
Security Audit Report

Hatom Protocol
September 29th, 2022

Prepared for Elrond Network by

Contents
Contents

Summary

Scope

Disclaimer

Contract Description and invariants

Admin module

Controller module

Governance

Guardian

Market

Policies

Rewards

Risk profile

Governance Module

Interest Rate Module

Money Market Module

Oracle

Staking Module

Findings

A01: Wrong money market is updated in the seize_allowed function

Recommendation

Status

1

A02: seize_allowed function is called with wrong parameter order

Recommendation

Status

A03: Staking contract may not have sufficient Hatom token to vote

Recommendation

Status

A04: update_stake_market_state function does not use the latest stake rewards

Recommendation

Status

A05: update_stake_market_state function may miss some staking rewards to distribute

Recommendation

Status

A06: Staking rewards is not ensured when borrowing money or reducing reserves from a
money market

Recommendation

Status

A07: Proposals can be published or executed multiple times

Recommendation

Status

A08: Protocol will get stuck when borrow_rate exceeds max_borrow_rate

Recommendation

Status

A09: The get_updated_account_accrued_rewards view function does not reflect the latest
rewards

Recommendation

2

Status

A10: The staked Hatom tokens are not locked when voting proposals

Recommendation

Status

A11: approve_address_change should update users_in_group to replace old address with new
address

Status

A12: Owner of the contract can change the admin by upgrading the contract

Recommendation

Status

Informative Findings

B01: Voters can not vote for two proposals at the same time

Status

B02: Caller of the get_money_market_identifiers should check if the returned token_id is
empty

Status

B03: Optimize tokens_to_seize function

Status

B04: [#view(...)] annotation is misused

Status

B05: Redundant check in the try_change_governance_token_id function

Status

B06: new_model_parameters_event is not used

Status

B07: The governance contract needs to support multi ESDT transfer and execute endpoint

3

Status

B08: Add tokens > 0 check when exiting the market

Status

B09: Avoid unnecessary scaling in underlying_amount_to_tokens function

Status

B10: Avoid unnecessary scaling in get_account_borrow_amount function

Status

B11: Users can not withdraw a collateral if she borrows the same asset

Status

Other

4

Summary
Hatom protocol engaged Runtime Verification Inc to conduct a security audit of the smart
contracts implementing their decentralized lending and borrowing market on the Elrond
blockchain.

The objective was to review the contracts’ business logic and implementation and identify any
issues that could potentially cause the system to malfunction or be exploited.

The audit led to identifying 7 findings and 11 informative findings. We generally found the
protocol to be thoughtfully engineered and collaborated very well with the Hatom team.

Scope
The scope of this review focuses on the following commits of the two repositories.

● Hatom-protocol - commit 6b1e8f6c42527aae71a7f113c3da5ff651aa0afc
● Hatom-tokenomics - commit f11dbb34bf3f725090867cc63896c7167f6c8ee7

Specifically, the audit was conducted on the artifacts in the following folder provided by the
Hatom team.

● Hatom-protocol / common / admin / src
● Hatom-protocol / controller / src
● Hatom-protocol / governance / src
● Hatom-protocol / interest-rate-model / src
● Hatom-protocol / money-market / src
● Hatom-protocol / oracle / src
● Hatom-protocol / staking / src
● Hatom-tokenomics / src

5

https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc
https://github.com/HatomProtocol/hatom-tokenomics/tree/f11dbb34bf3f725090867cc63896c7167f6c8ee7
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/common/admin/src
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/controller/src
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/governance/src
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/interest-rate-model/src
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/money-market/src
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/oracle/src
https://github.com/HatomProtocol/hatom-protocol/tree/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/staking/src
https://github.com/HatomProtocol/hatom-tokenomics/tree/f11dbb34bf3f725090867cc63896c7167f6c8ee7/src

Disclaimer
This report does not constitute legal or investment advice. You understand and agree that this
report relates to new and emerging technologies and that there are significant risks inherent in
using such technologies that cannot be completely protected against. While this report has been
prepared based on data and information that has been provided or is otherwise publicly available,
there are likely additional unknown risks which otherwise exist. This report is also not
comprehensive in scope, excluding a number of components critical to the correct operation of
this system. This report is for informational purposes only and is provided on an "as-is" basis and
you acknowledge and agree that you are making use of this report and the information contained
herein at your own risk. The preparers of this report make no representations or warranties of any
kind, either express or implied, regarding the information in or the use of this report and shall not
be liable to you or any third parties for any acts or omissions undertaken by you or any third
parties based on the information contained herein.

