
Gains Farm V2 - NFT Exchange
Security Assessment

February 19th, 2021

For :
Gains Farm V2 - NFT Exchange

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. These
reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any
team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular project.
These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their code while
reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and overall
best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase the quality of
the company/product’s IT infrastructure and or source code.

Additionally, to bridge the trust gap between project owner and users, project owner needs to express a sincere attitude with
the consideration of the project team’s anonymousness. The project owner has the responsibility to notify users with the
following capability of the smart contract:

Project owner can change GOV and therefore update BID_FEE_P and HIGHEST_BID_FEE_P , which will lead to changes
of bidding fee (5% initially) and highest bidding fee(25% initially) respectively in GFarmTradingV2.sol

To improve the trustworthiness of the project, any dynamic runtime changes on the protocol should be notified to clients.

Project Name GainsFarm V2

Description DeFi

Platform Ethereum; Solidity

Codebase Private Repository

Commit GFarmNFTExchange.sol:
65473452ad85e22472ea7e0f79c030ce28d99d238641283f6eb0f4a134d1cdfa
GFarmTradingV2.sol:
2dbf3bc171cffb91a5d9a96daa776275f29fc6d9fd690a16289842412579c13a
6989e60a7fd2f53d36cc367ed09c6daa94932ab2f53454ca6997615ef38891f6
6e65d0dbcfb319f451475f9b944ff10c83e76ece1c4c3d9a10a2e3ec8088ed4c

Delivery Date Feb. 19th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Feb. 10, 2021 - Feb. 15, 2021, Feb. 17, 2021 - Feb. 19,
2021

Total Issues 17

Total Critical 0

Total Major 0

Total Minor 4

Total Informational 13

 Overview

Project Summarys

Audit Summary

Vulnerability Summary

 Executive Summary

This report has been prepared for GFarmNFTExchange.sol and GFarmTradingV2.sol smart contract to discover issues and
vulnerabilities in the source code of their Smart Contract as well as any contract dependencies that were not part of an
officially recognized library. A comprehensive examination has been performed, utilizing Dynamic Analysis, Static Analysis, and
Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.
Assessing the codebase to ensure compliance with current best practices and industry standards.
Ensuring contract logic meets the specifications and intentions of the client.
Cross referencing contract structure and implementation against similar smart contracts produced by industry leaders.
Thorough line-by-line manual review of the entire codebase by industry experts.

To improve overall project quality, preserve the upgradability and the ability facing the on-chain emergency issue, the following
functions are adopted in the codebase:

set_GOV() to update address of GOV in smart contract GFarmNFTEXchange.sol.
set_BID_FEE_P() to update value of BID_FEE_P in smart contract GFarmNFTEXchange.sol.
set_HIGHEST_BID_FEE_P() to update value of HIGHEST_BID_FEE_P in smart contract GFarmNFTEXchange.sol.
setGovFund() to update address of govFund in smart contract GFarmTradingV2.sol
setNode() to update address of oracleAddress , value of jobID and value of linkFee in smart contract

GFarmTradingV2.sol
setMinPosEth() to update value of minPosEth in smart contract GFarmTradingV2.sol
setMaxPosTokenP() to update value of maxPosTokenP in smart contract GFarmTradingV2.sol
setmaxPosTokenIncreaseP() to update value of maxPosTokenIncreaseP in smart contract GFarmTradingV2.sol
setFees() to update value of govFeeP and value of devFeeP in smart contract GFarmTradingV2.sol
setSpreadP() to update value of spreadP in smart contract GFarmTradingV2.sol
setLiquidationTimelock() to update value of liquidationSuccessTimelock and value of
liquidationFailTimelock in smart contract GFarmTradingV2.sol

The advantage of the above functions in the codebase is that the owner reserves the ability to rescue the assets in this contract
under unexpected cases. It is also worthy of note the potential drawbacks of these functions, where the treasury in this
contract can be migrated to any addresses or affected due to changes of variables that are abovementioned.

