
Optimized Worker
Smart Contract Audit Report
Prepared for Alpaca Finance

__________________________________

Date Issued: Jul 12, 2021
Project ID: AUDIT2021009
Version: v1.0
Confidentiality Level: Public



Public

________

Report Information

Project ID AUDIT2021009

Version v1.0

Client Alpaca Finance

Project Optimized Worker

Auditor(s) Weerawat Pawanawiwat
Pongsakorn Sommalai
Suvicha Buakhom

Author Pongsakorn Sommalai

Reviewer Weerawat Pawanawiwat

Confidentiality Level Public

Version History

Version Date Description Author(s)

1.0 Jul 12, 2021 Full report Pongsakorn Sommalai

Contact Information

Company Inspex

Phone (+66) 90 888 7186

Telegram t.me/inspexco

Email audit@inspex.co

https://t.me/inspexco
mailto:audit@inspex.co


Public

________

Table of Contents
1. Executive Summary 1

1.1. Audit Result 1
1.2. Disclaimer 1

2. Project Overview 2
2.1. Project Introduction 2
2.2. Scope 2

3. Methodology 4
3.1. Test Categories 4
3.2. Audit Items 5
3.3. Risk Rating 6

4. Summary of Findings 7

5. Detailed Findings Information 9
5.1. Invalid baseToken Calculation in liquidate() Function 9
5.2. Transaction Ordering Dependence 12
5.3. Missing Input Validation 16
5.4. Outdated Solidity Compiler Version 20

6. Appendix 21
6.1. About Inspex 21
6.2. References 22



Public

________

1. Executive Summary
As requested by Alpaca Finance, Inspex team conducted an audit to verify the security posture of the
Optimized Worker smart contracts between Jul 10, 2021 and Jul 11, 2021. During the audit, Inspex team
examined all smart contracts and the overall operation within the scope to understand the overview of
Optimized Worker smart contracts. Static code analysis, dynamic analysis, and manual review were done in
conjunction to identify smart contract vulnerabilities together with technical & business logic flaws that may
be exposed to the potential risk of the platform and the ecosystem. Practical recommendations are provided
according to each vulnerability found and should be followed to remediate the issue.

1.1. Audit Result
In the initial audit, Inspex found 1 high, 2 low, and 1 very low-severity issues. With the project team’s prompt
response, 1 high and 1 low-severity issues were resolved in the reassessment, while 1 low and 1 very
low-severity issues were acknowledged by the team. Therefore, Inspex trusts that Alpaca Finance’s
Optimized Worker smart contracts have sufficient protections to be safe for public use. However, in the long
run, Inspex suggests resolving all issues found in this report.

1.2. Disclaimer
This security audit is not produced to supplant any other type of assessment and does not guarantee the
discovery of all security vulnerabilities within the scope of the assessment. However, we warrant that this
audit is conducted with goodwill, professional approach, and competence. Since an assessment from one
single party cannot be confirmed to cover all possible issues within the smart contract(s), Inpex suggests
conducting multiple independent assessments to minimize the risks. Lastly, nothing contained in this audit
report should be considered as investment advice.

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 1



Public

________

2. Project Overview

2.1. Project Introduction
Alpaca Finance is the largest lending protocol allowing leveraged yield farming on Binance Smart Chain. It
helps lenders to earn safe and stable yields, and offers borrowers undercollateralized loans for leveraged
yield farming positions, vastly multiplying their farming principals and resulting profits.

Optimized Worker is a new implementation of workers including PancakeSwap worker, CakeMaxi worker,
and WaultSwap worker that add the buyback functionality.

