
Customer: Dexalot
Date:     October 11th, 2022



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Dexalot

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC-20 vesting and asset management

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://dexalot.com/

Timeline 20.07.2022 – 11.10.2022

Changelog

02.08.2022 – Initial Review
25.08.2022 – Second Review
12.09.2022 – Third Review
27.09.2022 – Fourth Review
11.10.2022 – Fifth Review

www.hacken.io
2

https://dexalot.com/


Table of contents
Introduction 4

Scope 4

Severity Definitions 7

Executive Summary 8

Checked Items 9

System Overview 12

Findings 13

Disclaimers 17

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg


Introduction

Hacken OÜ (Consultant) was contracted by Dexalot (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Dexalot/contracts/
Commit:

86a5b953a3886b9e176a7c75cc4054cc70b4fa89
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/interfaces/IPortfolio.sol
SHA3: 72ad0a4c55026222f480dd59517f5cd837101d9d08e5d90db1fbeed93e1173f7

File: ./contracts/interfaces/ITradePairs.sol
SHA3: 57b640c8923728d4a3e0577dc61683287030c4c81bd2165b25f010557584a5bd

File: ./contracts/token/TokenVesting.sol
SHA3: cc3a08e4c946d06119a15fd6ab57ce35dfae5b93454462600ba75cff69cc97ce

File: ./contracts/token/TokenVestingCloneable.sol
SHA3: ca07fe83bdfd2dbf257ed595a8412fabaef4e7ad9895fe30d026fd5334b77386

File: ./contracts/token/TokenVestingCloneFactory.sol
SHA3: 19eeb4e638d482743df5adc51d04cd088fd7e4b9e457f4fa2fba26ad6477f977

File: ./contracts/token/TokenVestingV1.sol
SHA3: 92a0b29af2573e00f2ea0c89e2daca91456d27aa661d7e3c300479d81901a195

File: ./contracts/library/StringLibrary.sol
SHA3: 48d0bb010ed81c424ccb28d1f16d15a1dd53cab608a8667e4dad196427e5549f

Second review scope
Repository:

https://github.com/Dexalot/contracts/
Commit:

18c340f436a235b9504303268fafc8be9940ed97
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/interfaces/IPortfolio.sol
SHA3: 2d868597482d62ebe4e6f84cd7fd62d9ee7d39a959a27ad9992d61e38ad8ab8a

www.hacken.io
4

https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://dexalot.com/docs/DEXALOT-Litepaper.pdf


File: ./contracts/interfaces/ITradePairs.sol
SHA3: 57b640c8923728d4a3e0577dc61683287030c4c81bd2165b25f010557584a5bd

File: ./contracts/token/TokenVesting.sol
SHA3: d45711fb70d032596d17ffab187b9d5b821f2557cc43035cdc600f337d1cdd21

File: ./contracts/token/TokenVestingCloneable.sol
SHA3: c05cfa0fb6ce82265593143aaad8fb840d8dea208f759ec828201d37da0edd56

File: ./contracts/token/TokenVestingCloneFactory.sol
SHA3: 69c5d42d0f99e0ec7f27eda95a791ae0f284091e5f21d1430d303fc9f72b9250

File: ./contracts/token/TokenVestingV1.sol
SHA3: 1c4bb1bdad092fa2786cfb036848fed771c5fa8e43b755d7eb904a0f9205851b

File: ./contracts/library/StringLibrary.sol
SHA3: 48d0bb010ed81c424ccb28d1f16d15a1dd53cab608a8667e4dad196427e5549f

Third review scope
Repository:

https://github.com/Dexalot/contracts/
Commit:

c2746740797c841c1166c39c6e30c64e5e1baf2b
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/interfaces/IPortfolio.sol
SHA3: 2d868597482d62ebe4e6f84cd7fd62d9ee7d39a959a27ad9992d61e38ad8ab8a

