
Customer: Enjinstarter
Date: September 9th, 2022



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Enjinstarter

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Staking

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://enjinstarter.com/

Timeline 10.08.2022 – 09.09.2022

Changelog
17.08.2022 – Initial Review
01.09.2022 - Second Review
09.09.2022 - Third Review

www.hacken.io
2



Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 14

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Enjinstarter (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/enjinstarter/ejs-staking-contracts
Commit:

d851e0e9c34540838a9bfd1bc1149aa33d84a239
Documentation:

Technical description

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/AdminPrivileges.sol
SHA3: d916422c04a2d2968e365cf6f17a25d8b2c8add07e387c2a0f4fa5d39a8d9f49

File: ./contracts/AdminWallet.sol
SHA3: b33fb08ef971b80b4dfed870f1d3d95ac6db416f7a01e30e40390c5bdb18d968

File: ./contracts/interfaces/IAdminWallet.sol
SHA3: 34d03bceb310f1d8bbc695da5149e1fb1be7202016a96a2c062a47bd2a76d9b1

File: ./contracts/interfaces/IStakingPool.sol
SHA3: 5413c4c8f95d4f1876b89e935655fea77ccfcaa2b4d022e581fdaefe691e1af0

File: ./contracts/interfaces/IStakingService.sol
SHA3: c62b37daa6c46d907c9d11046060b33d790828bb79cd9309a6df237aba8304fc

File: ./contracts/libraries/UnitConverter.sol
SHA3: f7b33b391016f11e2617c0104c57a31eeb9a7451a231b8b714edc15054bf18dc

File: ./contracts/StakingPool.sol
SHA3: 51002f7638859a535b21a164e1da9507c7e9d406ea8ea79fdf987b89f1f3c887

File: ./contracts/StakingService.sol
SHA3: a0a77cb0c507b50610e7662d3a844e82ef7d22406874b74164a9efa414a3c217

Second review scope
Repository:

https://github.com/enjinstarter/ejs-staking-contracts
Commit:

53de193ee5483c0d5a1a35d12104478494cdce69
Documentation:

Technical description

Integration and Unit Tests: Yes
Contracts:

www.hacken.io
4

https://github.com/enjinstarter/ejs-staking-contracts/blob/main/docs/staking-techspec.pdf
https://github.com/enjinstarter/ejs-staking-contracts/blob/main/docs/staking-techspec.pdf


File: ./contracts/AdminPrivileges.sol
SHA3: d916422c04a2d2968e365cf6f17a25d8b2c8add07e387c2a0f4fa5d39a8d9f49

File: ./contracts/AdminWallet.sol
SHA3: b33fb08ef971b80b4dfed870f1d3d95ac6db416f7a01e30e40390c5bdb18d968

File: ./contracts/interfaces/IAdminWallet.sol
SHA3: 34d03bceb310f1d8bbc695da5149e1fb1be7202016a96a2c062a47bd2a76d9b1

File: ./contracts/interfaces/IStakingPool.sol
SHA3: 5413c4c8f95d4f1876b89e935655fea77ccfcaa2b4d022e581fdaefe691e1af0

File: ./contracts/interfaces/IStakingService.sol
SHA3: c62b37daa6c46d907c9d11046060b33d790828bb79cd9309a6df237aba8304fc

File: ./contracts/libraries/UnitConverter.sol
SHA3: f7b33b391016f11e2617c0104c57a31eeb9a7451a231b8b714edc15054bf18dc

File: ./contracts/StakingPool.sol
SHA3: 51002f7638859a535b21a164e1da9507c7e9d406ea8ea79fdf987b89f1f3c887

File: ./contracts/StakingService.sol
SHA3: a0a77cb0c507b50610e7662d3a844e82ef7d22406874b74164a9efa414a3c217

Third review scope
Repository:

https://github.com/enjinstarter/ejs-staking-contracts
Commit:

b3732b66037dcbe43f82e79678b43698328210d4
Documentation:

Technical description

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/AdminPrivileges.sol
SHA3: f06109c968d9b00b84f77d3b715d04a92d58cdbab19b53f7b5bff45f7aa91a86

File: ./contracts/AdminWallet.sol
SHA3: 867f4b3f94f1f849145cea04ae4835cbd790eb94f0f5e284f72ae94207ee1f3e

File: ./contracts/interfaces/IAdminWallet.sol
SHA3: 26337a549da4a9eed9f153d8586a0ea305ac80d1931296d5dae54be03751bb44

