
29th SEPTEMBER 2020
-

version v1.0

Smart Contract Security Audit and General Analysis

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved

Table of Contents

6 Issues (0 Critical, 1 Major, 5 Minor) Found

Table of Contents

About HAECHI AUDIT

01. Introduction

02. Summary

Issues

03. Overview

Contracts Subject to Audit

Roles

Notice

Governance role is not Contract and can transfer user’s funds without permission

RewardToken will not have any other minter

04. Issues Found

MAJOR : CRVStrategyStable#depositArbCheck() always returns true (Found - v.1.0)

MINOR : RewardPool#notifyRewardAmount() does not check if it received reward.
(Found - v.1.0)

MINOR : RewardPool#notifyRewardAmount() can decrease rewardRate (Found -
v.1.0)

MINOR : Vault#setVaultFractionToInvest() can not be set to enable full investment.
(Found - v.1.0)

MINOR : HardRewards#load() can lead to temporary loss of fund when changing
token address (Found - v.1.0)

MINOR : NoMintRewardPool has an Owner which can be misleading against the
Governor. (Found - v.1.0)

05. Disclaimer

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 1

About HAECHI AUDIT

HAECHI AUDIT is a global leading smart contract security audit and development firm
operated by HAECHI LABS. HAECHI AUDIT consists of professionals with years of
experience in blockchain R&D and provides the most reliable smart contract security audit
and development services.

So far, based on the HAECHI AUDIT's security audit report, our clients have been
successfully listed on the global cryptocurrency exchanges such as Huobi, Upbit, OKEX,
and others.

Our notable portfolios include SK Telecom, Ground X by Kakao, and Carry Protocol while
HAECHI AUDIT has conducted security audits for the world's top projects and enterprises.

Trusted by the industry leaders, we have been incubated by Samsung Electronics and
awarded the Ethereum Foundation Grants and Ethereum Community Fund.

Contact : ​audit@haechi.io
Website : audit.haechi.io

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 2

mailto:audit@haechi.io

01. Introduction

This report was written to provide a security audit for the HarvestFinance smart contract.
HAECHI AUDIT conducted the audit focusing on whether HarvestFinance smart contract is
designed and implemented in accordance with publicly released information and whether
it has any security vulnerabilities.

The issues found are classified as​ , , or according to
their severity.

Critical issues are security vulnerabilities that MUST be addressed in
order to prevent widespread and massive damage.

Major issues contain security vulnerabilities or have faulty
implementation issues and need to be fixed.

Minor issues are some potential risks that require some degree of
modification.

Tips ​could help improve the code’s usability and efficiency

HAECHI AUDIT advises addressing all the issues found in this report.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 3

02. Summary

The code used for the audit can be found at GitHub
(https://github.com/harvest-finance/harvest/). The last commit for the code audited is at
“4f2812dc0765d402dc5e9685a015bd8b73b3d92b”.

update

Harvest Finance team has answered that they have already fixed several issues on
commit

● 48adf02d98b5bad2b426d7b833548aeddd62d2f7
● 8d464a1791a3d48d4b0318fb3c9207075cdede86
● 974a83ec3d5674f0c3f9b67ce015a1573462af3d

And they have said that they already acknowledged other issues.

Issues

HAECHI AUDIT has 2 Critical Issues, 1 Major Issues, and 1 Minor Issue; also, we included 0
Tip category that would improve the usability and/or efficiency of the code.

Severity Issue Status

CRVStrategyStable#depositArbCheck()
always returns true

(Found - v1.0)
(Fixed - 48ad)

RewardPool#notifyRewardAmount() does
not check if it received reward.

(Found - v1.0)
(Acknowledged)

RewardPool#notifyRewardAmount() can
decrease rewardRate

(Found - v1.0)
(Acknowledged)

Vault#setVaultFractionToInvest() can not
be set to enable full investment.

(Found - v1.0)
(Fixed - 8d46)

HardRewards#load() can lead to temporary
loss of fund when changing token address

(Found - v1.0)
(Acknowledged)

NoMintRewardPool has an Owner which
can be misleading against the Governor.

(Found - v1.0)
(Acknowledged)

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 4

Notice
Governance role is not Contract and can
move user’s funds without permission

(Found - v1.0)
(Fixed - 974a)

Notice Cannot add more minters (Found - v1.0)
(Acknowledged)

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 5

03. Overview

Contracts Subject to Audit

Roles

The HarvestFinance Smart contract has the following authorizations:

• Governance
• Owner
• RewardDistribution
• HardWorker

The features accessible by each level of authorization is as follows:

Role Functions

Governance

● Storage
○ setGovernance()
○ setController()

● HardRewards
○ addVault()
○ removeVault()
○ load()

● FeeRewardForwarder
○ setTokenPool()

● SNXRewardStrategy
○ emergencyExit()
○ continueInvesting()
○ switchRewardSource()
○ setRewardSource()
○ setLiquidationRoute()
○ salvage()