To improve the trustworthiness of the project, any dynamic runtime updates in the project should be notified to the community.
Any plan to invoke these functions should be also considered to move to the execution queue of Timelock contract, and also
emit events.

ID Contract SHA-256 Checksum

GNE GFarmNFTExchange.sol 65473452ad85e22472ea7e0f79c030ce28d99d238641283f6eb0f4a134d1cdfa

GFT GFarmTradingV2.sol 2dbf3bc171cffb91a5d9a96daa776275f29fc6d9fd690a16289842412579c13a

 File in Scope

ID Title Type Severity Resolved

GNE-01 Missing Emit Events Optimization Minor

GNE-02 Lack of input validation Volatile Code Minor

GNE-03 Unlocked Compiler Versions Language Specific Informational

GNE-04 Inconsistent Naming Convention Coding Style Informational

GNE-05 Proper Usage of “public” and “external” type Optimization Informational

GNE-06 Missing Error Message Optimization Informational

GNE-07 Mathematical Operations Optimization Optimization Informational

GNE-08 Function claim Access Control Control Flow Informational

GNE-09 Function claimBack Access Control Control Flow Informational

GFT-01 Missing Emit Events Optimization Informational

GFT-02 Signed SafeMath not used Optimization Informational

GFT-03 SafeMath not used Optimization Informational

GFT-04 Variable Name Shadowing Optimization Informational

GFT-05 Function claimFees Access Control Control Flow Minor

GFT-06 Lack of input validation Volatile Code Minor

GFT-07 Unlocked Compiler Versions Language Specific Informational

GFT-08 Division before multiplication Language Specific Informational

 Finding

Type Severity Location

Optimization Minor GFarmNFTExchange.sol:L330, L333, L336, L446, L509, L530, L545

 GNE-01: Missing Emit Events

Description:

Functions, such as set_GOV() , set_BID_FEE_P() , set_HIGHEST_BID_FEE_P() , claim() , harvest() ,
stake() , unstake() , that affect the status of sensitive variables should be able to emit events as notifications to customers

Recommendation:

Consider adding events for sensitive actions, and emit it in the function like below.

Abbreviation:

[GainsFarm] : Client agrees that there could be events for these functions and fixed in the latest commit.

 event SET_GOV(address indexed user, address indexed _gov);

 function set_GOV(address _gov) external onlyGov{
 GOV = _gov;
 emit SET_GOV(msg.sender, _gov);
 }

1
2
3
4
5
6

Type Severity Location

Volatile Code Minor GFarmNFTExchange.sol:L313

 GNE-02: Lack of input validation

Description:

The assigned value to GOV should be verified as non zero value to prevent being mistakenly assigned as address(0) in
constructor of contract GFarmNFTExchange and set_GOV() function. Violation of this may cause losing ownership of GOV
authorization.

Recommendation:

Check that the address is not zero by adding following checks in the constructor of contract GFarmNFTExchange and
set_GOV() function.

Abbreviation:

[GainsFarm] : Client agreed and fixed in the latest commit.

 require(_gov != address(0));1

Type Severity Location

Language Specific Informational GFarmNFTExchange.sol:L89

 GNE-03: Unlocked Compiler Versions

Description:

An unlocked compiler version in the source code of the contract permits the user to compile it at or above a particular version.
This, in turn, leads to differences in the generated bytecode between compilations due to differing compiler version numbers.
This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to
identify over a span of multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler versions of library SafeMath and interface IUniswapV2Pair are instead locked at the lowest
version possible that the full project can be compiled at.

Abbreviation:

[GainsFarm] : Client may not consider this will be a problem in practice, but agreed to lock the compiler version

Type Severity Location

Coding Style Informational GFarmNFTExchange.sol

 GNE-04: Inconsistent Naming Convention

Description:

Multiple naming convention were adopted throughout the contract codebase, such as the names of function set_GOV() and
function removeBidding() . Consistency of naming convention can significantly increase the readability of the codebase and
therefore enhance the quality of the project.