Scope Information:

Project Name Optimized Worker

Website https://app.alpacafinance.org/farm

Smart Contract Type Ethereum Smart Contract

Programming Language Solidity

Audit Information:

Audit Method Whitebox

Audit Date Jul 10, 2021 - Jul 11, 2021

Reassessment Date Jul 12, 2021

2.2. Scope
The following smart contracts were audited and reassessed by Inspex in detail:

Initial Audit: (Commit: 1aee2ceec77e3fd3162b74858c846cdc5692928d)

Name Location (URL)

PCSV2Worker02.sol https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3f
d3162b74858c846cdc5692928d/contracts/6/protocol/workers/pcs/Pancakesw
apV2Worker02.sol

WaultSwapWorker02.sol https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3f
d3162b74858c846cdc5692928d/contracts/6/protocol/workers/waultswap/Wa
ultSwapWorker02.sol

CakeMaxiWorker02.sol https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3f
d3162b74858c846cdc5692928d/contracts/6/protocol/workers/single-asset/Ca
keMaxiWorker02.sol

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 2

https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/pcs/PancakeswapV2Worker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/pcs/PancakeswapV2Worker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/pcs/PancakeswapV2Worker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/waultswap/WaultSwapWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/waultswap/WaultSwapWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/waultswap/WaultSwapWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/single-asset/CakeMaxiWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/single-asset/CakeMaxiWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/1aee2ceec77e3fd3162b74858c846cdc5692928d/contracts/6/protocol/workers/single-asset/CakeMaxiWorker02.sol


Public

________

Reassessment: (Commit: 22c76a15a68c1bd8f2d199a90cc476976d8b5b18)

Name Location (URL)

PCSV2Worker02.sol https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1
bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/pcs/Pancakes
wapV2Worker02.sol

WaultSwapWorker02.sol https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1
bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/waultswap/W
aultSwapWorker02.sol

CakeMaxiWorker02.sol https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1
bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/single-asset/
CakeMaxiWorker02.sol

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 3

https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/pcs/PancakeswapV2Worker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/pcs/PancakeswapV2Worker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/pcs/PancakeswapV2Worker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/waultswap/WaultSwapWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/waultswap/WaultSwapWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/waultswap/WaultSwapWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/single-asset/CakeMaxiWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/single-asset/CakeMaxiWorker02.sol
https://github.com/alpaca-finance/bsc-alpaca-contract/blob/22c76a15a68c1bd8f2d199a90cc476976d8b5b18/contracts/6/protocol/workers/single-asset/CakeMaxiWorker02.sol


Public

________

3. Methodology
Inspex conducts the following procedure to enhance the security level of our clients’ smart contracts:

1. Pre-Auditing: Getting to understand the overall operations of the related smart contracts, checking
for readiness, and preparing for the auditing

2. Auditing: Inspecting the smart contracts using automated analysis tools and manual analysis by a
team of professionals

3. First Deliverable and Consulting: Delivering a preliminary report on the findings with suggestions
on how to remediate those issues and providing consultation

4. Reassessment: Verifying the status of the issues and whether there are any other complications in
the fixes applied

5. Final Deliverable: Providing a full report with the detailed status of each issue

3.1. Test Categories
Inspex smart contract auditing methodology consists of both automated testing with scanning tools and
manual testing by experienced testers. We have categorized the tests into 3 categories as follows:

1. General Smart Contract Vulnerability (General) - Smart contracts are analyzed automatically using
static code analysis tools for general smart contract coding bugs, which are then verified manually to
remove all false positives generated.

2. Advanced Smart Contract Vulnerability (Advanced) - The workflow, logic, and the actual behavior
of the smart contracts are manually analyzed in-depth to determine any flaws that can cause
technical or business damage to the smart contracts or the users of the smart contracts.

3. Smart Contract Best Practice (Best Practice) - The code of smart contracts is then analyzed from
the development perspective, providing suggestions to improve the overall code quality using
standardized best practices.