File: ./contracts/interfaces/IStakingPool.sol
SHA3: 2aa3aa061112bf69f15da5128176ca2173af4e878756fea0d3f7af5287dddb56

File: ./contracts/interfaces/IStakingService.sol
SHA3: 2c8bc8dd5fd3ceee4d91490dd551e9021636e4593b19689c4ce5b5d710a8ae6a

File: ./contracts/libraries/UnitConverter.sol
SHA3: 5cc18c5d5d8699d3dbdd4605e97e48cbffb24e59d4bc88e18ceaabb94b240213

File: ./contracts/StakingPool.sol
SHA3: 15d0249f6e9348b3a3e6cce12a79fb3bb9578ec0e3334e26a1d7a9bd00617064

File: ./contracts/StakingService.sol
SHA3: eb0525ecf715caa7d364b871b53767c4028bdbf9518f0ff5d54b4d3d0941c964

www.hacken.io
5

https://github.com/enjinstarter/ejs-staking-contracts/blob/main/docs/staking-techspec.pdf


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6



Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Functional and
technical requirements were provided. Code is followed by NatSpec comments.

Code quality
The total CodeQuality score is 10 out of 10. Code follows the Style guide.
Deployment and basic user interactions are covered with tests. Test
coverage is 100%.

Architecture quality
The architecture quality score is 10 out of 10. Contracts, in general, use
best practices.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

15 August 2022 2 0 1 0

1 September 2022 0 0 1 0

9 September 2022 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115


through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10



System Overview

Enjinstarter creates multiple staking pools using smart contracts for our
users to earn rewards by locking up specific ERC20 tokens for a specified
duration.

● StakingService.sol - stores the stake data and runtime staking pool
data

● StakingPool.sol - stores the staking pool configuration information
that is used by the staking service contract

● IStakingService.sol - interface for StakingService
● IStakingPool.sol - interface for StakingPool
● UnitConverter.sol - provides utility functions to convert between

amounts specified in Wei and decimals
● AdminWallet.sol - provides an implementation of the admin wallet

interface that is inherited by other contracts
● AdminPrivileges.sol - provides the role definitions that are

inherited by other contracts
● IAdminWallet.sol - interface for AdminWallet

Privileged roles
● Default Admin: Admin role that controls the granting of roles to and

revoking roles from accounts
● Governance: Controls access to functions that may result in loss of

funds, such as the change of staking pool contract address, the
change of admin wallet to receive revoked stakes and unused rewards
and pause/unpause contract

● Contract Admin: Controls access to functions for day-to-day
operations, such as creating staking pool, adding staking pool
reward, opening/closing staking pool, suspending/resuming staking
pool, suspending/resuming stake, and revoking stake

● User: Can stake funds, claim rewards, and unstake funds in available
staking pools

Risks
● Contract admins can change staking pool contract address, change

admin wallet, pause and unpause contract, close staking pools, revoke
stakes, and withdraw rewards. In case of a governance fund keys leak,
an attacker can get access to funds that belong to users.

www.hacken.io
11



Findings

Critical

No critical severity issues were found.

High

1. Highly permissive owner access

The owner can change the staking pool contract address, change the
admin wallet, pause and unpause the contract, close staking pools,
suspend and resume staking pools and stakes. Such functionality is
critical and should be publicly described, so the users will be
notified about it.

Path: ./contracts/StakingService.sol, ./contracts/StakingPool.sol

Recommendation: Add highly permissive functionality to the public
documentation.

Documentation: Link

Status: Mitigated (Documentation link provided)

Medium

No medium severity issues were found.

Low

2. Possible code simplification

Some require statements in code are repeated multiple times in
different functions (staking pool info check). This leaves code
duplications and makes code harder to read and refactor.

Path: ./contracts/StakingService.sol

Recommendation: Separate code repetition in the separated function.

Status: Fixed (Revised commit: 53de193)

3. Floating pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths: ./contracts/StakingService.sol, ./contracts/StakingPool.sol,
./contracts/AdminWallet.sol, ./contracts/AdminPrivileges.sol,
./contracts/libraries/StakingPool.sol,
./contracts/interfaces/IStakingPool.sol,
./contracts/interfaces/IAdminWallet.sol,
./contracts/interfaces/IStakingService.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

www.hacken.io
12

https://github.com/enjinstarter/ejs-staking-contracts/blob/main/docs/staking-techspec.pdf


Customer’s notice: Due to business requirement to deploy smart
contracts to multiple different EVM blockchains, we are unable to
lock the compiler version as we may need to use different compiler
version.

Status: Mitigated (with Customer notice)

www.hacken.io
13



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
14