6

Contract Description and invariants

Admin module

The admin module implements the functionality for the admin role of the smart contracts.

● The set_admin function should only be called within the init function.
● Changing admin address should go through the set_pending_admin and the

accept_admin function.

Controller module

The controller module validates permitted user actions and disallows actions if they do not
conform to certain risk parameters.

Governance

The governance.rs implements multiple set functions to update the parameters of the
controller.

● The set functions can only be called by admin address.
● grant_rewards can only be called by admin address.

Guardian

The guardian.rs implements pause and unpause functions for mint, borrow and seize.

● The functions can only be called by admin or guardian address.

Market

The market.rs implements functions to provide and withdraw collateral.

● Users can only provide or withdraw collateral from the whitelisted money market.
● update_supply_market_state and distribute_supplier_rewards should

be called when entering or exiting the market.

7

● account_assets(A) should always store the union of the borrowed assets and
collateral assets of account A.

Policies

The policies.rs defines a list of policies to be checked before users take actions like borrow,
repay, redeem, liquidate and seize.

● mint operation is allowed only if the status is Active.
● redeem operation is allowed if the risk profile is solvent after withdrawing the collateral.
● borrow operation is allowed if the status is Active, the borrow cap is not reached and

the risk profile is solvent after the borrow.
● repay operation is allowed at any time.
● liquidate operation is allowed if the target money market is deprecated or the risk

profile of the target borrower is solvent.
● seize operation can only be called from the money market and the status is Active.

Rewards

The rewards.rs implements functionality to distribute reward tokens based on the borrow and
collateral amount.

● update_borrow_market_state, distribute_borrower_rewards,

update_supply_market_state, distribute_supplier_rewards should be
called when claiming rewards.

● supply_state.index is increasing over time if supply_speed > 0.
● borrow_state.index is increasing over time if borrow_speed > 0.
● update_borrow_market_state, distribute_borrower_rewards,

update_supply_market_state, distribute_supplier_rewards should be
called when setting rewards speed.

● The borrower rewards from the last claim timestamp to the current timestamp are
distributed according to the proportion of the user's borrowed amount to the total
borrowed amount.

● The supplier rewards from the last claim timestamp to the current timestamp are
distributed according to the proportion of the user's supplied amount to the total supplied
amount.

● supply_state.index scales up by multiplying a constant 10^36.
● borrow_state.index scales up by multiplying a constant 10^36.

8

Risk profile

The risk_profile.rs checks if an account is risky by iterating over its borrow and collateral.

● A user’s profile is Solvent if total_collateral >= total_borrow. Otherwise, it
is RiskyOrInsolvent.

● close_factor scales up by multiplying a constant 10^18.
● collateral_factor scales up by multiplying a constant 10^18.

Governance Module

The governance module handles proposing, voting and executing proposals.

● Proposal will be executed only when total_upvotes - total_downvotes >=

quorum after the voting period ends.
● Users can only withdraw the staked HTM token after the voting period ends.

Interest Rate Module

The interest rate depends on the current utilization rate of a given market.

● utilization_rate scales up by multiplying a constant 10^18.
● 0 <= utilization_rate. In the extreme case, the utilization_rate can be

greater than 10^18 (when borrowers borrow from the reserves).
● borrow_rate scales up by multiplying a constant 10^18.
● 0 < optimal_utilization < 10^18.

Money Market Module

The money market module handles borrow, lend, repay and liquidate.

● borrow_index scales up by multiplying a constant 10^18.
● exchange_rate scales up by multiplying a constant 10^18.
● borrow_index is increasing over time.
● exchange_rate is increasing over time.
● cash <= get_esdt_balance(self, token).