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 4



Public

________

3.2. Audit Items
The following audit items were checked during the auditing activity.

General

Reentrancy Attack

Integer Overflows and Underflows

Unchecked Return Values for Low-Level Calls

Bad Randomness

Transaction Ordering Dependence

Time Manipulation

Short Address Attack

Outdated Compiler Version

Use of Known Vulnerable Component

Deprecated Solidity Features

Use of Deprecated Component

Loop with High Gas Consumption

Unauthorized Self-destruct

Redundant Fallback Function

Advanced

Business Logic Flaw

Ownership Takeover

Broken Access Control

Broken Authentication

Upgradable Without Timelock

Improper Kill-Switch Mechanism

Improper Front-end Integration

Insecure Smart Contract Initiation

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 5



Public

________

Denial of Service

Improper Oracle Usage

Memory Corruption

Best Practice

Use of Variadic Byte Array

Implicit Compiler Version

Implicit Visibility Level

Implicit Type Inference

Function Declaration Inconsistency

Token API Violation

Best Practices Violation

3.3. Risk Rating
OWASP Risk Rating Methodology[1] is used to determine the severity of each issue with the following criteria:

- Likelihood: a measure of how likely this vulnerability is to be uncovered and exploited by an attacker.
- Impact: a measure of the damage caused by a successful attack

Both likelihood and impact can be categorized into three levels: Low, Medium, and High.

Severity is the overall risk of the issue. It can be categorized into five levels: Very Low, Low, Medium, High,
and Critical. It is calculated from the combination of likelihood and impact factors using the matrix below.
The severity of findings with no likelihood or impact would be categorized as Info.

Likelihood
Impact Low Medium High

Low Very Low Low Medium

Medium Low Medium High

High Medium High Critical

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 6

https://paperpile.com/c/Q1frcv/hzD0z


Public

________

4. Summary of Findings
From the assessments, Inspex has found 4 issues in three categories. The following chart shows the number
of the issues categorized into three categories: General, Advanced, and Best Practice.

The statuses of the issues are defined as follows:

Status Description

Resolved The issue has been resolved and has no further complications.

Resolved * The issue has been resolved with mitigations and clarifications. For the
clarification or mitigation detail, please refer to Chapter 5.

Acknowledged The issue’s risk has been acknowledged and accepted.

No Security Impact The best practice recommendation has been acknowledged.

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 7



Public

________

The information and status of each issue can be found in the following table:

ID Title Category Severity Status

IDX-001 Invalid baseToken Calculation in liquidate()
Function

Advanced High Resolved

IDX-002 Transaction Ordering Dependence General Low Acknowledged

IDX-003 Missing Input Validation Advanced Low Resolved

IDX-004 Outdated Solidity Compiler Version General Very Low Acknowledged

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 8



Public

________

5. Detailed Findings Information

5.1. Invalid baseToken Calculation in liquidate() Function

ID IDX-001

Target CakeMaxiWorker02.sol

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: High

Impact: Medium
A user will gain the additional baseToken when their position is liquidated. Moreover, the
user who opens a new position after liquidating will lose a part of their baseToken.

Likelihood: High
It is very likely that the liquidate() function will be executed.

Status Resolved
The Alpaca Finance team has resolved this issue as recommended in the commit
22c76a15a68c1bd8f2d199a90cc476976d8b5b18.

5.1.1. Description
In the case that the beneficialVaultToken and baseToken are the same when the work() function is
executed, the beneficialVaultToken token will not be transferred to the beneficialVault immediately. It
will be stored in the CakeMaxiWorker02 contract and its amount will be recorded in the buybackAmount
state in line 240 as shown below:

CakeMaxiWorker02.sol

220
221
222
223
224
225
226
227
228
229
230
231

232

function _rewardToBeneficialVault(
uint256 _beneficialVaultBounty,
address _rewardToken,
uint256 _callerBalance

) internal {
/// 1. approve router to do the trading
_rewardToken.safeApprove(address(router), uint256(-1));
/// 2. read base token from beneficialVault
address beneficialVaultToken = beneficialVault.token();
/// 3. swap reward token to beneficialVaultToken
uint256[] memory amounts =

router.swapExactTokensForTokens(_beneficialVaultBounty, 0, rewardPath,
address(this), now);

