and TOB-DeGate-11).

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of
 certain system elements, which may warrant further review. The following is a summary of
 the coverage limitations of the engagement .

 ● We performed a limited review of the base cryptography used by the poseidon and
 ethsnarks circuits and their dependencies as well as the user / validator key
 management system.

 ● The operator codebase was out of scope.

 Trail of Bits 9 DeGate Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The codebase generally uses SafeMath functions to
 perform calculations, and we did not identify any
 potential overflows in places in which those functions are
 not used.

 Satisfactory

 Auditing Most of the functions emit events where appropriate.
 The events emitted by the code are sufficient for
 monitoring on-chain activity. However, we did not have
 access to an incident response plan or information on
 the use of off-chain components in behavior monitoring.

 Satisfactory

 Authentication /
 Access Controls

 We did not identify any serious access control issues. Satisfactory

 Complexity
 Management

 Many of the system’s functionalities, especially the
 block-processing functionalities, are broken up into
 multiple functions. This makes the code less readable
 and more difficult to modify.

 Moderate

 Decentralization Although the block submission process is centralized and
 the owner has the ability to shut down the exchange,
 users can force certain actions. For example, if a user’s
 deposit into the ExchangeV3 contract is never picked up
 by a validator and included in a block, the user can
 recover the funds by submitting an on-chain transaction.
 There is a similar mechanism for withdrawals: by
 executing a withdrawal that will not be timely picked up
 by a validator, a user could force ExchangeV3 to enter

 Moderate

 Trail of Bits 10 DeGate Security Assessment
 PUBLIC

 withdrawal mode, preventing the validator from
 submitting more blocks and allowing users to withdraw
 their funds.

 Documentation The protocol is a fork of Loopring v3.6.1 and therefore
 has a significant amount of documentation. DeGate also
 provided documentation regarding changes to the
 original code; however, that documentation does not
 identify all of the changes or all of the features that were
 added or removed.

 Weak

 Front-Running
 Resistance

 We found one issue related to front-running
 (TOB-DeGate-5). However, time constraints prevented us
 from exhaustively checking the protocol for
 front-running and unintended arbitrage opportunities.

 Further
 Investigation
 Required

 Low-Level
 Manipulation

 A substantial amount of assembly is used throughout the
 math and utility libraries (e.g., Poseidon); however, time
 constraints prevented us from testing or verifying the
 libraries.

 Further
 Investigation
 Required

 Testing and
 Verification

 We identified some failing unit tests. Certain of these
 tests fail because they rely on parts of the original
 Loopring code that have been removed by the DeGate
 team; other test cases were not properly set up or fail for
 other reasons.

 Weak

 Upgradeability Contracts including ExchangeV3 and
 DefaultDepositContract support proxy patterns for
 upgrades. DefaultDepositContract is used with a
 proxy pattern in some tests (testExchangeUtil.ts);
 however, during our first call, the DeGate team
 expressed that it intends to remove this feature. For the
 time being, though, it is possible to make certain of the
 contracts upgradeable.

 Further
 Investigation
 Required

 Trail of Bits 11 DeGate Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Lax boundaries between normalTokens and
 reservedTokens arrays

 Undefined
 Behavior

 Medium

 2 Missing range checks in MulDivGadget Cryptography High

 3 Poor code management practices Undefined
 Behavior

 Informational

 4 Token management difficulties caused by the
 addition of arbitrary tokens

 Data Validation High

 5 Initialization functions can be front-run Configuration Low

 6 Circuit crashes when invalid blocks are generated
 by the operator

 Undefined
 Behavior

 High

 7 Saving large JSON integers could result in
 interoperability issues

 Undefined
 Behavior

 Medium

 8 Lack of contract existence check on delegatecall
 will result in unexpected behavior

 Data Validation Medium

 9 Numerical comparison gadget does not support
 very large numbers

 Data Validation High

 10 Solidity compiler optimizations can be
 problematic

 Undefined
 Behavior

 Informational

 11 Circuits rely on undefined behavior in libff Undefined
 Behavior

 Undetermined

 Trail of Bits 12 DeGate Security Assessment
 PUBLIC

 Detailed Findings

 1. Lax boundaries between normalTokens and reservedTokens arrays

 Severity: Medium Difficulty: Medium

 Type: Undefined Behavior Finding ID: TOB-DeGate-1

 Target: ExchangeV3.sol , ExchangeTokens.sol

 Description
 Any user can register a new token explicitly, by using the registerToken function, or
 implicitly, by making a deposit to a new token address. If the caller of registerToken is
 not the contract’s owner, the token is registered in the normalTokens array; if the caller is
 the owner, it is registered in the reservedTokens array.

 function registerToken(

 address tokenAddress

)

 external

 override

 nonReentrant

 returns (uint32)

 {

 return state.registerToken(tokenAddress, msg.sender == owner);

 }

 Figure 1.1: The registerToken function in ExchangeV3

 By front-running a contract owner's registerToken transaction, one could cause the
 token to be registered in the normalTokens array. Moreover, once a token has been
 registered in an array, it cannot be removed.

 function registerToken(

 ExchangeData.State storage S,

 address tokenAddress,

 bool isOwnerRegister

)

 public

 returns (uint32 tokenID)

 {

 require(!S.isInWithdrawalMode(), "INVALID_MODE");

 Trail of Bits 13 DeGate Security Assessment
 PUBLIC

 require(S.tokenToTokenId[tokenAddress] == 0, "TOKEN_ALREADY_EXIST");

 if (isOwnerRegister) {

 require(S.reservedTokens.length < ExchangeData.MAX_NUM_RESERVED_TOKENS,

 "TOKEN_REGISTRY_FULL");

