
Decentraland MANA Token Audit

JULY 22, 2017 | IN SECURITY AUDITS | BY OPENZEPPELIN SECURITY

The Decentraland team asked us to review and audit their new MANA Token contract code. We looked at their contracts and now publish our
results.

The audited contracts can be found in their mana repo. The version used for this report is commit a13905356378cc0153dd3c2153c8ceae6400970d .

Good work writing modular code and reusing existing contracts, as well as having ~ 96% automated test coverage.

Here’s our assessment and recommendations, in order of importance.

 Announcements Security Audits Events Perspectives Website

https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://decentraland.org/
https://github.com/decentraland/mana/tree/a13905356378cc0153dd3c2153c8ceae6400970d
https://blog.openzeppelin.com/announcements/
https://blog.openzeppelin.com/security-audits/
https://blog.openzeppelin.com/ozevents/
https://blog.openzeppelin.com/perspectives/
https://openzeppelin.com/
https://blog.openzeppelin.com/

EDIT: most of the issues were fixed in the latest version of the code.

Severe

Owner can finalize crowdsale before it has ended

finalize function from FinalizableCrowdsale is overriden by MANACrowdsale in line 115. The modified version removes the precondition
requiring that the crowdsale hasEnded . This is not required by the smart contract specification, and makes the crowdsale vulnerable to premature
closing by the owner.

It also introduces a race condition in which investors can still purchase tokens after the crowdsale is finalized but before the continuous sale is
started, as the validation for processing a purchase in line 33 of ContinuousCrowdsale does not check the isFinalized flag. This causes an
imbalance in the ratio of the shares between the foundation and the investors, since the foundation’s shares are emitted on finalization.

Remove the overriding of finalize in MANACrowdsale , and also the overriding of hasEnded in line 111.

EDIT: fixed in commit 9f07555e51df352aff7bc58b6830904215a7dd14 .

Code for processPurchase is duplicated

The function processPurchase is defined in ContinuousCrowdsale and then redefined in MANACrowdsale . The latter consists of nearly the same
code, except it calls getRate instead of reading the rate state variable. It’s unclear whether such duplication was intentional or not. To avoid the
issues duplication can cause, define the function in ContinuousCrowdsale in its most generic version calling getRate , with a simple
implementation that returns the value of the rate state variable. Redefine getRate with the desired logic in MANACrowdsale .

EDIT: will be fixed along with issue #9.

Warnings

RateChange event and variable not related but have same name

In MANACrowdsale there is a RateChange event and a state variable. Even though they have the same name, they represent completely different
things: the event means the base rate was chan rateChange ged, and the variable represents how much the rate decreases at each block.
Consider renaming the state variable to rateDecreaseStep .

EDIT: fixed in commit 451ee4d49329b419ffc9d69fea17c1c56913e2a6 .

No on-chain validation that rate will not reach zero

https://github.com/decentraland/mana
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L115
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/ContinuousCrowdsale.sol#L33
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L111
https://github.com/decentraland/mana/commit/9f07555e51df352aff7bc58b6830904215a7dd14
https://github.com/decentraland/mana/issues/9
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L27
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L25
https://github.com/decentraland/mana/commit/451ee4d49329b419ffc9d69fea17c1c56913e2a6

The rate decreases at each block according to the rateChange parameter. The parameter could cause the rate calculation to fail if it accidentally
reaches zero. Consider validating on construction that rate > rateChange * (endBlock - startBlock) .

EDIT: fixed in commit fd0c0a7574b44adafeffbe6033ef2bb6450921c2 .

Use safe math

There is one unchecked math operation which could overflow. Since it consists of token amounts, the probability is low, but it’s always better to
be safe and perform checked operations. Consider using a safe math library, or performing pre-condition checks on any math operation.

EDIT: fixed in commit 66cd12ef7d135a3cad17a35e48e974bb65a46cbf .

Update to latest OpenZeppelin version

The project uses version 1.1.0 of OpenZeppelin. Version 1.2.0 was released a few days ago, which fixes ERC20 compliance. We recommend
updating OpenZeppelin to 1.2.0, by changing the required version in package.json.

EDIT: fixed in commit 03ab3fe4567227569d778955f8e36b12b3d46898 .

Perform sanity checks on arguments

The following preconditions and sanity checks are missing.

1. rateChange > 0 and preferentialRate > 0 in constructor MANACrowdsale.

2. rate > 0 in setRate .

3. value > 0 in burn .

4. investor != 0 in addToWhitelist .

EDIT: fixed in commits fd0c0a7574b44adafeffbe6033ef2bb6450921c2 , b78a711a0e4adf0bf68f972d4961cb90a1ec5ca0 , and
e34c411700fc0869d308249ff9aba08fe8a12eca .