// if beneficialvault token not equal to baseToken regardless of a caller

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 9



Public

________

233
234

235
236
237

238

239
240
241
242
243

balance, can directly transfer to beneficial vault
// otherwise, need to keep it as a buybackAmount,
// since beneficial vault is the same as the calling vuault, it will think

of this reward as a back amount to paydebt/ sending back to a position owner
if (beneficialVaultToken != baseToken) {

buybackAmount = 0;
beneficialVaultToken.safeTransfer(address(beneficialVault),

beneficialVaultToken.myBalance());
emit BeneficialVaultTokenBuyback(_msgSender(), beneficialVault,

amounts[amounts.length - 1]);
} else {

buybackAmount = beneficialVaultToken.myBalance().sub(_callerBalance);
}
_rewardToken.safeApprove(address(router), 0);

}

Once the reinvest() function is executed by a bot, the _buyback() function will be called. The
buybackAmount state will be set to 0 in line 248, and the recorded amount of beneficialVaultToken will be
transferred to beneficialVault in line 249 as follows:

CakeMaxiWorker02.sol

180
181
182

183

184
185

function reinvest() external override onlyEOA onlyReinvestor nonReentrant {
_reinvest(_msgSender(), reinvestBountyBps, 0);
// in case of beneficial vault equals to operator vault, call buyback to

transfer some buyback amount back to the vault
// This can't be called within the _reinvest statement since _reinvest is

called within the work as well
_buyback();

}

CakeMaxiWorker02.sol

245
246
247
248
249

250

251

function _buyback() internal {
if (buybackAmount == 0) return;
uint256 _buybackAmount = buybackAmount;
buybackAmount = 0;
beneficialVault.token().safeTransfer(address(beneficialVault),

_buybackAmount);
emit BeneficialVaultTokenBuyback(_msgSender(), beneficialVault,

_buybackAmount);
}

In the work() function, the actualBaseTokenBalance() function will be used to calculate the user's
baseToken. It is calculated by subtracting the current balance of baseToken with the buybackAmount state
because the stored beneficialVaultToken is the same token as baseToken as follows:

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 10



Public

________

CakeMaxiWorker02.sol

342
343
344

function actualBaseTokenBalance() internal view returns (uint256) {
return baseToken.myBalance().sub(buybackAmount);

}

However, in the liquidate() function, the user's baseToken balance is calculated using
baseToken.myBalance() function in line 329 instead of actualBaseTokenBalance() function.

CakeMaxiWorker02.sol

323
324
325
326
327
328
329
330
331
332

function liquidate(uint256 id) external override onlyOperator nonReentrant {
// 1. Remove shares on this position back to farming tokens
_removeShare(id);
farmingToken.safeTransfer(address(liqStrat), actualFarmingTokenBalance());
liqStrat.execute(address(0), 0, abi.encode(0));
// 2. Return all available base token back to the operator.
uint256 wad = baseToken.myBalance();
baseToken.safeTransfer(_msgSender(), wad);
emit Liquidate(id, wad);

}

Therefore, all baseToken in the CakeMaxiWorker02 contract will be transferred back to the vault contract,
including the buyback part.

Moreover, without setting buybackAmount back to 0 in the liquidate() function, the user who opens a new
position after liquidating will lose a part of their baseToken.