 } else {

 require(S.normalTokens.length < ExchangeData.MAX_NUM_NORMAL_TOKENS,

 "TOKEN_REGISTRY_FULL");

 }

 // Check if the deposit contract supports the new token

 if (S.depositContract != IDepositContract(0)) {

 require(S.depositContract.isTokenSupported(tokenAddress), "UNSUPPORTED_TOKEN");

 }

 // Assign a tokenID and store the token

 ExchangeData.Token memory token = ExchangeData.Token(tokenAddress);

 if (isOwnerRegister) {

 tokenID = uint32(S.reservedTokens.length);

 S.reservedTokens.push(token);

 } else {

 tokenID =

 uint32(S.normalTokens.length.add(ExchangeData.MAX_NUM_RESERVED_TOKENS));

 S.normalTokens.push(token);

 }

 S.tokenToTokenId[tokenAddress] = tokenID + 1;

 S.tokenIdToToken[tokenID] = tokenAddress;

 S.tokenIdToDepositBalance[tokenID] = 0;

 emit TokenRegistered(tokenAddress, tokenID);

 }

 Figure 1.2: The registerToken function in ExchangeTokens

 This issue does not have a significant effect on the protocol; however, if the functionality of
 reservedTokens is expanded, it may pose a risk to the protocol.

 Exploit Scenario
 Alice, the owner of the ExchangeV3 contract, sends a transaction to register token X as a
 reserved token. Bob, a griefer, notices Alice’s transaction and front-runs it to register token
 X as a normal token.

 Recommendations
 Short term, change the approach to registering reserved tokens to remove the risk of
 front-running.

 Trail of Bits 14 DeGate Security Assessment
 PUBLIC

 Long term, thoroughly document the purpose of reserved and normal tokens, and review
 their effects on the functionality of the protocol.

 Trail of Bits 15 DeGate Security Assessment
 PUBLIC

 2. Missing range checks in MulDivGadget

 Severity: High Difficulty: Medium

 Type: Cryptography Finding ID: TOB-DeGate-2

 Target: packages/loopring_v3/circuit/Gadgets/MathGadgets.h

 Description
 The zero-knowledge MulDivGadget is used in the SpotTradeCircuit and
 BatchOrderGadget to calculate fees. The gadget takes numBitsValue ,
 numBitsNumerator , and numBitsDenominator arguments indicating the bit size of the
 value, numerator, and denominator but does not validate those arguments; nor are the
 values used to validate the bit size of the quotient, which should be equal to
 numBitsValue + numBitsNumerator - numBitsDenominator . This lack of validation
 could cause a fee calculation to overflow, which could have catastrophic consequences.

 MulDivGadget(
 ProtoboardT &pb,
 const Constants &constants,
 const VariableT &_value,
 const VariableT &_numerator,
 const VariableT &_denominator,
 unsigned int numBitsValue,
 unsigned int numBitsNumerator,
 unsigned int numBitsDenominator,
 const std::string &prefix)
 : GadgetT(pb, prefix),
 value(_value),
 numerator(_numerator),
 denominator(_denominator),
 quotient(make_variable(pb, FMT(prefix, ".quotient"))),
 denominator_notZero(pb, denominator, FMT(prefix, ".denominator_notZero")),
 product(pb, value, numerator, FMT(prefix, ".product")),
 // Range limit the remainder. The comparison below is not guaranteed to
 // work for very large values.
 remainder(pb, numBitsDenominator, FMT(prefix, ".remainder")),
 remainder_lt_denominator(
 pb,
 remainder.packed,
 denominator,
 numBitsDenominator,
 FMT(prefix, ".remainder < denominator"))

 {
 assert(numBitsValue + numBitsNumerator <= NUM_BITS_FIELD_CAPACITY);

 }

 Trail of Bits 16 DeGate Security Assessment
 PUBLIC

 Figure 2.1: The MulDivGadget constructor

 The gadget should also check the assertion that the product is bounded. A motivated
 attacker could easily bypass the assertion by commenting it out, which would not change
 the final circuit but would prevent a crash.

 Fee calculations currently use a constant denominator of 10,000 from the set of constants,
 but future updates could render it variable. Moreover, in the SpotTradeCircuit , the
 values of fillS_A.value() and fillS_B.value() appear to be relatively
 unconstrained, which is a cause for concern.

 feeCalculatorA(
 pb,
 state.constants,
 fillS_B.value(),
 // 拆分trading fee与gas fee
 // state.protocolTakerFeeBips,
 orderA.feeBips.packed,
 // // 多refer账号-trading fee分配
 // state.referFeeBips,
 // state.uiFeeBips,
 FMT(prefix, ".feeCalculatorA")),

 feeCalculatorB(
 pb,
 state.constants,
 fillS_A.value(),
 // 拆分trading fee与gas fee
 // state.protocolMakerFeeBips,
 orderB.feeBips.packed,
 // // 多refer账号-trading fee分配
 // state.referFeeBips,
 // state.uiFeeBips,
 FMT(prefix, ".feeCalculatorB")),

 Figure 2.2: Fee calculations in the SpotTradeCircuit

 In the BatchOrderGadget , these values appear to be properly constrained, as
 deltaFilledB is a DualVariableGadget of NUM_BITS_AMOUNT bits.

 tradingFeeCalculator(
 pb,
 constants,
 deltaFilledB.packed,
 order.feeBips.packed,
 FMT(prefix, ".tradingFeeCalculator")),

 Figure 2.3: A fee calculation in the BatchOrderGadget

 Exploit Scenario

 Trail of Bits 17 DeGate Security Assessment
 PUBLIC

 An attacker leverages a field multiplication overflow to reduce the fees charged for the
 attacker’s spot trades. Because the quotient bit size is not checked, the attacker may be
 able to evade the fees entirely (and disrupt other arithmetic operations) by causing the
 system to set a negative fee amount.