● CRVStrategyYCRV
○ salvage()

● CRVStrategyWRenBTC
○ setArbTolerance()
○ salvage()
○ setSell()
○ setSellFloor()

● CRVStrategyStable
○ setArbTolerance()

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 6

○ salvage()
○ setConvertor()

● CRVStrategySwerve
○ CRVStrategySwerve
○ setArbTolerance()
○ salvage()
○ setSell()
○ setSellFloor()
○ createLock()
○ checkPoint()
○ increaseAmount()
○ increaseUnlockTime()
○ withdrawLock()

● Controller
○ addHardWorker()
○ removeHardWorker()
○ addToGreyList()
○ removeFromGreyList()
○ setFeeRewardForwarder()
○ addVaultAndStrategy()
○ doHardWork()
○ rebalance()
○ setHardRewards()
○ salvage()
○ salvageStrategy()

● NotifyHelper
○ notifyPools()

● DelayMinter
○ announceMint()
○ excuteMint()
○ cancelMint()
○ setTeam()
○ setOperator()
○ renounceMinting()

● Governable
○ Governable
○ setStorage()

● Vault
○ doHardWork()
○ setStrategy()
○ rebalance()
○ withdrawAll()
○ setVaultFractionToInvest()

● RewardToken
○ addMinter()

● SNXRewardStrategy

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 7

○ withdrawAllToVault()
○ withdrawToVault()
○ doHardWork()

● CRVStrategyYCRV
○ withdrawAllToVault()
○ withdrawToVault()
○ doHardWork()

● CRVStrategyWRenBTC
○ withdrawAllToVault()
○ withdrawToVault()
○ doHardWork()

● CRVStrategyStable
○ withdrawAllToVault()
○ withdrawToVault()
○ doHardWork()

● CRVStrategySwerve
○ withdrawAllToVault()
○ withdrawToVault()
○ doHardWork()

Owner

● RewardPool
○ renounceOwnership()
○ transferOwnership()
○ setRewardDistribution()

RewardDistrib
ution

● RewardPool
○ notifyRewardAmount()

HardWorker
● Controller

○ doHardWork()
○ rebalance()

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 8

Notice

● Governance ​role is not Contract and can transfer user’s funds
without permission (Fixed - 974a)

As given on the above table, ​Governance ​can change addresses such as Storage
and Strategy. Since Governance is not given as a contract, we assume that it is
controlled as EOA that Harvest Finance team controls.

This can lead to malfunction of the total system and even lead to transferring the
user's fund without permission.

Simple scenario would be,

1. Deploy contract that pass Vault#setStrategy()’s requirements but does not
act as Strategy like transferring the whole balance when doHardWork() is
called.

2. Call setStrategy() on Vault and change to
3. call doHardWork() that actually sends whole balance to Governance

This can be improved by,

1. adding time lock to all functions that change address.
2. Implementing Governance contract to restrict the action that Governance

can do

Update - 974a

Harvest Finance has been working on timelocked upgrades and implemented on
commit 974a. Since our audit was based on commit 4f28, it should be noted that
the timelock upgrade is not audited.

● RewardToken will not have any other minter (Acknowledged)

RewardToken#addMinter() checks if msg.sender is both ​Minter ​and ​Governance

But we found that Governance added Minter to the DelayMinter contract they
deployed, and renounced itself as Minter to ensure governance cannot add more
minter.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 9

Although it seems to be intended, it can lead to potential malfunction such as it
cannot change the DealyMinter contract when needed.

Update

Harvest Finance has answered that this is intentional behavior.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 10

04. Issues Found

MAJOR : CRVStrategyStable#depositArbCheck() always returns true
(Found - v.1.0) (Fixed - 48ad)

104. function depositArbCheck() public view returns(bool) {
105. uint256 currentPrice = underlyingValueFromYCrv(ycrvUnit);
106. if (currentPrice > curvePriceCheckpoint) {
107. return currentPrice.mul(100).div(curvePriceCheckpoint) > 100 - arbTolerance;
108. } else {
109. return curvePriceCheckpoint.mul(100).div(currentPrice) > 100 - arbTolerance;
110. }
111. }

Problem Statement

CRVStrategyStable#depositArbCheck() always returns true as the logic to choose
calculation is written in the opposite way.

Recommendation

Change the inequality sign.

Update - 48ad

depositArbCheck() function has been updated to return a proper status

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 11

MINOR : RewardPool#notifyRewardAmount() does not check if it received
reward. ​(Found - v.1.0) (Acknowledged)

753. function notifyRewardAmount(uint256 reward)
754. external
755. onlyRewardDistribution
756. updateReward(address(0))
757. {
758. if (block.timestamp >= periodFinish) {
759. rewardRate = reward.div(duration);
760. } else {
761. uint256 remaining = periodFinish.sub(block.timestamp);
762. uint256 leftover = remaining.mul(rewardRate);
763. rewardRate = reward.add(leftover).div(duration);
764. }
765. lastUpdateTime = block.timestamp;
766. periodFinish = block.timestamp.add(duration);
767. emit RewardAdded(reward);
768. }
769.