5.1.2. Remediation
Inspex suggests calculating the user's baseToken balance by using the actualBaseTokenBalance()
function in the liquidate() function as shown in the following example:

CakeMaxiWorker02.sol

323
324
325
326
327
328
329
330
331
332

function liquidate(uint256 id) external override onlyOperator nonReentrant {
// 1. Remove shares on this position back to farming tokens
_removeShare(id);
farmingToken.safeTransfer(address(liqStrat), actualFarmingTokenBalance());
liqStrat.execute(address(0), 0, abi.encode(0));
// 2. Return all available base token back to the operator.
uint256 wad = actualBaseTokenBalance();
baseToken.safeTransfer(_msgSender(), wad);
emit Liquidate(id, wad);

}

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 11



Public

________

5.2. Transaction Ordering Dependence

ID IDX-002

Target CakeMaxiWorker02.sol
PancakeswapV2Worker02.sol
WaultSwapWorker02.sol

Category General Smart Contract Vulnerability

CWE CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization
('Race Condition')

Risk Severity: Low

Impact: Medium
The front-running attack can be performed, resulting in a bad swapping rate for the
beneficial vault and reinvestment.

Likelihood: Low
It is easy to perform the attack. However, with a low profit, there is low motivation to
attack with this vulnerability.

Status Acknowledged
The Alpaca Finance team has acknowledged the vulnerability. However, the risks are quite
low due to the amount of reward token that is being reinvested is small compared to the
liquidity in the swap pool.

5.2.1. Description
Please note that the only _reinvest() function in PancakeswapV2Worker02 contract will be used to
demonstrate this issue. The WaultSwapWorker02 and CakeMaxiWorker02 contracts are also affected.

In worker contracts, the reward of the farming is compounded using the _reinvest() function, which is
executed every time that the work() or reinvest() functions are called.

PancakeswapV2Worker02.sol

208
209
210
211
212
213
214

215
216

function work(
uint256 id,
address user,
uint256 debt,
bytes calldata data

) external override onlyOperator nonReentrant {
// 1. If a treasury bounty or an account have a default value (0 bps or

address(0)), use reinvestBountyBps and default treasury address instead
if (treasuryBountyBps == 0) treasuryBountyBps = reinvestBountyBps;
if (treasuryAccount == address(0)) treasuryAccount =

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 12



Public

________

217
218
219
220

address(0xC44f82b07Ab3E691F826951a6E335E1bC1bB0B51);
// 2. Reinvest and send portion of reward to treasury account.
_reinvest(treasuryAccount, treasuryBountyBps, baseToken.myBalance());
// 3. Convert this position back to LP tokens.
_removeShare(id);

PancakeswapV2Worker02.sol

158
159
160

function reinvest() external override onlyEOA onlyReinvestor nonReentrant {
_reinvest(msg.sender, reinvestBountyBps, 0);

}

The _reinvest() function harvests the pending farming reward from the staking pool in line 173 and
performs token swapping using the router.swapExactTokensForTokens() function in line 191 to convert
the farming reward to another token to prepare for the reinvestment.

PancakeswapV2Worker02.sol

163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190

function _reinvest(
address _treasuryAccount,
uint256 _treasuryBountyBps,
uint256 _callerBalance

) internal {
require(_treasuryAccount != address(0), "PancakeswapV2Worker::reinvest::

bad treasury account");
// 1. Approve tokens
cake.safeApprove(address(router), uint256(-1));
address(lpToken).safeApprove(address(masterChef), uint256(-1));
// 2. Withdraw all the rewards.
masterChef.withdraw(pid, 0);
uint256 reward = cake.balanceOf(address(this));
if (reward == 0) return;
// 3. Send the reward bounty to the caller.
uint256 bounty = reward.mul(_treasuryBountyBps) / 10000;
if (bounty > 0) cake.safeTransfer(_treasuryAccount, bounty);
// 4. Convert all the remaining rewards to BaseToken via Native for

liquidity.
address[] memory path;
if (baseToken == wNative) {

path = new address[](2);
path[0] = address(cake);
path[1] = address(wNative);

} else {
path = new address[](3);
path[0] = address(cake);
path[1] = address(wNative);
path[2] = address(baseToken);

}

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 13



Public

________

191

192
193

194
195
196
197
198
199
200
201

router.swapExactTokensForTokens(reward.sub(bounty), 0, path, address(this),
now);