 Recommendations
 Short term, redesign the MulDivGadget to use DualVariableGadget s to validate the bit
 size of its arguments, and use a SafeMulGadget to validate the bit size of the product.

 Long term, carefully check each gadget and circuit to ensure that every field is properly
 validated. While obtaining an external audit of the SNARK code is a good step, it is not
 unheard of for bugs to slip through regardless; Zcash, for example, experienced a
 catastrophic SNARK failure a few years ago despite having been audited.

 Trail of Bits 18 DeGate Security Assessment
 PUBLIC

 3. Poor code management practices

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DeGate-3

 Target: Throughout the codebase

 Description
 The changes made to the DeGate protocol for version 0.2.0 were implemented through
 only a few commits. Most of the changes were consolidated and introduced under a single
 commit, resulting in very large unorganized code diffs.

 A very large diff under one commit can cause confusion. It can also make it more difficult to
 review the code and to identify which functionality is most affected by a change. For
 example, one commit (d111d7e19b1466dfdc68de508de3abd4faedf765) introduced
 almost 20,000 changes across various functionalities of the platform.

 These practices increase the likelihood of latent bugs in the codebase. If new bugs are
 introduced, which is also likely, the mishandled revision control will make them more
 difficult to identify.

 Recommendations
 Short term, make changes to the codebase in smaller more digestible commits with
 descriptive commit messages.

 Trail of Bits 19 DeGate Security Assessment
 PUBLIC

 Detailed Findings (Previous Audit)

 4. Token management di�culties caused by the addition of arbitrary tokens

 Severity: High Difficulty: Low

 Type: Data Validation Finding ID: TOB-DeGate-4

 Target: ExchangeV3.sol , ExchangeDeposits.sol , DefaultDepositContract.sol

 Description
 Transfers and balance-change operations involving certain tokens require special
 verification; if the owner of a contract does not carefully monitor the contract when one
 such token is added, those operations can unexpectedly fail.

 Any user can register a new token explicitly, by using the registerToken function (figure
 4.1.), or implicitly, by making a deposit to a new token address (figure 4.2).

 function registerToken(

 address tokenAddress

)

 external

 override

 nonReentrant

 returns (uint32)

 {

 return state.registerToken(tokenAddress);

 }

 Figure 4.1: The registerToken function in ExchangeV3

 function deposit(

 ExchangeData.State storage S,

 address from,

 address to,

 address tokenAddress,

 uint96 amount, // can be zero

 bytes memory extraData

)

 internal // inline call

 {

 require(to != address(0), "ZERO_ADDRESS");

 Trail of Bits 20 DeGate Security Assessment
 PUBLIC

 // Deposits are still possible when the exchange is being shutdown, or even in

 withdrawal mode.

 // This is fine because the user can easily withdraw the deposited amounts again.

 // We don't want to make all deposits more expensive just to stop that from

 happening.

 (uint32 tokenID, bool tokenFound) = S.findTokenID(tokenAddress);

 if(!tokenFound) {

 tokenID = S.registerToken(tokenAddress);

 }

 …

 Figure 4.2: The deposit function in ExchangeDeposits

 Additionally, some tokens perform custom transfer logic and must be subject to a special
 check:

 function deposit(

 address from,

 address token,

 uint96 amount,

 bytes calldata /*extraData*/

)

 external

 override

 payable

 onlyExchange

 ifNotZero(amount)

 returns (uint96 amountReceived)

 {

 uint ethToReturn = 0;

 if (isETHInternal(token)) {

 …

 } else {

 // When checkBalance is enabled for a token we check the balance change

 // on the contract instead of counting on transferFrom to transfer exactly

 // the amount of tokens that is specified in the transferFrom call.

 // This is to support non-standard tokens which do custom transfer logic.

 bool checkBalance = needCheckBalance[token];

 uint balanceBefore = checkBalance ? ERC20(token).balanceOf(address(this)) : 0;

 token.safeTransferFromAndVerify(from, address(this), uint(amount));

 uint balanceAfter = checkBalance ? ERC20(token).balanceOf(address(this)) :

 amount;

 uint diff = balanceAfter.sub(balanceBefore);

 amountReceived = diff.toUint96();

 Trail of Bits 21 DeGate Security Assessment
 PUBLIC

 ethToReturn = msg.value;

 }

 …

 Figure 4.3: The deposit function in DefaultDepositContrac t

 The owner of the deposit contract should explicitly enable this check by using the
 setCheckBalance function.

 function setCheckBalance(

 address token,

 bool checkBalance

)

 external

 onlyOwner

 {

 require(needCheckBalance[token] != checkBalance, "INVALID_VALUE");

 needCheckBalance[token] = checkBalance;

 emit CheckBalance(token, checkBalance);

 }

 Figure 4.4: The setCheckBalance function in DefaultDepositContract

 However, since any user can add any token at any time, it is virtually impossible for an
 owner to verify which tokens require such a check.

 Exploit Scenario
 Alice makes a deposit of a new deflationary token, the balance of which must be carefully
 checked. Unless the owner of the contract is able to front-run Alice's transaction to enable
 checkBalance , her deposit will be processed without that balance check, leading to
 unexpected behavior.

 Recommendations
 Short term, ensure that users are aware of this limitation or consider disallowing the
 addition of arbitrary tokens.

 Long term, review our Token Integration Checklist before deciding which tokens should be
 added to the protocol.