Recommendation:

We advise that devloper adopts consistent naming convention，either lower_case_with_underscores or
CapitalizedWords / mixedCase ，throughout entire codebase.

Abbreviation:

[GainsFarm] : Client improved the coding style of codebase in the latest commit.

Type Severity Location

Optimization Informational GFarmNFTExchange.sol:L509

 GNE-05: Proper Usage of “public” and “external” type

Description:

public functions that are never called by the contract could be declared external . When the inputs are arrays
external functions are more efficient than "public" functions.

Examples:

harvest()

Recommendation:

Consider using the external attribute for functions never called from the contract.

Abbreviation:

[GainsFarm] : Client agrees that the visibility of harvest() should be external

Type Severity Location

Optimization Informational GFarmNFTExchange.sol:L326

 GNE-06: Missing Error Message

Description:

Missing error message in require(msg.sender == GOV); in modifier onlyGov()

Recommendation:

Consider adding error message in the require check.

Abbreviation:

[GainsFarm] : Client agrees that there could be an error message for require in modifier onlyGov()

Type Severity Location

Optimization Informational GFarmNFTExchange.sol:L582

 GNE-07: Mathematical Operations Optimization

Description:

Discussion: What's the 1e5 representing here in the formula reserveUSDC.mul(1e12).mul(1e5).div(reserveETH);

According to the Ethereum yellowpaper, each operation will consume gas in the smart contract. Multiple mul operation can
be combined in to single mul

Recommendation:

Combine mul(1e12).mul(1e5) into mul(1e17) in function getEthPrice() to significantly decrease the gas
consumption.

Abbreviation:

[GainsFarm] : Client agrees that it can be combined in mul(1e17)

Type Severity Location

Control Flow Informational GFarmNFTExchange.sol:L446

 GNE-08: Function claimclaim Access Control

Description:

The function claim() better only access by highestBidder or onlyGov

Recommendation:

Abbreviation:

[GainsFarm] : Client believes there's no reason anyone can't execute the tx. The tx will send the ETH the seller and the NFT
to the bidder anyway.

 function claim(uint _nftID) external notContract listed(_nftID){
 require(b.highestBidder == msg.sender, "Only the highest bidder can claim the listed NFT");
 ...
}

1
2
3
4

Type Severity Location

Control Flow Informational GFarmNFTExchange.sol:L478

 GNE-09: Function claimBackclaimBack Access Control

Description:

The function claimBack() better only access by seller or onlyGov

Recommendation:

Abbreviation:

[GainsFarm] : Client believes there's no reason anyone can't execute the tx. The tx will send the ETH to the seller and the
NFT to the seller anyway.

 function claimBack(uint _nftID) external notContract listed(_nftID){
 require(b.seller == msg.sender || msg.sender == _gov, "Only seller or _gov can claim back
the listed NFT");
 ...
}

1
2

3
4

Type Severity Location

Optimization Informational GFarmTradingV2.sol

 GFT-01: Missing Emit Events

Description:

Function that affect the status of sensitive variables should be able to emit events as notifications to customers.

Examples:

setGovFund()
setToken()
setLp()
setNft()
setMinPosEth()
setMaxPosTokenP()
setmaxPosTokenIncreaseP()
setFees()
setSpreadP()
setLiquidationTimelock()
removePair()
addPair()
setNode()
pause()

Recommendation:

Consider adding events for sensitive actions, and emit each in the function like below.

 event SetNodeEvent(address indexed user, address indexed _node);

 function SetNodeEvent(address _node) external onlyGov{
 require(_node != address(0) && _node != node, "Invalid address")
 node = _node;
 emit SetGovFund(msg.sender, _node);
 }

1
2
3
4
5
6
7

Abbreviation:

[GainsFarm] : Client agrees that there could be events for these functions and updated in the last commit.

Type Severity Location

Mathematical Operations Minor GFarmTradingV2.sol

 GFT-02: Signed SafeMath not used

Description:

Signed SafeMath from OpenZeppelin is not used on this two instances making it possible for overflow/underflow

Recommendation:

Considering use OpenZeppelin's Signed SafeMath library for all of the int operations.