// 5. Use add Token strategy to convert all BaseToken to LP tokens.
baseToken.safeTransfer(address(addStrat),

baseToken.myBalance().sub(_callerBalance));
addStrat.execute(address(0), 0, abi.encode(0));
// 6. Mint more LP tokens and stake them for more rewards.
masterChef.deposit(pid, lpToken.balanceOf(address(this)));
// 7. Reset approve
cake.safeApprove(address(router), 0);
address(lpToken).safeApprove(address(masterChef), 0);
emit Reinvest(_treasuryAccount, reward, bounty);

}

However, as seen in the source code above, the swapping tolerance (amountOutMin) of the swapping
function is set to 0. This allows a front-running attack to be done, resulting in fewer tokens gained from the
swap.

5.2.2. Remediation
The tolerance value (amountOutMin) should not be set to 0. Inspex suggests calculating the expected
amount out with the token price fetched from the price oracles or passed from the client, and setting it to the
amountOutMin parameter while calling the router.swapExactTokensForTokens() function in
PancakeswapV2Worker02, WaultSwapWorker02 and CakeMaxiWorker02 contracts, for example:

PancakeswapV2Worker02.sol

163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179

180

function _reinvest(
address _treasuryAccount,
uint256 _treasuryBountyBps,
uint256 _callerBalance

) internal {
require(_treasuryAccount != address(0), "PancakeswapV2Worker::reinvest::

bad treasury account");
// 1. Approve tokens
cake.safeApprove(address(router), uint256(-1));
address(lpToken).safeApprove(address(masterChef), uint256(-1));
// 2. Withdraw all the rewards.
masterChef.withdraw(pid, 0);
uint256 reward = cake.balanceOf(address(this));
if (reward == 0) return;
// 3. Send the reward bounty to the caller.
uint256 bounty = reward.mul(_treasuryBountyBps) / 10000;
if (bounty > 0) cake.safeTransfer(_treasuryAccount, bounty);
// 4. Convert all the remaining rewards to BaseToken via Native for

liquidity.
address[] memory path;

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 14



Public

________

181
182
183
184
185
186
187
188
189
190
191
192

193
194

195
196
197
198
199
200
201
202

if (baseToken == wNative) {
path = new address[](2);
path[0] = address(cake);
path[1] = address(wNative);

} else {
path = new address[](3);
path[0] = address(cake);
path[1] = address(wNative);
path[2] = address(baseToken);

}
uint256 amountOutMin = calculateAmountOutMinFromOracle(reward.sub(bounty));
router.swapExactTokensForTokens(reward.sub(bounty), amountOutMin, path,

address(this), now);
// 5. Use add Token strategy to convert all BaseToken to LP tokens.
baseToken.safeTransfer(address(addStrat),

baseToken.myBalance().sub(_callerBalance));
addStrat.execute(address(0), 0, abi.encode(0));
// 6. Mint more LP tokens and stake them for more rewards.
masterChef.deposit(pid, lpToken.balanceOf(address(this)));
// 7. Reset approve
cake.safeApprove(address(router), 0);
address(lpToken).safeApprove(address(masterChef), 0);
emit Reinvest(_treasuryAccount, reward, bounty);

}

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 15



Public

________

5.3. Missing Input Validation

ID IDX-003

Target PancakeswapV2Worker02.sol
CakeMaxiWorker02.sol
WaultSwapWorker02.sol

Category Advanced Smart Contract Vulnerability

CWE CWE-20: Improper Input Validation

Risk Severity: Low

Impact: Medium
By setting treasuryBountyBps or reinvestBountyBps to be greater than 10,000, the
bounty will be greater than the harvested reward and cause the transaction reverting for
all work() function executions.

Likelihood: Low
It is very unlikely that the owner will set an improperly large treasuryBountyBps because
there is no profit to perform this action.

Status Resolved
Alpaca Finance team has resolved this issue as recommended in the commit
22c76a15a68c1bd8f2d199a90cc476976d8b5b18.