 Trail of Bits 22 DeGate Security Assessment
 PUBLIC

 5. Initialization functions can be front-run

 Severity: Low Difficulty: High

 Type: Configuration Finding ID: TOB-DeGate-5

 Target: ExchangeV3.sol , DefaultDepositContract.sol

 Description
 The ExchangeV3 and DefaultDepositContract contracts have initialization functions
 that can be front-run, allowing an attacker to incorrectly initialize the contracts.

 function initialize(

 address _loopring,

 address _owner,

 bytes32 _genesisMerkleRoot,

 bytes32 _genesisMerkleAssetRoot

)

 external

 override

 nonReentrant

 onlyWhenUninitialized

 {

 require(address(0) != _owner, "ZERO_ADDRESS");

 owner = _owner;

 loopringAddr = _loopring;

 state.initializeGenesisBlock(

 _loopring,

 _genesisMerkleRoot,

 _genesisMerkleAssetRoot,

 EIP712.hash(EIP712.Domain("DeGate Protocol", version(), address(this)))

);

 }

 Figure 5.1: ExchangeV3 ’s initialize function

 function initialize(

 address _exchange

)

 external

 {

 require(

 exchange == address(0) && _exchange != address(0),

 Trail of Bits 23 DeGate Security Assessment
 PUBLIC

 "INVALID_EXCHANGE"

);

 owner = msg.sender;

 exchange = _exchange;

 }

 Figure 5.2: DefaultDepositContract ’s initialize function

 Neither of these functions is protected by access controls; this is because the functions are
 meant to set the initial state of the contracts, since the contracts both support a proxy
 architecture. As such, an attacker could front-run these functions and initialize the
 contracts with malicious values.

 Exploit Scenario
 Alice deploys the ExchangeV3 contract. Eve front-runs the contract’s initialization and sets
 her own address as the owner. As a result, she gains access to owner privileges and can
 perform actions such as changing the settings of the exchange and withdrawing fees to her
 own address.

 Recommendations
 Short term, add proper access controls to the initializer functions to ensure that they are
 callable only by contract owners.

 Long term, carefully review the initializers across the codebase to ensure that they have
 proper access controls.

 Trail of Bits 24 DeGate Security Assessment
 PUBLIC

 6. Circuit crashes when invalid blocks are generated by the operator

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-DeGate-6

 Target: Circuits

 Description
 Users can force the operator to produce invalid blocks that will crash the circuits.

 To maintain strong security guarantees and high performance, DeGate requires that
 certain computations be performed from the ethsnarks circuits. The operator produces
 blocks in the form of JSON files, and validators process them using the dex_circuit
 program. However, the operator can produce invalid blocks under certain conditions.

 For instance, if an order cancellation is generated with an invalid signature, the operator
 will produce an invalid block with a negative balance.

 "rootBefore":

 "16338061663996780208594963981079042825468976450837220348267387051031964921715",

 "rootAfter":

 "13168472117334653415272168230518893410152064571170296320262299419327863961379",

 "before": {

 "balance": "0"

 },

 "after": {

 "balance": "-21000000000000"

 }

 Figure 6.1: Part of an invalid block

 When the validator tries to parse the block (by using dex_circuit), the validator will
 crash. This crash is caused by an assertion failure when parsing negative numbers as big int
 values.

 Dex_circuit: …/ethsnarks/depends/libsnark/depends/libff/libff/algebra/fields/bigint.tcc:33:

 libff::bigint<4>::bigint(const char *) [n = 4]: Assertion `s[i] >= '0' && s[i] <= '9''

 failed.

 Figure 6.2: A validator crash

 Exploit Scenario

 Trail of Bits 25 DeGate Security Assessment
 PUBLIC

 Eve repeatedly submits invalid requests in DeGate to force the operator to generate invalid
 blocks. This degrades the validator’s performance and may even cause it to crash.

 Recommendations
 Short term, ensure that the validator will never crash regardless of the values in JSON
 blocks.

 Long term, review the testing approach to make sure that a crash in the validator produces
 a testing failure.

 Trail of Bits 26 DeGate Security Assessment
 PUBLIC

 7. Saving large JSON integers could result in interoperability issues

 Severity: Medium Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DeGate-7

 Target: Circuits

 Description
 The DeGate protocol’s method of parsing user- and operator-generated JSON integers
 differs from that of mainstream implementations such as NodeJS and jq .

 The JSON standard warns about certain "interoperability problems" in numeric types
 outside the range [-(2**53)+1, (2**53)-1] . These issues are caused by widely used
 JSON implementations that use IEEE 754 (double-precision) numbers to implement
 integers.

 For instance, if the operator saved the amount value "1152921504606846976" (2**60) ,
 it would be serialized as the expected value 1152921504606846976 . However, web
 browsers, NodeJS , and jq 1.5 would parse it as 1152921504606847000 .

 [
 {

 ...
 "amount": 1152921504606846976,
 ...

 }
]

 Figure 7.1: Part of a JSON file

 This parsing affects fields such as fFillS_A and fFillS_B , which are parsed directly from
 JSON numbers, without the use of strings:

 static void from_json(const json &j, SpotTrade &spotTrade)
 {

 spotTrade.orderA = j.at("orderA").get<Order>();
 spotTrade.orderB = j.at("orderB").get<Order>();
 spotTrade.fillS_A = ethsnarks::FieldT(j["fFillS_A"]);
 spotTrade.fillS_B = ethsnarks::FieldT(j["fFillS_B"]);

 }

 Figure 7.2: The from_json function in circuit/Utils/Data.h

 Exploit Scenario

 Trail of Bits 27 DeGate Security Assessment
 PUBLIC

 Alice, a DeGate user, inputs a large number that will be processed by the operator and
 included in a JSON file block. The dex_circuit program reads Alice's JSON value and
 interprets it differently than Alice, resulting in behavior that she did not expect.

