
Bancor Governence

Security Assessment

October 9th, 2020

Final Report

For :
Yudi Levi @ Bancor

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention
to increase the quality of the company/product’s IT infrastructure and or source code.

Project Name Bancor

Description Bancor governance contracts

Platform Ethereum; Solidity

Codebase GitHub Repository

Commits 299b73f13514fbeb12a9fe453f584d8db5ea67f5

Delivery Date Oct. 9, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Oct. 7, 2020 - Oct. 8 2020

Total Issues 17

Total Critical 0

Total Major 2

Total Minor 2

Total Informational 14

 Summaries

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

The report represents the results of our engagement with Bancor on their Governance
functionality. The initial review was conducted for three days: Sep. 23, 2020 - Sep. 25 2020 by
Adrian Hetman and Alex Papageorgiou.

Several smaller issues were found during the initial audit and two major ones, a front-runner
attack and vote manipulation. Both major issues and a couple of smaller ones were addressed by
Bancor and fixed with the next code revision.

ID Title Type Severity

BNC-
01

Inefficient greater-than comparison w/ zero Performance Informational

BNC-
02

Incorrect version of solidity Implementation Minor

BNC-
03

Mark external calls safe / no safe Control Flow Informational

BNC-
04

Front-running Attack Vector Implementation Major

BNC-
05

Comparison to a boolean constant Performance Informational

BNC-
06

Variable tight packing Implementation Informational

BNC-
07

Duplication of the code Implementation Informational

BNC-
08

Vote manipulation Logical Major

BNC-
09

Custom implementation of access control
logic

Implementation Minor

 Findings

Type Severity Location

Performance Informational
BancorGovernance.sol L413, BancorGovernance.sol L432,
BancorGovernance.sol L192,BancorGovernance.sol L192,
BancorGovernance.sol L458, BancorGovernance.sol L494

Type Severity Location

Implementation Minor
BancorGovernance.sol L37, IExecutor L2, Owned.sol L2,
IOwned.sol L2

 BNC-01: Inefficient greater-than comparison w/ zero

Description:

Within Solidity, unsigined integers are restricted to the non-negative range. As such, greater-than
comparisons with the literal 0 are inefficient gas-wise.

Recommendation:

Consider converting the linked comparisons to inequality ones in order to optimize their gas cost.

Alleviation:

Bancor decided to create modifier with the same problem as described before. The team will be
fixing the issues in the own timeframe.

 BNC-02: Incorrect version of solidity

Description:

The linked contracts necessitate a version too recent to be trusted. Consider deploying with
0.6.11. We do not recommend using any latest version for deployment, specially if changes were
made in the optimizer or the language semantic. Version 0.6.12 made changes to optimiser that's
why we do not recommend using this version.

Recommendation:

Deploy with any of the following Solidity versions:

0.5.11 - 0.5.13,
0.5.15 - 0.5.17,
0.6.8,
0.6.10 - 0.6.11. Use a simple pragma version that allows any of these versions. Consider using
the latest version of Solidity for testing.

Type Severity Location

Control flow Informational BancorGovernance L379

Type Severity Location

Implementation Major BancorGovernance L377

Alleviation:

The team decided to stay with current version of solidity i.e. 0.6.12

 BNC-03: Mark external calls safe / no safe

Description:

IExecutor(proposals[_id].executor).execute(_id, forRatio, againstRatio,

quorumRatio) function call is an external function call. While re-entrancy is not possible for the
execute function of the BancorGovernance contract, other unintended re-entrancy interactions
may occur by the external contract should the quorum of Bancor not have vetted its code
properly.

Recommendation:

We advise that a comment is inserted in the preceding external call line that explains the call is
safe as it has been voted on and validated by the quorum of Bancor.

Alleviation:

Issue was resolved.

 BNC-04: Front-running Attack Vector

Description:

tallyVotes function (L390 - L405) which is executed in the execute function (L370 - L383) is
marked as a public function. During the execute function, tallyVotes changes the
proposals[_id].open property from true to false .