File: ./contracts/interfaces/ITradePairs.sol
SHA3: b0dcbe59c7cf364ad2102d9322e0de998aa4b798fa936b85c89332bb8d477d8f

File: ./contracts/library/StringLibrary.sol
SHA3: 48d0bb010ed81c424ccb28d1f16d15a1dd53cab608a8667e4dad196427e5549f

File: ./contracts/token/TokenVesting.sol
SHA3: 56fe41a95a23ae46bf77c08df30f44d6a58b127891928980bc2056194d92e225

File: ./contracts/token/TokenVestingCloneable.sol
SHA3: 01d24e1046205b28401c803675b7d43dfb355f9ccd8a624e29476651ebf59937

File: ./contracts/token/TokenVestingCloneFactory.sol
SHA3: 9aa30fc19b5b1ef4fb553ddf6bb812f9c5a5cfeb4c101acedfbb30f7b00a0bc0

File: ./contracts/token/TokenVestingV1.sol
SHA3: 80e0e721cfb9f6db5fa4235f8327069b94a883f94ec106b3ca0ac558945eb841

Fourth review scope
Repository:

https://github.com/Dexalot/contracts/
Commit:

ba38d6e804e49fa58e7cabc6a677218f1f72a5d0
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

www.hacken.io
5

https://dexalot.com/docs/DEXALOT-Litepaper.pdf
https://dexalot.com/docs/DEXALOT-Litepaper.pdf


Integration and Unit Tests: Yes
Contracts:

File: ./contracts/interfaces/IPortfolio.sol
SHA3: 62121d2234b3217a42e718d61bf198cc53d0ab35ac36e5880f263f2c701c7da2

File: ./contracts/interfaces/ITradePairs.sol
SHA3: 27e302ba30023cf81228c674743ed963036274df8fe7a96e525e3a362f6a478e

File: ./contracts/library/UtilsLibrary.sol
SHA3: 3bdd91968ee2ee3b9f9486cd9c733c0060c3f82c506f9ff67244d65607b3649f

File: ./contracts/token/TokenVestingCloneable.sol
SHA3: 65840a65289ce9d966b322411380f88ef7271c36a0ffeb3fd5a1796818904e75

File: ./contracts/token/TokenVestingCloneFactory.sol
SHA3: 6398e269dce1e18a54b250b732eb11a2bce679c756b68e09d6ef4af1b9e1e2a7

Fifth review scope
Repository:

https://github.com/Dexalot/contracts/
Commit:

5dbc686c9fd225eba52f9390270a0f5b8aa56262
Technical Documentation:

Type: Litepaper and technical description
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/interfaces/IPortfolio.sol
SHA3: f20f67f62f6e31ff36c9f58301083bc97da89db1036cd0e79940724e662daf02

File: ./contracts/interfaces/ITradePairs.sol
SHA3: 9e2b3e3b87307cce57170c6f5f7837e05ce70a63dbab9bfba34b9569985250b1

File: ./contracts/library/UtilsLibrary.sol
SHA3: 3bdd91968ee2ee3b9f9486cd9c733c0060c3f82c506f9ff67244d65607b3649f

File: ./contracts/token/TokenVestingCloneable.sol
SHA3: 536b631ac0cfc606a11881f22bb17f0d80d633c01486ffae40797f5942b039d6

File: ./contracts/token/TokenVestingCloneFactory.sol
SHA3: cb55125974cf54b67b7b0158dcf8f375e50fe3c2faa58417f510c7e7251ffec4

www.hacken.io
6

https://docs.dexalot-test.com/


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
7



Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Functional
requirements were not provided. A technical description is provided as
comments in the code.

Code quality
The total CodeQuality score is 10 out of 10. Most of the code follows
official language style guides. Unit tests were provided.