Reference:
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SignedSafeMath.sol

Abbreviation:

[GainsFarm] : Client agrees that signed safe math library could be used. The gas optimization also an important vectors in
the current contracts design. With all the consideration, client has been well thought the variables design given and cited the
ranges of all variables in the contract.

Type Severity Location

Mathematical Operations Minor GFarmTradingV2.sol

 GFT-03: SafeMath not used

Description:

SafeMath from OpenZeppelin is not used on this two instances making it possible for overflow/underflow

Recommendation:

Considering use OpenZeppelin's SafeMath library for all of the uint operations.

Reference:
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol

Abbreviation:

[GainsFarm] : Client doesn't use safemath in some instances as it doesn't exist for other types of uint than uint256, and
it's impossible in practice that it could overflow. With all the consideration, client has been well thought the variables design
given and cited the ranges of all variables in the contract.

Type Severity Location

Optimization Informational GFarmTradingV2.sol L50

 GFT-04: Variable Name Shadowing

Description:

The variable name of oracle is shadowing same name variable in ChainlinkClient.sol

Recommendation:

Rename the variable of oracle in GFarmTradingV2.sol

Abbreviation:

[GainsFarm] : Client updated name from oracle to oracleAddress in the lastest commit.

Type Severity Location

Control Flow Minor GFarmTradingV2.sol:L639

 GFT-05: Function claimFeesclaimFees Access Control

Description:

The function claimFees() can be called any addresses for minting fund to dev and gov addresses.

Recommendation:

Abbreviation:

[GainsFarm] : Client believes any user except gov fund or dev fund addresses will waste gas to call function claimFees() ,
as it will simply transfer fees to the client.

 function claimFees() external onlyGov{
 ...
}

1
2
3

Type Severity Location

Volatile Code Minor GFarmTradingV2.sol

GFT-06: Lack of input validation

Description:

The assigned value to _GOV , _DEV , _gov , _oracle should be verified as non zero value to prevent being mistakenly
assigned as address(0) in constructor of contract GFarmTradingV2 , setGovFund() and setNode() function. Violation
of this may cause losing ownership of govFund and devFund authorization.

Recommendation:

Check that the address is not zero by adding following checks in the constructor of contract
GFarmTradingV2 , setGovFund() and setNode() function.

Abbreviation:

[GainsFarm] : Client agrees that there should be a check to see if the new gov address isn't the address(0) and fixed in the
latest commit.

 require(_gov != address(0));1

Type Severity Location

Language Specific Informational GFarmTradingV2.sol

 GFT-07: Unlocked Compiler Versions

Description:

An unlocked compiler version in the source code of the contract permits the user to compile it at or above a particular version.
This, in turn, leads to differences in the generated bytecode between compilations due to differing compiler version numbers.
This can lead to an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to
identify over a span of multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler versions of entire codebase locked at the lowest version possible that the full project can be
compiled at.

Abbreviation:

[GainsFarm] : It is not a problem in practice because contract deployer specified a precise version in truffle to compile the
contracts, but agreed to lock the compiler version

Type Severity Location

Language Specific Informational GFarmTradingV2.sol L300, L301

 GFT-08: Division before multiplication

Description:

Mathematical operations in the aforementioned lines perform divisions before multiplications. Performing multiplication before
division can sometimes avoid loss of precision.

Recommendation:

We recommend applying multiplications before divisions if integer overflow would not happen.

Abbreviation:

[GainsFarm] : Client agrees the finding item and fixed the issue in the last commit.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more optimal
EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect
operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-able by
anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an instorage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more legible
and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should otherwise be
specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the specified
version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

Icons explanation

 : Issue resolved

 : Issue not resolved / Acknowledged. The team will be fixing the issues in the own timeframe.

 : Issue partially resolved. Not all instances of an issue was resolved.