● Liquidation_incentive > 10^18.

9

● (liquidation_incentive / wad) * (1 - protocol_seize_share / wad)

> 1

Oracle

The oracle module facilitates obtaining prices of the assets involved measured in egld. A robust
oracle module can protect the protocol from price manipulation. The oracle module fetches
prices from 3 sources: Maiar Reserves, Maiar SafePrice, Chainlink Price. Maiar
Reserves returns the instant ratio between token reserves and egld reserves in the pair pool.
Therefore, Maiar Reserves is vulnerable to price manipulation attacks. Maiar SafePrice
computes the TWAP(time-weighted average price) of a Maiar pair pool. Chainlink Price
fetches the price from off-chain sources.

The oracle module comes with 4 modes:

● Default: the oracle module compares Maiar SafePrice with Chainlink

Price. If two prices are within a tolerance range, Chainlink Price is recorded and
returned. Otherwise, the price from the previous query is used and
guardian_price_event is generated. The Hatom team will react to
guardian_price_event and take off-chain operations. However, it is not within the
scope of this audit. Moreover, the Hatom team will also monitor the chainlink service to
make sure it reports the latest price.

● Instantaneous: return and record the Maiar Reserves.
● Safe:return and record the Maiar SafePrice.
● Chainlink:return and record the Chainlink Price.

Invariants:

● Price > 0

Staking Module

The staking module distributes staking rewards to the Hatom token stakers.

● stake_state.index is increasing over time.

10

Findings

A01: Wrong money market is updated in the seize_allowed
function

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

During the seizure operation, the collateral amount of the borrower, the collateral amount of the
liquidator and the total collateral amount will change in the collateral money market. Therefore,
the supply market state should be updated for the collateral money market instead of the borrow
money market. This issue combined with the issue A02 makes it hard to find during testing.

Recommendation

Pass parameter collateral_amm to update_supply_market_state and
distribute_supplier_rewards.

Status

The issue was fixed in PR #9.

A02: seize_allowed function is called with wrong parameter order

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

When calling the seize_allowed function, the first parameter is borrow_mma and the
second parameter is collateral_mma. In the context of the seize_internal function, the
borrow_mma should be from_money_market and the collateral_mma should be
this_money_market.

Recommendation

Pass the parameters to the seize_allowed function in the correct order.

11

https://github.com/HatomProtocol/hatom-protocol/pull/9/files

Status

The issue was fixed in the PR #9.

A03: Staking contract may not have sufficient Hatom token to vote

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

Users can stake both Hatom token(HTM) and Locked-Hatom(LHTM) token to the staking
contract. When a user uses staked tokens to vote for proposals, the contract checks against the
total staked tokens (HTM+LHTM). However, the LHTM token is not accepted by the
governance contract.

Recommendation

The staked LHTM token can not be used for voting.

Status

The issue was fixed in the PR #13.

A04: update_stake_market_state function does not use the
latest stake rewards

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

The update_stake_market_state function calls
get_total_rewards(&money_market) which only reads the staking_rewards field in
the money market. Since update_stake_market_state doesn't directly or indirectly call the
accrue_interest function from the money market, it will not use the latest staking rewards to
update the stake_state.index.

Recommendation

get_total_rewards function should call the accure_interest function in order to return
the latest stake rewards.

12

https://github.com/HatomProtocol/hatom-protocol/pull/9/files
https://github.com/HatomProtocol/hatom-protocol/pull/13/files

Status

The issue was fixed in the PR #11.

A05: update_stake_market_state function may miss some
staking rewards to distribute

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

update_stake_market_state function calls get_total_rewards which returns the
current stake rewards stored in the money market contract. The value will become 0 after users
claim the rewards. The function misuses this value and it can miss some staking rewards to
distribute.

Consider the following scenario:

At T1, claim_rewards_markets_stakers function is called. Inside the function, it calls
update_stake_market_state to update the stake_state.rewards to R1.

At T2, claim_rewards_markets_stakers is called again. Between T1 and T2, some staking
rewards R2 are accumulated in the money_market contract. The correct implementation should
distribute R2 to the stakers.