Architecture quality
The architecture quality score is 10 out of 10. The architecture is clear.
Development environment was provided.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

02 August 2022 3 2 1 1

19 August 2022 3 0 0 0

07 September 2022 1 0 0 0

26 September 2022 0 0 0 0

04 October 2022 0 0 0 0

www.hacken.io
8

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115


through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
11



System Overview

Vesting is an ERC-20 vesting system with the following contracts:
● TokenVestingCloneable — is a contract for ERC-20 tokens linear

vesting with the “1.0.3” version. Tokens are distributed gradually
after the cliff period until the vesting end time. Tokens are
transferred to the beneficiary address. The contract can have a
period value: vesting amount is gradually grown in each period (for
example, every 30 days, the vesting amount is updated).

The defined percentage of tokens is vested before the vesting starts
to the beneficiary and then transferred to the Portfolio contract, it
is available after the defined time. If these tokens were not vested
in the correct period, they would be transferred in vesting to the
beneficiary address.

There is a functionality accessible for the owner that allows to
revoke the vesting for each token (funds not vested yet are
transferred to the owner).

The contract allows the vesting of different ERC-20 tokens, but all
the parameters for vesting are the same.

● TokenVestingCloneFactory — is a factory contract with the "1.0.0"
version that allows the creation of TokenVestingCloneable contracts.

● UtilsLibrary — is a library with utility functions, used in
TokenVestingCloneable contracts.

● IPortfolio — is an interface for the Portfolio contract (out of
scope), used in TokenVesting, TokenVestingCloneable, TokenVestingV1
contracts.

● ITradePairs — is an interface for the TradePair contract (out of
scope), used in the IPortfolio contract.

Privileged roles
● The owner of the TokenVestingCloneable contract can update Portfolio

contract address, revoke vestings.
● The owner of the TokenVestingCloneFactory can create

TokenVestingCloneable contracts.

Risks
● There are contracts in the repository not included in the audit

scope. They cannot be verified.
● The tokens to be vested should be transferred to vesting contracts

only before token payments for the correct calculations.
● TokenVestingCloneable contract interacts with the Portfolio contract,

which is out of scope; its secureness can not be guaranteed.

www.hacken.io
12



Findings

Critical

1. Requirements Violation

In the releaseToPortfolio function, an unreleased amount of tokens
are transferred to the _beneficiary address. Then these funds are
transferred from _beneficiary address to the Portfolio contract in
the Portfolio.depositTokenFromContract function using the
safeTransferFrom function without their prior approval.

Therefore, it is impossible to release tokens to the Portfolio
contract.

Files: ./contracts/Portfolio.sol, ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol

Contracts: Portfolio, TokenVesting, TokenVestingCloneable,
TokenVestingV1

Functions: Portfolio.depositTokenFromContract,
TokenVesting.releaseToPortfolio,
TokenVestingCloneable.releaseToPortfolio,
TokenVestingV1.releaseToPortfolio

Recommendation: Approve an unreleased amount of tokens of the
_beneficiary address to the Portfolio contract before transferring to
the Portfolio contract (before calling the depositTokenFromContract
function).

Status: Mitigated (The Customer comment: “User must give two
approvals for the vesting and portfolio contracts before calling this
function.”)

High

1. Data Consistency

The functionality allows the owner to update the percentages for the
amount vested at TGE (setPercentage function) and to reinstate the
vesting (reinstate).

Therefore, the _vestedByPercentage function may incorrectly calculate
the amount of tokens released at TGE (releaseToPortfolio) if the
percentage value is changed after the releasing tokens at TGE; if
after the vesting reinstatement, there is a different total amount of
the tokens (current + released) than it was when the releasing tokens
at TGE.

Due to this, the vested amount will be calculated incorrectly in the
_releasableAmount function, as the _vestedByPercentage(token) value
will not be equal to the actual paid part of

www.hacken.io
13



_released[address(token)]. The canFundWallet function will
incorrectly indicate if the vesting has been funded to the Portfolio.