5.3.1. Description
Please note that only treasuryBountyBps in CakeMaxiWorker02 contract will be used to demonstrate the
attack scenario. The treasuryBountyBps or reinvestBountyBps of PancakeswapV2Worker02,
CakeMaxiWorker02, and WaultSwapWorker02 contracts are also affected by this issue.

The setTreasuryBountyBps() function can be used to set the treasuryBountyBp state.

CakeMaxiWorker02.sol

507
508
509
510

511
512
513
514
515

function setTreasuryBountyBps(uint256 _treasuryBountyBps) external onlyOwner {
require(

_treasuryBountyBps <= maxReinvestBountyBps,
"CakeMaxiWorker::setTreasuryBountyBps:: _treasuryBountyBps exceeded

maxReinvestBountyBps"
);
treasuryBountyBps = _treasuryBountyBps;

emit SetTreasuryBountyBps(treasuryAccount, _treasuryBountyBps);
}

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 16



Public

________

The _treasuryBountyBps is limited by maxReinvestBountyBps state. However, the
maxReinvestBountyBps can be set without any limitation as shown below:

CakeMaxiWorker02.sol

429

430
431
432

433
434
435
436

function setMaxReinvestBountyBps(uint256 _maxReinvestBountyBps) external
onlyOwner {

require(
_maxReinvestBountyBps >= reinvestBountyBps,
"CakeMaxiWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps lower

than reinvestBountyBps"
);
maxReinvestBountyBps = _maxReinvestBountyBps;
emit SetMaxReinvestBountyBps(_msgSender(), _maxReinvestBountyBps);

}

The treasuryBountyBps state is used in the _reinvest() function to determine the bounty rate of
reinvesting as follows:

CakeMaxiWorker02.sol (At line 206)

191
192
193
194
195
196

197
198
199
200
201
202
203
204
205
206
207
208

209

210

211
212
213

function _reinvest(
address _treasuryAccount,
uint256 _treasuryBountyBps,
uint256 _callerBalance

) internal {
require(_treasuryAccount != address(0), "PancakeswapV2Worker::reinvest::

bad treasury account");
// 1. Approve tokens
farmingToken.safeApprove(address(masterChef), uint256(-1));
// 2. reset all reward balance since all rewards will be reinvested
rewardBalance = 0;
// 3. Withdraw all the rewards.
masterChef.leaveStaking(0);
uint256 reward = farmingToken.myBalance();
if (reward == 0) return;

// 4. Send the reward bounty to the caller.
uint256 bounty = reward.mul(_treasuryBountyBps) / 10000;

if (bounty > 0) {
uint256 beneficialVaultBounty = bounty.mul(beneficialVaultBountyBps) /

10000;
if (beneficialVaultBounty > 0)

_rewardToBeneficialVault(beneficialVaultBounty, farmingToken, _callerBalance);
farmingToken.safeTransfer(_treasuryAccount,

bounty.sub(beneficialVaultBounty));
}
// 5. re stake the farming token to get more rewards
masterChef.enterStaking(reward.sub(bounty));

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 17



Public

________

214
215
216
217

// 6. Reset approval
farmingToken.safeApprove(address(masterChef), 0);
emit Reinvest(_treasuryAccount, reward, bounty);

}

By setting treasuryBountyBps or reinvestBountyBps to be greater than 10,000, the bounty will be greater
than the harvested reward and cause the transaction to be reverted for all work() function executions.

