
MVL
Smart Contract Security Analysis

Published on : Jan 7, 2022

Version v1.0

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved

Smart Contract Audit Certificate

BEP20Mintable

Security Report Published by HAECHI AUDIT

v1.0 Jan 7, 2022

Auditor : Hoon Won

Executive Summary

Severity of Issues Findings Resolved Unresolved Acknowledged Comment

Critical - - - - -

Major - - - - -

Minor - - - - -

Tips 1 - - - -

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
1

TABLE OF CONTENTS

0 Issues (0 Critical, 0 Major, 0 Minor) Found

TABLE OF CONTENTS

ABOUT US

INTRODUCTION

SUMMARY

OVERVIEW

FINDINGS

Additional tokens can be issued without restrictions. (Found - v.1.0)

There are missing Events. (Found - v.1.0)

DISCLAIMER

Appendix A. Test Results

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
2

ABOUT US

HAECHI AUDIT believes in the power of cryptocurrency and the next paradigm it will bring.

We have the vision to empower the next generation of finance. By providing security and trust in

the blockchain industry, we dream of a world where everyone has easy access to blockchain

technology.

HAECHI AUDIT is a flagship service of HAECHI LABS, the leader of the global blockchain industry.

HAECHI AUDIT provides specialized and professional smart contract security auditing and

development services.

We are a team of experts with years of experience in the blockchain field and have been trusted by

300+ project groups. Our notable partners include Universe,1inch, Klaytn, Badger, etc.

HAECHI AUDIT is the only blockchain technology company selected for the Samsung Electronics

Startup Incubation Program in recognition of our expertise. We have also received technology

grants from the Ethereum Foundation and Ethereum Community Fund.

Inquiries: audit@haechi.io

Website: audit.haechi.io

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
3

INTRODUCTION

This report was prepared to audit the security of the BEP20MintableToken smart contract

created by MVL team. HAECHI AUDIT conducted the audit focusing on whether the smart

contract created by MVL team is soundly implemented and designed as specified in the

published materials, in addition to the safety and security of the smart contract.

Critical issues must be resolved as critical flaws that can harm a wide

range of users.

Major issues require correction because they either have security

problems or are implemented not as intended.

Minor issues can potentially cause problems and therefore require

correction.

Tips issues can improve the code usability or efficiency when

corrected.

HAECHI AUDIT recommends MVL team improve all issues discovered.

The following issue explanation uses the format of {file name}#{line number}, {contract

name}#{function/variable name} to specify the code. For instance, Sample.sol:20 points to the

20th line of Sample.sol file, and Sample#fallback() means the fallback() function of the Sample

contract.

Please refer to the Appendix to check all results of the tests conducted for this report.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
4

SUMMARY

The codes used in this Audit can be found at GitHub

(https://github.com/mvlchain/bmvl-contracts/blob/master/contracts/FlatBEP20Mintable.sol).

The last commit of the code used for this Audit

is“89b50a394a71235466a805baff7d3384aca16bd0”.

Issues HAECHI AUDIT found 0 critical issues, 0 major issues, and 0 minor issues.

There is 1 Tips issue explained that would improve the code’s usability or

efficiency upon modification.

Severity Issue Status

Notice Additional tokens can be issued without restrictions (Found - v1.0)

There are missing Events (Found - v1.0)

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
5

https://github.com/mvlchain/bmvl-contracts/blob/master/contracts/FlatBEP20Mintable.sol

OVERVIEW

Contracts subject to audit

❖ Context

❖ AddressUpgradeable

❖ Initializable

❖ Ownable

❖ SafeMath

❖ BEP20Mintable

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
6

FINDINGS

Notice

Additional tokens can be issued without restrictions. (Found - v.1.0)

806 function mint(uint256 amount) public onlyOwner returns (bool) {

807 _mint(_msgSender(), amount);

808 return true;

809 }

[https://github.com/mvlchain/bmvl-contracts/blob/master/contracts/FlatBEP20Mintable.sol#L806-L809]

Owner can issue additional tokens without restrictions by calling the

BEP20Mintable#mint() function.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
7

There are missing Events. (Found - v.1.0)

The following list shows functions with missing Events.

Function Expected Event Emitted Event Omitted Event

burn Transfer, Burn Transfer Burn

burnFrom Transfer, Burn, Approval Transfer, Approval Burn

mint Transfer, Mint Transfer Mint

Without Event, it is difficult to identify in real-time whether correct values are recorded

on the blockchain. In this case, it becomes problematic to determine whether the

corresponding value has been changed in the application and whether the

corresponding function has been called.

Thus, we recommend adding Events corresponding to the change occurring in the

function.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
8

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business

models, and codes that are secure without bugs. This report shall only be used to

discuss known technical issues. Other than the issues described in this report,

undiscovered issues may exist such as defects on Binance Smart Chain. In order to

write secure smart contracts, correction of discovered problems and sufficient testing

thereof are required.