 Recommendations
 Short term, use strings instead of JSON numeric values to implement the amount field. This
 will prevent any ambiguity when parsing the numeric fields of JSON file blocks.

 Long term, use a recommended JSON approach when interacting with JSON files generated
 by the operator. This will prevent any ambiguity when parsing the numeric fields of JSON
 files.

 References
 Numbers in JSON (RFC 8259, Section 6)

 Trail of Bits 28 DeGate Security Assessment
 PUBLIC

https://tools.ietf.org/html/rfc8259#section-6
https://tools.ietf.org/html/rfc8259#section-6

 8. Lack of contract existence check on delegatecall will result in unexpected
 behavior

 Severity: Medium Difficulty: High

 Type: Data Validation Finding ID: TOB-DeGate-8

 Target: thirdparty/proxies/Proxy.sol

 Description
 The Proxy contract uses the delegatecall proxy pattern. If the implementation contract
 is incorrectly set or is self-destructed, the Proxy contract may not be able to detect failed
 executions.

 The Proxy contract includes a payable fallback function that is invoked when proxy calls
 are executed. This function lacks a contract existence check (figure 8.1).

 function _fallback () private {
 address _impl = implementation();
 require(_impl != address(0));

 assembly {
 let ptr := mload(0x40)
 calldatacopy(ptr, 0 , calldatasize())
 let result := delegatecall(gas(), _impl, ptr, calldatasize(), 0 , 0)
 let size := returndatasize()
 returndatacopy(ptr, 0 , returndatasize())

 switch result
 case 0 { revert(ptr, size) }
 default { return (ptr, size) }

 }
 }

 Figure 8.1: The _fallback function in Proxy.sol

 A delegatecall to a destructed contract will return success (figure 8.2). Due to the lack of
 contract existence checks, a series of batched transactions may appear to be successful
 even if one of the transactions fails.

 The low-level functions call, delegatecall and staticcall return true as their first
 return value if the account called is non-existent, as part of the design of the
 EVM. Account existence must be checked prior to calling if needed.

 Figure 8.2: A snippet of the Solidity documentation detailing unexpected behavior related to
 delegatecall

 Trail of Bits 29 DeGate Security Assessment
 PUBLIC

 Exploit Scenario
 Eve upgrades the proxy to point to an incorrect new implementation. As a result, each
 delegatecall returns success without changing the state or executing code. Eve uses this
 defect to scam users.

 Recommendations
 Short term, implement a contract existence check before each delegatecall . Document
 the fact that using suicide and selfdestruct can lead to unexpected behavior, and
 prevent future upgrades from using these functions.

 Long term, carefully review the Solidity documentation , especially the “Warnings” section,
 and the pitfalls of using the delegatecall proxy pattern.

 References
 ● Contract Upgrade Anti-Patterns

 ● Breaking Aave Upgradeability

 Trail of Bits 30 DeGate Security Assessment
 PUBLIC

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://blog.trailofbits.com/2018/09/05/contract-upgrade-anti-patterns/
https://blog.trailofbits.com/2020/12/16/breaking-aave-upgradeability/

 9. Numerical comparison gadget does not support very large numbers

 Severity: High Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-DeGate-9

 Target: circuit/Gadgets/MathGadgets.h

 Description
 The LeqGadget performs various comparison operations over numeric values but does
 not support the full range of uint256 values:

 // (A <(=) B)
 class LeqGadget : public GadgetT
 {

 …
 // The comparison gadget is only guaranteed to work correctly on values in
 // the field capacity - 1
 …

 ASSERT(n <= NUM_BITS_FIELD_CAPACITY - 1, prefix);

 Figure 9.1: Part of the LeqGadget in MathGadgets.h

 Since NUM_BITS_FIELD_CAPACITY is equal to 253, the use of numbers close to 2**256 -
 1 will cause an assertion failure. Token deposit amounts are not affected by this limitation,
 since they are defined using the uint248 type; however, other fields, such as the ones that
 track down the deposit state, could trigger a failure in the LeqGadget .

 struct BalanceLeaf
 {

 uint32 tokenID;
 uint248 balance;

 }

 …

 struct DepositState {
 uint256 freeDepositMax;
 uint256 freeDepositRemained;
 uint256 lastDepositBlockNum;
 uint256 freeSlotPerBlock;
 uint256 depositFee;

 }

 Figure 9.2: The BalanceLeaf and DepositState data structures in ExchangeData.sol

 This problem was also raised in the Loopring repository.

 Trail of Bits 31 DeGate Security Assessment
 PUBLIC

https://github.com/Loopring/protocol3-circuits/issues/11

 Exploit Scenario
 Alice triggers a circuit that uses the LeqGadget to perform a comparison with a large
 number that it does not support. This causes an assertion failure that crashes the validator.

 Recommendations
 Short term, disallow the use of numbers greater than the capacity of the bits of the field,
 and document this limitation for users.

 Long term, review the limitations of each gadget to ensure that it will not block any user
 operations, and document those limitations.

 Trail of Bits 32 DeGate Security Assessment
 PUBLIC

 10. Solidity compiler optimizations can be problematic

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DeGate-10

 Target: truffle.js

 Description
 The DeGate protocol has enabled optional compiler optimizations in Solidity.

 There have been several optimization bugs with security implications. Moreover,
 optimizations are actively being developed . Solidity compiler optimizations are disabled by
 default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
 unclear how well they are being tested and exercised.