This param is used in the proposalEnded modifier, leading to an ERR_NOT_OPEN throw if the
proposal is closed and reverting the transaction. tallyVotes can be called by anyone who knows
the id of the proposal to close it and thus stoping further execution of the proposal.

This attack vector is especially exploitable via a front-running attack whereby one inspects the
transaction mempool of Ethereum, detects an execute contract call and invokes tallyVotes
beforehand with a higher gas fee.

Type Severity Location

Performance Informational BancorGovernance L201

Type Severity Location

Implementation Informational BancorGovernance L54-L68

Recommendation:

tallyVotes can be marked as a private or internal function thus eliminating the potential
for a DoS-type attack on a proposal's execution.

Alleviation:

Issue was resolved but some optimization can be still done on execute function. tallyVotes()
can be made internal and already-calculated forRatio and againstRatio can be passed to the
function directly without the need of calculating them again.

 BNC-05: Comparison to a boolean constant

Description:

The onlyVoter() modifier uses a boolean value to compare with a boolean literal.

Recommendation:

Boolean values can be used directly and do not need to be compared to true or false .

Alleviation:

Issue was resolved by removing this modifier and removing revokeVotes() .

 BNC-06: Variable tight packing

Description:

Variables in the struct Proposal can be tightpacked.

 modifier onlyVoter() {
 require(voters[msg.sender], "ERR_NOT_VOTER");
 _;
 }

Type Severity Location

Implementation Informational BancorGovernance L210-L233

Type Severity Location

Logical Major BancorGovernance L426-L444, L517-L527

Recommendation:

bool variable can be tightpacked with any address variable as address is 160bytes and bool
is 8bytes so two of them can be put into the same EVM slot. uint256 start and uint256 end
could be changed to uint128 and tightpacked together as block number won't ever be larger
than maximum of uint128 .

Alleviation:

Problem partially resolved. bool and address are tight packed but uint256 start and
uint256 end are still not changed to uint128 . The team decided not to change uint256 start
and end variables to keep them the same type as timestamp.

 BNC-07: Duplication of the code

Description:

modifiers proposalNotEnded and proposalEnded share the same code in the first require
which could be put into its own modifier code. This can cause some confusion and potential
issues when one code block is updated and other one not.

Recommendation:

This code block can be extrapolated and putted into separate modifier called validProposal .

Alleviation:

Issue was resolved.

 BNC-08: Vote Manipulation

require(
 proposals[_id].start > 0 && proposals[_id].start < block.number,
 "ERR_NO_PROPOSAL"
);

Type Severity Location

Implementation Minor BancorGovernance L39

Description:

The unstake and revokeVotes functions affect the totalVotes variable of the contract,
however they do not adjust already-voted-on proposals. This leads to proposals reporting invalid
quorums and total votes available as they are re-set on each vote. This is especially exploitable in
case a proposal's expiration is before the vote lock mechanism, meaning a double-vote can occur
without losing balance.

To replicate this issue, simply stake some new tokens for 2 different accounts. Have account A
vote for a proposal and then instantly revoke his votes and have account B vote against a
proposal. The totalVotesAvailable and quorum variables of the proposal will be incorrect,
leading to invalid calculations on all functions relating to a proposal's acceptance.

Recommendation:

We advise two things. First, an account's votes should be locked until the expiration date of the
proposal and ensured to be the maximum expiration of all ongoing proposals voted on.

Secondly, a require check should also be imposed on revokeVotes that prevents revocation in
case a proposal is in progress.

Alleviation:

Issue was resolved.

 BNC-09: Custom implementation of access control logic

Description:

Owned.sol contract seems to implement it's own logic for access control instead of relying on
openzeppelin's Ownable.sol contract

Recommendation:

We advise using Openzeppelin implementation of Ownable.sol contract instead.

Alleviation:

The team will be fixing the issues in their own timeframe.