Files: ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol

Contracts: TokenVesting, TokenVestingCloneable, TokenVestingV1

Functions: setPercentage, reinstate

Recommendation: Ensure that percentages cannot be changed after the
releasing tokens at TGE (releaseToPortfolio) and that the balance
after the reinstatement is appropriate.

Status: Fixed (Revised commit:
18c340f436a235b9504303268fafc8be9940ed97)

Medium

1. Redundant Functionality

stringToBytes32 function is redundant as stringToBytes32 from the
StringLibrary can be used directly.

Files: ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol

Contracts: TokenVesting, TokenVestingCloneable, TokenVestingV1

Function: stringToBytes32

Recommendation: Remove the redundant function, use stringToBytes32
from the StringLibrary directly.

Status: Fixed (Revised commit:
18c340f436a235b9504303268fafc8be9940ed97)

2. Missing Events Emit on Changing Important Values

The contract does not emit any events after changing important
values.

Files: ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol, ./contracts/Portfolio.sol

Contracts: TokenVesting, TokenVestingCloneable, TokenVestingV1,
Portfolio

Functions: TokenVesting.setPercentage,
TokenVesting.setStartPortfolioDeposits, TokenVesting.setPortfolio,
TokenVestingCloneable.setPercentage,
TokenVestingCloneable.setStartPortfolioDeposits,
TokenVestingCloneable.setPortfolio, TokenVestingV1.setPercentage,
TokenVestingV1.setStartPortfolioDeposits,
TokenVestingV1.setPortfolio, Portfolio.setNative

www.hacken.io
14



Recommendation: Implement event emits after changing the contract
values.

Status: Fixed (Revised commit:
18c340f436a235b9504303268fafc8be9940ed97)

Low

1. Floating Pragma

The project`s contracts use floating pragma ^0.8.4.

Contracts with unlocked pragmas may be deployed by the latest
compiler, which may have higher risks of undiscovered bugs. Contracts
should be deployed with the same compiler version they have been
tested thoroughly.

Files: ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol,
./contracts/token/TokenVestingCloneFactory.sol,
./contracts/library/StringLibrary.sol,
./contracts/interfaces/IPortfolio.sol,
./contracts/interfaces/ITradePairs.sol

Contracts: TokenVesting, TokenVestingCloneable, TokenVestingV1,
TokenVestingCloneFactory, StringLibrary, IPortfolio, ITradePairs

Recommendation: Consider locking the pragma version whenever
possible.

Status: Fixed (Revised commit:
ba38d6e804e49fa58e7cabc6a677218f1f72a5d0)

2. Functions that Can Be Declared External

There are public functions in the contracts that are not used
internally.

“External” visibility uses less Gas.

Files: ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol

Contracts: TokenVesting, TokenVestingCloneable, TokenVestingV1

Functions: TokenVesting.canFundWallet,
TokenVestingCloneable.canFundWallet, TokenVestingV1.canFundWallet

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (Revised commit:
c2746740797c841c1166c39c6e30c64e5e1baf2b)

3. Block Values as a Proxy for Time Using

www.hacken.io
15



The contract uses block.timestamp for time calculations. It is not
precise and safe.

Files: ./contracts/token/TokenVesting.sol,
./contracts/token/TokenVestingCloneable.sol,
./contracts/token/TokenVestingV1.sol

Contracts: TokenVesting, TokenVestingCloneable, TokenVestingV1

Functions: constructor, canFundWallet, canFundPortfolio, release,
_vestedAmount, _vestedByPercentage

Recommendation: It is recommended to avoid using block.timestamp in
the time calculations. Alternatively, it is safe to use oracles.

Status: Mitigated (The Customer notice: “ This vesting contract
depends on time-based vesting schedule using block timestamps.
Therefore, the contract would be susceptible to timestamp
manipulation miners may be able to do in some EVMs for variables with
less than a min time lengths for delta time. To mitigate potential
exploits variables holding delta time are required to be more than 5
minutes.”)

www.hacken.io
16



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
17