 High-severity security issues due to optimization bugs have occurred in the past . A
 high-severity bug in the emscripten -generated solc-js compiler used by Truffle and
 Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
 CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
 was patched in Solidity 0.5.6 . More recently, another bug due to the incorrect caching of
 keccak256 was reported.

 A compiler audit of Solidity from November 2018 concluded that the optional optimizations
 may not be safe .

 It is likely that there are latent bugs related to optimization and that new bugs will be
 introduced due to future optimizations.

 Exploit Scenario
 A latent or future bug in Solidity compiler optimizations—or in the Emscripten transpilation
 to solc-js —causes a security vulnerability in the DeGate protocol contracts.

 Recommendations
 Short term, measure the gas savings from optimizations and carefully weigh them against
 the possibility of an optimization-related bug.

 Long term, monitor the development and adoption of Solidity compiler optimizations to
 assess their maturity.

 Trail of Bits 33 DeGate Security Assessment
 PUBLIC

https://github.com/ethereum/solidity/pull/11093
https://solidity.readthedocs.io/en/v0.7.0/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

 11. Circuits rely on undefined behavior in lib�

 Severity: Undetermined Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-DeGate-11

 Target: Circuits

 Description
 Running the circuits to validate blocks triggers undefined behavior in the libff library.

 To maintain strong security guarantees and high performance, DeGate requires that
 certain computations be performed from the ethsnarks circuits. The operator produces
 blocks in the form of JSON files, and validators process them using the dex_circuit
 program. If the circuits are compiled using UndefinedBehaviorSanitizer , unit testing
 will trigger numerous warnings in a libff function:

 …/ethsnarks/depends/libsnark/depends/libff/libff/algebra/scalar_multiplication/multiexp.tcc

 :178:80: runtime error: shift exponent 64 is too large for 64-bit type 'mp_limb_t' (aka

 'unsigned long')

 SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior

 …/ethsnarks/depends/libsnark/depends/libff/libff/algebra/scalar_multiplication/multiexp.tcc

 :178:80 in

 …/loopring_v3/ethsnarks/depends/libsnark/depends/libff/libff/algebra/scalar_multiplication/

 multiexp.tcc:178:107: runtime error: shift exponent 64 is too large for 64-bit type

 'unsigned long'

 SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior

 …/ethsnarks/depends/libsnark/depends/libff/libff/algebra/scalar_multiplication/multiexp.tcc

 :178:107 in

 Figure 11.1: UndefinedBehaviorSanitizer warnings

 These warnings are caused by the following code:

 static inline size_t get_id(size_t c, size_t bitno, const mp_limb_t* data)

 {

 static const mp_limb_t one = 1;

 const mp_limb_t mask = (one << c) - one;

 const size_t limb_num_bits = sizeof(mp_limb_t) * 8;

 const size_t part = bitno / limb_num_bits;

 const size_t bit = bitno % limb_num_bits;

 Trail of Bits 34 DeGate Security Assessment
 PUBLIC

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

 size_t id = (data[part] & (mask << bit)) >> bit;

 //const mp_limb_t next_data = (bit + c >= limb_num_bits && part < 3) ?

 bn_exponents[i].data[part+1] : 0;

 //id |= (next_data & (mask >> (limb_num_bits - bit))) << (limb_num_bits - bit);

 id |= (((bit + c >= limb_num_bits && part < 3) ? data[part+1] : 0) & (mask >>

 (limb_num_bits - bit))) << (limb_num_bits - bit);

 return id;

 }

 Figure 11.2: get?id

 Additionally, CodeQL identified potential integer overflows in the computations of k*c as
 arguments of get_id :

 template<typename T, typename FieldT, bool with_density, bool prefetch, unsigned int

 prefetch_locality>

 T multi_exp_inner_bellman_with_density(

 …

 unsigned int c,

 unsigned int k,

 …)

 {

 …

 if (prefetch)

 {

 // prefetch next bucket

 if (i < length - look_ahead)

 {

 size_t next_id = get_id(c, k*c, &exponents[i+look_ahead].data[0]);

 …

 }

 }

 size_t id = get_id(c, k*c, &exponents[i].data[0]);

 …

 Figure 11.3: Part of the multi_exp_inner_bellman_with_density function

 The affected code was introduced by Loopring in a fork of libff that should be carefully
 reviewed.

 Exploit Scenario
 The compiler used to produce the dex_circuit binary is changed or updated. The change
 results in undefined behavior that may be compiled in different ways, producing different
 results on different machines.

 Recommendations
 Short term, refactor the affected libff code to avoid triggering undefined behavior.

 Trail of Bits 35 DeGate Security Assessment
 PUBLIC

 Long term, enable code sanitizers (e.g., AddressSanitizer and
 UndefinedBehaviorSanitizer) to ensure that no undefined behavior is invoked during
 testing.

 Trail of Bits 36 DeGate Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 37 DeGate Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 38 DeGate Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Decentralization The presence of a decentralized governance structure for mitigating
 insider threats and managing risks posed by contract upgrades

 Documentation The presence of comprehensive and readable codebase documentation

 Front-Running
 Resistance

 The system’s resistance to front-running attacks

 Low-Level
 Manipulation

 The justified use of inline assembly and low-level calls

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Upgradeability Related to contract upgradeability

 Trail of Bits 39 DeGate Security Assessment
 PUBLIC

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 40 DeGate Security Assessment
 PUBLIC

 C. Token Integration Checklist

 The following checklist provides recommendations for interactions with arbitrary tokens.
 Every unchecked item should be justified, and its associated risks, understood. See
 crytic/building-secure-contracts for an up-to-date version of the checklist.