Problem Statement

RewardPool#notifyRewardAmount() does not check if it has received the reward to
distribute. It can lead to a high reward rate for farmers who get rewards faster than
others. And can make others unable to earn the rewards.

Since this function is designed to be only called by rewardDistribution, this error can only
be done by rewardDistribution.

Recommendation

Receive reward token by transferFrom when function is called.

Update

Harvest Finance team has answered that they are aware of this issue and they calculate
reward diligently. Since the issue will not occur if the function is used with care and
Harvest Finance team does not want to migrate contract to fix this issue, no further action
needed for this issue. But it should be noted that the issue exists.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 12

MINOR : RewardPool#notifyRewardAmount() can decrease rewardRate
(Found - v.1.0) (Acknowledged)

753. function notifyRewardAmount(uint256 reward)
754. external
755. onlyRewardDistribution
756. updateReward(address(0))
757. {
758. if (block.timestamp >= periodFinish) {
759. rewardRate = reward.div(duration);
760. } else {
761. uint256 remaining = periodFinish.sub(block.timestamp);
762. uint256 leftover = remaining.mul(rewardRate);
763. rewardRate = reward.add(leftover).div(duration);
764. }
765. lastUpdateTime = block.timestamp;
766. periodFinish = block.timestamp.add(duration);
767. emit RewardAdded(reward);
768. }
769.

Problem Statement

RewardPool#notifyRewardAmount() does not check if the rewardRate decreases after
notification. Since it updates rate to be ​ (leftoverRate + notified reward)/duration​ when
previous reward is not finished, if rewardDistribution keeps notifying with zero reward, it
can lead to continuous decrease on reward rate,

Since this function is designed to be only called by rewardDistribution, this error can only
be done by rewardDistribution.

Recommendation

Check if rewardRate increases after notifying reward.

Update

Harvest Finance team has answered that they are aware of this issue and they calculate
reward diligently. Since the issue will not occur if the function is used with care and
Harvest Finance team does not want to migrate contract to fix this issue, no further action
needed for this issue. But it should be noted that the issue exists.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 13

MINOR : Vault#setVaultFractionToInvest() can not be set to enable full
investment. ​(Found - v.1.0) (Fixed - 8d46)

144. function setVaultFractionToInvest(uint256 numerator, uint256 denominator) external
onlyGovernance {

145. require(denominator > 0, "denominator must be greater than 0");
146. require(numerator < denominator, "denominator must be greater than numerator");
147. vaultFractionToInvestNumerator = numerator;
148. vaultFractionToInvestDenominator = denominator;
149. }
150.

Problem Statement

Because of the line 146, vault can not invest the full amount of deposits

Recommendation

Change require statement to include when numerator is same as denominator

Update - 48ad

setVaultFractionToInvest() function has been updated to be able to enable full investment

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 14

MINOR : HardRewards#load() can lead to temporary loss of fund when
changing token address ​(Found - v.1.0) (Acknowledged)

74. function load(address _token, uint256 _rate, uint256 _amount) external onlyGovernance {
75. token = IERC20(_token);
76. blockReward = _rate;
77. if (address(token) != address(0) && _amount > 0) {
78. token.safeTransferFrom(msg.sender, address(this), _amount);
79. }
80. }

Problem Statement

HardRewards#load() changes the token address that will be used to reward the hard
workers. But, when the token address is changed, it does not give back the original token
which can be resolved by changing back to original token, but this could lead to
malfunction if other hardworker is rewarded between changes.

Recommendation

Transfer original token back to controller or governance when token address has changed.

Update

Harvest Finance team has answered that they do not have any plan to change the reward

token.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 15

MINOR : NoMintRewardPool has an Owner which can be misleading
against the Governor. ​(Found - v.1.0) (Acknowledged)

Problem Statement

NoMintRewardPool inherits Controllable and Owable which makes it has both Owner and
Governance.
Since other contracts can be controlled by Controllable which checks storage that acts as a
registry to track the governance address.
By adding Owner on RewardPool can lead to complexity in operation

Recommendation

Do not inherit the Ownable on NoMintRewardPool

Update

Harvest Finance team has answered that their intention is to minimize the modification on
SNX rewardPool smart contract. Since the only function that needs owner privilege is
setRewardDistribution(), it could be handled easily.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 16

05. Disclaimer

This report is not an advice on investment, nor does it guarantee adequacy of a business
model and/or a bug-free code. This report should be used only to discuss known technical
problems. The code may include problems on Ethereum that are not included in this
report. It will be necessary to resolve addressed issues and conduct thorough tests to
ensure the safety of the smart contract.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 17