5.3.2. Remediation
Inspex suggests setting the upper limit of maxReinvestBountyBps in setMaxReinvestBountyBps()
function of PancakeswapV2Worker02, CakeMaxiWorker02 and WaultSwapWorker02 contracts, for example:

PancakeswapV2Worker02.sol

327

328
329
330

331
332
333
334

335
336
337

function setMaxReinvestBountyBps(uint256 _maxReinvestBountyBps) external
onlyOwner {

require(
_maxReinvestBountyBps >= reinvestBountyBps,
"PancakeswapWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps

lower than reinvestBountyBps"
);
require(

_maxReinvestBountyBps <= 3000,
"PancakeswapWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps

exceeded 30%"
);
maxReinvestBountyBps = _maxReinvestBountyBps;

}

CakeMaxiWorker02.sol

429

430
431
432

433
434
435
436

437
438
439
440

function setMaxReinvestBountyBps(uint256 _maxReinvestBountyBps) external
onlyOwner {

require(
_maxReinvestBountyBps >= reinvestBountyBps,
"CakeMaxiWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps lower

than reinvestBountyBps"
);
require(

_maxReinvestBountyBps <= 3000,
"CakeMaxiWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps

exceeded 30%"
);
maxReinvestBountyBps = _maxReinvestBountyBps;
emit SetMaxReinvestBountyBps(_msgSender(), _maxReinvestBountyBps);

}

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 18



Public

________

WaultSwapWorker02.sol

323

324
325
326

327
328
329
330

331
332
333

function setMaxReinvestBountyBps(uint256 _maxReinvestBountyBps) external
onlyOwner {

require(
_maxReinvestBountyBps >= reinvestBountyBps,
"WaultSwapWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps lower

than reinvestBountyBps"
);
require(

_maxReinvestBountyBps <= 3000,
"WaultSwapWorker::setMaxReinvestBountyBps:: _maxReinvestBountyBps

exceeded 30%"
);
maxReinvestBountyBps = _maxReinvestBountyBps;

}

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 19



Public

________

5.4. Outdated Solidity Compiler Version

ID IDX-004

Target CakeMaxiWorker02.sol
PancakeswapV2Worker02.sol
WaultSwapWorker02.sol

Category General Smart Contract Vulnerability

CWE CWE-1104: Use of Unmaintained Third Party Components

Risk Severity: Very Low

Impact: Low
From the list of known Solidity bugs, the direct impact cannot be caused by those bugs
themselves.

Likelihood: Low
From the list of known Solidity bugs, it is very unlikely that those bugs would affect these
smart contracts.

Status Acknowledged
Alpaca Finance team has acknowledged this issue. The team decided to leave the
compiler in 0.6.6 version as known issues have no relation to the flow of the codes and so
are highly unlikely to have any impact. All interfaces and library related are all written
previously and frozen at 0.6.6, so changing the version could have effect across all 0.6.6
contracts.

5.4.1. Description
The Solidity compiler version specified in the smart contracts was outdated. This version has publicly known
inherent bugs that may potentially be used to cause damage to the smart contracts or the users of the smart
contracts.

PancakeswapV2Worker02.sol, CakeMaxiWorker02.sol, and WaultSwapWorker02.sol

14 pragma solidity 0.6.6;

5.4.2. Remediation
Inspex suggests upgrading the Solidity compiler to the latest stable version.

During the audit activity, the latest stable version of Solidity compiler in major 0.6 is v0.6.12.

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 20



Public

________

6. Appendix

6.1. About Inspex

Inspex is formed by a team of cybersecurity experts highly experienced in various fields of cybersecurity. We
provide blockchain and smart contract professional services at the highest quality to enhance the security of
our clients and the overall blockchain ecosystem.

Follow Us On:

Website https://inspex.co

Twitter @InspexCo

Facebook https://www.facebook.com/InspexCo

Telegram @inspex_announcement

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 21

https://inspex.co
https://twitter.com/InspexCo
https://www.facebook.com/InspexCo
https://t.me/inspex_announcement


Public

________

6.2. References

[1] “OWASP Risk Rating Methodology.” [Online]. Available:
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology. [Accessed: 08-May-2021]

Inspex Smart Contract Audit Report: AUDIT2021009 (v1.0) 22

http://paperpile.com/b/Q1frcv/hzD0z
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
http://paperpile.com/b/Q1frcv/hzD0z