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
9

Appendix A. Test Results

The following results show the unit test results covering the key logic of the smart

contract subject to the security audit. Parts marked in red are test cases that failed to

pass the test due to existing issues.

MVL

#initialize()

✓ should set name properly

✓ should set symbol properly

✓ should set decimals properly

✓ should set initial supply properly

ERC20 Spec

#transfer()

✓ should fail if recipient is ZERO_ADDRESS

✓ should fail if sender's amount is lower than balance

when succeeded

✓ sender's balance should decrease

✓ recipient's balance should increase

✓ should emit Transfer event

#transferFrom()

✓ should fail if sender is ZERO_ADDRESS

✓ should fail if recipient is ZERO_ADDRESS

✓ should fail if sender's amount is lower than transfer amount

✓ should fail if allowance is lower than transfer amount

✓ should fail even if try to transfer sender's token without approval process

when succeeded

✓ sender's balance should decrease

✓ recipient's balance should increase

✓ should emit Transfer event

✓ allowance should decrease

✓ should emit Approval event

#approve()

✓ should fail if spender is ZERO_ADDRESS

valid case

✓ allowance should set appropriately

✓ should emit Approval event

#increaseAllowance()

✓ should fail if spender is ZERO_ADDRESS

✓ should fail if overflows

valid case

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
10

✓ allowance should set appropriately

✓ should emit Approval event

#decreaseAllowance()

✓ should fail if spender is ZERO_ADDRESS

✓ should fail if overflows

valid case

✓ allowance should set appropriately

✓ should emit Approval event

ERC20 Burnable spec

#burn()

✓ should fail if try to burn more than burner's balance

valid case

✓ totalSupply should decrease

✓ account's balance should decrease

✓ should emit Transfer event

1) should emit Burn event

#burnFrom()

✓ should fail if account is ZERO_ADDRESS

✓ should fail if account's amount is lower than burn amount

✓ should fail if allowance is lower than burn amount

✓ should fail even if try to burn account's this.token without approval process

valid case

✓ totalSupply should decrease

✓ account's balance should decrease

✓ allowance should decrease

✓ should emit Transfer event

2) should emit Burn event

✓ should emit Approval event

ERC20 Mintable spec

#mint()

✓ should fail if msg.sender is not owner

valid case

✓ receiver's amount should increase

✓ totalSupply should increase

✓ should emit Transfer event

3) should emit Mint event

Address

#isContract()

✓ returns false for account address

✓ returns true for contract address

#sendValue()

✓ should fail if try to transfer more than sender contract amounts

when sender contract has ethers

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
11

✓ sends 0 wei

✓ sends non-zero amounts

✓ sends the whole balance

✓ should fail if try to send more than the amounts

with contract recipient

✓ sends ether

✓ shoudl fail if recipient reverts

#functionCall()

with valid contract receiver

✓ calls the requested function

✓ reverts when the called function reverts with no reason

✓ reverts when the called function reverts, bubbling up the revert reason

✓ reverts when the called function runs out of gas

✓ reverts when the called function throws

✓ reverts when function does not exist

with non-contract receiver

✓ reverts when address is not a contract

#functionCallWithValue()

with zero value

✓ calls the requested function

with non-zero value

✓ reverts if insufficient sender balance

✓ calls the requested function with existing value

✓ calls the requested function with transaction funds

✓ reverts when calling non-payable functions

#functionStaticCall()

✓ calls the requested function

✓ reverts on a non-static function

✓ bubbles up revert reason

✓ reverts when address is not a contract

Ownable

#initialize()

✓ should set msg.sender to owner

#transferOwnership()

✓ should fail if msg.sender is not owner

✓ should fail if try to transfer ownership to AddressZero

valid case

✓ should change owner to newOwner

✓ should emit OwnershipTransferred event

#renounceOwnership()

✓ should fail if msg.sender is not owner

valid case

✓ should change owner to AddressZero

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
12

✓ should emit OwnershipTransferred event

SafeMath

add

✓ adds correctly

✓ reverts on addition overflow

sub

✓ subtracts correctly

✓ reverts if subtraction result would be negative

mul

✓ multiplies correctly

✓ multiplies by zero correctly

✓ reverts on multiplication overflow

div

✓ divides correctly

✓ divides zero correctly

✓ returns complete number result on non-even division

✓ reverts on division by zero

mod

✓ reverts with a 0 divisor

modulos correctly

✓ when the dividend is smaller than the divisor

✓ when the dividend is equal to the divisor

✓ when the dividend is larger than the divisor

✓ when the dividend is a multiple of the divisor

File % Stmts % Branch % Funcs % Lines Uncovered

Lines

contracts/

FlatBEP20Mintable.sol 100 100 100 100

[Table 1] Test Case Coverage

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
13

End of Document

COPYRIGHT 2021. HAECHI AUDIT. all rights reserved
14