However, in the current implementation,

● if R2 < R1, then no reward is distributed
● if R2 > R1, then only R2-R1 is distributed

Recommendation

The money market contract can track the historical staking rewards, which is a monotonic
nondecreasing function. The update_stake_market_state can just use that variable for computing
the amount of staking rewards that should be distributed.

Status

The issue was fixed in PR #12.

13

https://github.com/HatomProtocol/hatom-protocol/pull/11/files
https://github.com/HatomProtocol/hatom-protocol/pull/12

A06: Staking rewards is not ensured when borrowing money or
reducing reserves from a money market

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

cash field in the money market include both the money that is available to be borrowed and the
protocol reservers (protocol income + staking rewards). When borrowing money or reducing
reserves from a money market, it only checks that cash is greater than or equal to the desired
amount

Recommendation

Check that cash - staking_rewards >= desired_amount

Status

The issue was fixed in PR #10.

A07: Proposals can be published or executed multiple times

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

The publish_proposal and execute function do not check if the proposal has been
published or executed.

Recommendation

Check if the proposal has been published in the publish_proposal function and check if the
proposal has been executed in the execute function.

Status

The issue was fixed in PR #18.

14

https://github.com/HatomProtocol/hatom-protocol/pull/10/files
https://github.com/HatomProtocol/hatom-protocol/pull/18

A08: Protocol will get stuck when borrow_rate exceeds
max_borrow_rate

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

In the extreme case where borrow_rate > max_borrow_rate, the accrue_interest
function will fail and as a result, it will make the protocol stuck in the current state.

Recommendation

Emit an event when borrow_rate > max_borrow_rate instead of revert the transaction.
The off-chain bot will take actions to the event.

Status

The issue was fixed in PR #24.

A09: The get_updated_account_accrued_rewards view
function does not reflect the latest rewards

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

The get_updated_account_accrued_rewards calculates the user’s accrued rewards until
the last time when supply_state/borrow_state is updated.

Recommendation

Use the supply_speed/borrow_speed to calculate the rewards that need to be distributed
from now to the last time when the state is updated. After that, use the new state to calculate the
rewards.

Status

The issue was fixed in PR #25,

15

https://github.com/HatomProtocol/hatom-protocol/pull/24/files
https://github.com/HatomProtocol/hatom-protocol/pull/25/files

A10: The staked Hatom tokens are not locked when voting proposals

[Severity: Medium | Difficulty: Low | Category: Functional Correctness]

When users vote proposals, the hatom tokens will be locked until the voting period ends.
However, when a user votes through the staking contract, she can directly unstake to get all the
hatom tokens back.

Recommendation

In the unstake function, exclude the amount which is used for voting when calculating the
amount that is available to unstake.

Status

The issue was fixed in PR #30.

A11: approve_address_change should update users_in_group
to replace old address with new address

[Severity: Low | Difficulty: Low | Category: Functional Correctness]

When replacing the old address with a new address, the approve_address_change function
should also update users_in_group in order to make the data consistent.

Status

The issue was fixed in PR #1.

A12: Owner of the contract can change the admin by upgrading the
contract

[Severity: Low | Difficulty: Low | Category: Security]

16

https://github.com/HatomProtocol/hatom-protocol/pull/30/files
https://github.com/HatomProtocol/hatom-tokenomics/pull/1/files

The init function will be called when upgrading the contract. The admin can be reset in the init
function.

Recommendation

The init function should check if the admin address has already been set.

Status

The issue was fixed in PR #3.

Informative Findings

B01: Voters can not vote for two proposals at the same time

In the current design of the governance module, users need to lock Hatom token in the
governance contract for the voting period. If there are two proposals at the same time, users may
not have tokens to vote for the second proposal.

Status

The Hatom team followed the same approach implemented for the Maiar Governance, which
they believe is a really good first implementation. The Hatom team has also made several
improvements, such as enabling multiple actions in a proposal. In the future, the team might
tackle this feature.