 For convenience, all Slither utilities can be run directly on a token address, such as the
 following:

 slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken

 To follow this checklist, use the below output from Slither for the token:

 - slither-check-erc [target] [contractName] [optional: --erc ERC_NUMBER]
 - slither [target] --print human-summary
 - slither [target] --print contract-summary
 - slither-prop . --contract ContractName # requires configuration, and use of
 Echidna and Manticore

 General Security Considerations
 ❏ The contract has a security review. Avoid interacting with contracts that lack a

 security review. Check the length of the assessment (i.e., the level of effort), the
 reputation of the security firm, and the number and severity of the findings.

 ❏ You have contacted the developers. You may need to alert their team to an
 incident. Look for appropriate contacts on blockchain-security-contacts .

 ❏ They have a security mailing list for critical announcements. Their team should
 advise users (like you!) when critical issues are found or when upgrades occur.

 ERC Conformity
 Slither includes a utility, slither-check-erc , that reviews the conformance of a token to
 many related ERC standards. Use slither-check-erc to review the following:

 ❏ Transfer and transferFrom return a boolean. Several tokens do not return a
 boolean on these functions. As a result, their calls in the contract might fail.

 ❏ The name , decimals , and symbol functions are present if used. These functions
 are optional in the ERC20 standard and may not be present.

 ❏ Decimals returns a uint8 . Several tokens incorrectly return a uint256 . In such
 cases, ensure that the value returned is below 255.

 Trail of Bits 41 DeGate Security Assessment
 PUBLIC

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://github.com/crytic/slither
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/ERC-Conformance

 ❏ The token mitigates the known ERC20 race condition . The ERC20 standard has a
 known ERC20 race condition that must be mitigated to prevent attackers from
 stealing tokens.

 ❏ The token is not an ERC777 token and has no external function call in
 transfer or transferFrom . External calls in the transfer functions can lead to
 reentrancies.

 Slither includes a utility, slither-prop , that generates unit tests and security properties
 that can discover many common ERC flaws. Use slither-prop to review the following:

 ❏ The contract passes all unit tests and security properties from slither-prop .
 Run the generated unit tests and then check the properties with Echidna and
 Manticore .

 Finally, there are certain characteristics that are difficult to identify automatically. Conduct
 a manual review of the following conditions:

 ❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead
 to unexpected behavior.

 ❏ Potential interest earned from the token is taken into account. Some tokens
 distribute interest to token holders. This interest may be trapped in the contract if
 not taken into account.

 Contract Composition
 ❏ The contract avoids unnecessary complexity. The token should be a simple

 contract; a token with complex code requires a higher standard of review. Use
 Slither’s human-summary printer to identify complex code.

 ❏ The contract uses SafeMath . Contracts that do not use SafeMath require a higher
 standard of review. Inspect the contract by hand for SafeMath usage.

 ❏ The contract has only a few non-token-related functions. Non-token-related
 functions increase the likelihood of an issue in the contract. Use Slither’s
 contract-summary printer to broadly review the code used in the contract.

 ❏ The token has only one address. Tokens with multiple entry points for balance
 updates can break internal bookkeeping based on the address (e.g.,
 balances[token_address][msg.sender] may not reflect the actual balance).

 Trail of Bits 42 DeGate Security Assessment
 PUBLIC

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation
https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary

 Owner Privileges
 ❏ The token is not upgradeable. Upgradeable contracts may change their rules over

 time. Use Slither’s human-summary printer to determine if the contract is
 upgradeable.

 ❏ The owner has limited minting capabilities. Malicious or compromised owners
 can abuse minting capabilities. Use Slither’s human-summary printer to review
 minting capabilities, and consider manually reviewing the code.

 ❏ The token is not pausable. Malicious or compromised owners can trap contracts
 relying on pausable tokens. Identify pausable code by hand.

 ❏ The owner cannot blacklist the contract. Malicious or compromised owners can
 trap contracts relying on tokens with a blacklist. Identify blacklisting features by
 hand.

 ❏ The team behind the token is known and can be held responsible for abuse.
 Contracts with anonymous development teams or teams that reside in legal shelters
 require a higher standard of review.

 Token Scarcity
 Reviews of token scarcity issues must be executed manually. Check for the following
 conditions:

 ❏ The supply is owned by more than a few users. If a few users own most of the
 tokens, they can influence operations based on the tokens’ repartition.

 ❏ The total supply is sufficient. Tokens with a low total supply can be easily
 manipulated.

 ❏ The tokens are located in more than a few exchanges. If all the tokens are in one
 exchange, a compromise of the exchange could compromise the contract relying on
 the token.

 ❏ Users understand the risks associated with a large amount of funds or flash
 loans. Contracts relying on the token balance must account for attackers with a
 large amount of funds or attacks executed through flash loans.

 ❏ The token does not allow flash minting. Flash minting can lead to substantial
 swings in the balance and the total supply, which necessitate strict and
 comprehensive overflow checks in the operation of the token.

 Trail of Bits 43 DeGate Security Assessment
 PUBLIC

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary

 D. Code Quality Recommendations

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 General Recommendations

 ● Consider transforming the following abstract contracts into interfaces:

 ○ IBlockReceiver.sol

 ○ IAgentRegistry.sol

 ○ ILoopringV3Partial.sol

 ○ BurnableERC20.sol

 ○ ERC20.sol

 ○ IChiToken.sol

 ● Consider removing the unused agent code from the codebase.

 ○ Refactor the parts of the code that check whether msg.sender is an agent
 (e.g., the isUserOrAgent function).

 ○ Consider removing the function approveTransactions in
 ExchangeV3.sol ; it will always revert, because it relies on commented
 agent code.

 ● Consider making the withdraw function in DefaultDepositContract.sol
 non-payable.