Burning tokens before crowdsale ends affects total token supply

MANA tokens can be burned invoking the burn function in BurnableToken line 17, which reduces the token’s totalSupply . This reduces the
number of tokens calculated as finalSupply in line 126 of MANACrowdsale , thus reducing the number of tokens emitted for the Decentraland
Foundation, which are calculated as 60% of the finalSupply in line 129 of the same file. Consider preventing tokens from being burnt by adding
a burnable flag in BurnableToken , disabled initially and only enabled once MANACrowdsale finalizes.

https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L25
https://github.com/decentraland/mana/commit/fd0c0a7574b44adafeffbe6033ef2bb6450921c2
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/ContinuousCrowdsale.sol#L49
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/decentraland/mana/commit/66cd12ef7d135a3cad17a35e48e974bb65a46cbf
https://github.com/decentraland/mana/blob/master/package.json#L10
https://github.com/OpenZeppelin/zeppelin-solidity/releases/tag/v1.2.0
https://github.com/decentraland/mana/commit/03ab3fe4567227569d778955f8e36b12b3d46898
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L29
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L29
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L100
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/BurnableToken.sol#L17
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/WhitelistedCrowdsale.sol#L17
https://github.com/decentraland/mana/commit/fd0c0a7574b44adafeffbe6033ef2bb6450921c2
https://github.com/decentraland/mana/commit/b78a711a0e4adf0bf68f972d4961cb90a1ec5ca0
https://github.com/decentraland/mana/commit/e34c411700fc0869d308249ff9aba08fe8a12eca
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/BurnableToken.sol#L17
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L126
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L129

Whitelisted investors can make purchases with zero value

The validPurchase check of line 30 in WhitelistedCrowdsale does not check for msg.value being greater than zero if the purchase belongs to a
whitelisted investor. Note that the base OpenZeppelin Crowdsale contract inline 98 does check that msg.value != 0 as part of the
validPurchase method. Consider adding the check by changing line 30 of WhitelistedCrowdsale to super.validPurchase() || (!hasEnded()
&& isWhitelisted(msg.sender) && msg.value != 0) .

Notes and Additional Information

Good job using OpenZeppelin!

Check !hasEnded() in line 67 of MANACrowdsale.sol is redundant.

The name checkContinuousPurchase doesn’t indicate clearly that the function changes contract state.

In line 21 of BurnableToken.sol, the variable burner could be used instead of msg.sender .

The public functions and events in MANACrowdsale are missing documentation. Even though the names are mostly self-explanatory, it’s a good
idea to clearly document the public API.

If the getRate function in MANACrowdsale is not moved up to ContinuousCrowdsale as suggested previously, consider marking it as
constant to ensure it has no side effects.

Test coverage is very good (96.92% as measured with solidity-coverage). There are three failing tests in MANACrowdsale (reported in issue #4),
which exercise the lines missing from the coverage.

Conclusions

Two severe security issues were found. Some small changes were proposed to follow best practices and reduce potential attack surface.

Good work writing modular code and reusing existing contracts, as well as having ~96% automated test coverage.

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns as they relate to the MANA
Token contract. We have not reviewed the related Decentraland project. The above should not be construed as investment advice or an offering of
tokens. For general information about smart contract security, check out our thoughts here.

Security Audits

https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/WhitelistedCrowdsale.sol#L30
https://github.com/OpenZeppelin/zeppelin-solidity/blob/v1.1.0/contracts/crowdsale/Crowdsale.sol#L98
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/WhitelistedCrowdsale.sol#L30
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L67
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/BurnableToken.sol#L21
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/contracts/MANACrowdsale.sol#L55
https://www.npmjs.com/package/solidity-coverage
https://github.com/decentraland/mana/blob/a13905356378cc0153dd3c2153c8ceae6400970d/test/MANACrowdsale.js
https://github.com/decentraland/mana/issues/4
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702

If you are interested in smart contract security, you can continue the discussion in our forum, or even better, join the team

If you are building a project of your own and would like to request a security audit, please do so here.

RELATED POSTS

Metal Token Audit

The Metal team asked us to review and
audit their new Metal Token contract code.
We looked at their…

READ MORE

SECURITY AUDITS

by OpenZeppelin Security

Bax Token Audit

The BABB team asked us to review and
audit their Bax Token contract. We looked at
the code and now…

READ MORE

SECURITY AUDITS

by OpenZeppelin Security

Enigma Token Audit

The Element Group team asked us to review
and audit their Enigma Token contract. We
looked at the…

READ MORE

SECURITY AUDITS

by OpenZeppelin Security

ADD COMMENT

http://forum.openzeppelin.com/
http://openzeppelin.com/jobs
http://openzeppelin.com/security-audits
https://blog.openzeppelin.com/metal-token-audit-d7e4dbf17bcf/
https://blog.openzeppelin.com/metal-token-audit-d7e4dbf17bcf/
https://blog.openzeppelin.com/metal-token-audit-d7e4dbf17bcf/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/bax-token-audit-85fe7b186c89/
https://blog.openzeppelin.com/bax-token-audit-85fe7b186c89/
https://blog.openzeppelin.com/bax-token-audit-85fe7b186c89/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/enigma-token-audit-91111e0b7f8a/
https://blog.openzeppelin.com/enigma-token-audit-91111e0b7f8a/
https://blog.openzeppelin.com/enigma-token-audit-91111e0b7f8a/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/