B02: Caller of the get_money_market_identifiers should check
if the returned token_id is empty

When the get_money_market_indentifiers function is called, it is possible that the underlying
money market hasn't issued a token yet. In this case, get_money_market_indentifiers will return
an empty identifier.

17

https://github.com/HatomProtocol/hatom-protocol/pull/3

Status

The issue was fixed in the PR #1.

B03: Optimize tokens_to_seize function

The tokens_to_seize function can be optimized as:

let num = &li * &borrow_price;

let den = &collateral_price * &fx / &wad;

let ratio = &num / &den;

Status

The issue was fixed in the PR #4.

B04: [#view(...)] annotation is misused

There are many places in the code where functions are annotated with #view but modify the contract state.

Status

The issue was fixed in the PR #5.

B05: Redundant check in the
try_change_governance_token_id function

In the try_change_governance_token_id function,

self.governance_token_id().set(&token_id);

let new_token_id = self.governance_token_id().get();

require!(new_token_id == token_id, "tokens dont match");

The new_token_id == token_id check is redundant.

18

https://github.com/HatomProtocol/hatom-protocol/pull/1/files
https://github.com/HatomProtocol/hatom-protocol/blob/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/controller/src/policies.rs#L233
https://github.com/HatomProtocol/hatom-protocol/pull/4/files
https://github.com/HatomProtocol/hatom-protocol/pull/5/files
https://github.com/HatomProtocol/hatom-protocol/blob/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/governance/src/config.rs#L75

Status

The issue was fixed in the PR #6.

B06: new_model_parameters_event is not used

The new_model_parameters_event is defined here, but it is not used anywhere else in the
project.

Status

The issue was fixed in the PR #7.

B07: The governance contract needs to support multi ESDT transfer
and execute endpoint

The governance contract needs the capability to execute the action of multi ESDT token transfer
and execute.

Status

For now, at this PR #8 , the team added an action for a governance proposal that sends a unique
esdt token, as the team is interested in sending individual esdt tokens for the moment.

B08: Add tokens > 0 check when exiting the market

Status

The issue was fixed in the PR #14.

19

https://github.com/HatomProtocol/hatom-protocol/pull/6/files
https://github.com/HatomProtocol/hatom-protocol/blob/6b1e8f6c42527aae71a7f113c3da5ff651aa0afc/interest-rate-model/src/contract.rs#L126
https://github.com/HatomProtocol/hatom-protocol/pull/7/files
https://github.com/HatomProtocol/hatom-protocol/pull/8/files
https://github.com/HatomProtocol/hatom-protocol/pull/14/files

B09: Avoid unnecessary scaling in
underlying_amount_to_tokens function

Status

The issue was fixed in the PR #15.

B10: Avoid unnecessary scaling in get_account_borrow_amount

function

Status

The issue was fixed in the PR #16.

B11: Users can not withdraw a collateral if she borrows the same asset

In the exit_market function, there is a check that prevents users from withdrawing the
collateral if they have an outstanding borrow in the same asset to withdraw.

Status

The issue was fixed in the PR #17.

Other
In addition to the fixes above, we also reviewed the following PRs which are mainly refactors of
the contract.

● #19
● #20
● #21
● #22
● #23
● #27

20

https://github.com/HatomProtocol/hatom-protocol/pull/15/files
https://github.com/HatomProtocol/hatom-protocol/pull/16/files
https://github.com/HatomProtocol/hatom-protocol/pull/17/files
https://github.com/HatomProtocol/hatom-protocol/pull/19
https://github.com/HatomProtocol/hatom-protocol/pull/20
https://github.com/HatomProtocol/hatom-protocol/pull/21/files
https://github.com/HatomProtocol/hatom-protocol/pull/22/files
https://github.com/HatomProtocol/hatom-protocol/pull/23/files
https://github.com/HatomProtocol/hatom-protocol/pull/27

● #28
● #29
● #31
● #32

21

https://github.com/HatomProtocol/hatom-protocol/pull/28
https://github.com/HatomProtocol/hatom-protocol/pull/29
https://github.com/HatomProtocol/hatom-protocol/pull/31
https://github.com/HatomProtocol/hatom-protocol/pull/32