 ● Consider removing the following dead / commented code:

 ○ The commented code in Poseidon.sol

 ○ The commented AuxiliaryData struct field in ExchangeData.sol

 ○ The import of IAgentRegistry in ExchangeGenesis.sol and
 FastWithdrawalAgent.sol

 ○ The commented code in the beforeBlockSubmission function in
 LoopringIOExchangeOwner.sol

 Trail of Bits 44 DeGate Security Assessment
 PUBLIC

 ○ bytes extraData in the Withdrawal and WithdrawalAuxiliaryData
 structs of WithdrawTransaction.sol

 ○ The commented code in the _beforeBlockSubmission function of the
 LoopringIOExchangeOwner.sol contract

 ● There is a typo in the annotation prefix for the SelectOneTokenAmountGadget .
 The tokenX_neq_tokenA gadget is assigned the prefix “.tokenX_eq_tokenA” ,
 which is the same as that of the tokenX_eq_tokenA gadget. This prefix should be
 replaced with “.tokenX_neq_tokenA” .

 Trail of Bits 45 DeGate Security Assessment
 PUBLIC

 E. Fix Log

 On March 11, 2022, Trail of Bits reviewed the DeGate team's responses to issues identified
 in this report. The DeGate team acknowledged all 11 issues but did not fix any. Various fix
 commits contained additional changes not related to the fixes. We did not comprehensively
 review these changes. For additional information, please refer to the Detailed Fix Log .

 ID Title Severity Fix Status

 1 Lax boundaries between normalTokens and
 reservedTokens arrays

 Medium Risk
 accepted by
 the client

 2 Missing range checks in MulDivGadget High Risk
 accepted by
 the client

 3 Poor code management practices Informational Risk
 accepted by
 the client

 4 Token management difficulties caused by the
 addition of arbitrary tokens

 High Risk
 accepted by
 the client

 5 Initialization functions can be front-run Low Risk
 accepted by
 the client

 6 Circuit crashes when invalid blocks are generated by
 the operator

 High Risk
 accepted by
 the client

 7 Saving large JSON integers could result in
 interoperability issues

 Medium Risk
 accepted by
 the client

 8 Lack of contract existence check on delegatecall will
 result in unexpected behavior

 Medium Risk
 accepted by
 the client

 Trail of Bits 46 DeGate Security Assessment
 PUBLIC

 9 Numerical comparison gadget does not support very
 large numbers

 High Risk
 accepted by
 the client

 10 Solidity compiler optimizations can be problematic Informational Risk
 accepted by
 the client

 11 Circuits rely on undefined behavior in libff Undetermined Risk
 accepted by
 the client

 Trail of Bits 47 DeGate Security Assessment
 PUBLIC

 Detailed Fix Log

 TOB-DeGate-1: Lax boundaries between normalTokens and reservedTokens arrays
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 “We decide to register as many reserved tokens as possible during the deployment
 phase to avoid this issue. ReservedTokens are tokens that users are allowed to use
 to pay fees.”

 TOB-DeGate-2: Missing range checks in MulDivGadget
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 “Muldivgadget is used to calculate the handling charge of spottrade and
 batchspottrade.

 product(pb, value, numerator, FMT(prefix, ".product")),

 assert(numBitsValue + numBitsNumerator <= NUM_BITS_FIELD_CAPACITY)

 Figure E.1: The relevant code

 The length of numBitsNumerator in FeeCalculatorGadget is no more than 6
 bits, while NUM_BITS_FIELD_CAPACITY = 253, the length of amount
 numBitsValue < = 247 .

 That is, the maximum value supported is 247bits , while the maximum value
 supported here is 96bits . Therefore, there will be no problem for the time being. If
 there is a problem, the circuit will crash.”

 TOB-DeGate-3: Poor code management practices
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 “In internal repository, code changes are submitted based on user stories or issues.”

 TOB-DeGate-4: Token management difficulties caused by the addition of arbitrary
 tokens
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 “We will add a warning about this limitation on front-end.”

 TOB-DeGate-5: Initialization functions can be front-run

 Trail of Bits 48 DeGate Security Assessment
 PUBLIC

 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "Ignored. We will ensure the deployment and initialization are correct."

 TOB-DeGate-6: Circuit crashes when invalid blocks are generated by the operator
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "The wrong data provided by the operator will indeed lead to circuit crash, which is
 an expected phenomenon. If not, there will be other problems."

 TOB-DeGate-7: Saving large JSON integers could result in interoperability issues
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "The amount mentioned here is the filled value in SpotTrade. The value had been
 handled by float32 format. so just 32bits. There will be no problem. If it exceeds 32,
 the circuit will crash."

 TOB-DeGate-8: Lack of contract existence check on delegatecall will result in
 unexpected behavior
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "Ignored. We will ensure the deployment and initialization are correct."

 TOB-DeGate-9: Numerical comparison gadget does not support very large numbers
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "Due to FTT, libsnark supports a maximum amount of 252 power of 2. Now it has
 supported 248bits in balance change, recharge and withdrawal.

 The total balance which deposited by user in smart contract is limited by 248bits ,
 so there will be no problem in the circuit."

 TOB-DeGate-10: Solidity compiler optimizations can be problematic
 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "We will keep the current optimization switch and evaluate it later."

 TOB-DeGate-11: Circuits rely on undefined behavior in libff

 Trail of Bits 49 DeGate Security Assessment
 PUBLIC

 Risk accepted by the client. The DeGate team provided the following rationale for its
 acceptance of this risk:

 "This issue is still under investigation."

 Trail of Bits 50 DeGate Security Assessment
 PUBLIC

