
Confidential

SMART CONTRACT AUDIT REPORT

for

INSTADAPP LABS

Prepared By: Shuxiao Wang

Hangzhou, China
Mar. 18, 2020

1/38 PeckShield Audit Report #: 2020-04

sxwang@peckshield.com

Confidential

Document Properties

Client InstaDApp Labs
Title Smart Contract Audit Report
Target InstaDApp Smart Accounts
Version 1.0
Author Huaguo Shi, Chiachih Wu
Auditors Huaguo Shi, Chiachih Wu
Reviewed by Chiachih Wu
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0 Mar. 18, 2020 Huaguo Shi, Chiachih Wu Final Release
1.0-rc2 Mar. 16, 2020 Huaguo Shi, Chiachih Wu Status Update, Minor Findings

Added
1.0-rc1 Mar. 10, 2020 Huaguo Shi, Chiachih Wu Status Update
0.2 Mar. 05, 2020 Huaguo Shi, Chiachih Wu Status Update
0.1 Mar. 03, 2020 Huaguo Shi Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/38 PeckShield Audit Report #: 2020-04

Confidential

Contents

1 Introduction 5
1.1 About InstaDApp Smart Accounts . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Missing Address Validation in changeMaster() . 12
3.2 Missing Ether Amount Checks in deposit() . 13
3.3 Flawed Upgrade Logic in InstaIndex . 15
3.4 Unprotected Privileged Interface in InstaIndex . 16
3.5 Possible Data Pollution in Deposit/Withdraw . 19
3.6 Missing Validation to the Origin While Building Smart Accounts 20
3.7 Missing Array Length Checks in InstaAccount . 22
3.8 Flawed Linked List Implementations . 24
3.9 Missing Disable Function in staticConnectors . 27
3.10 Gas Optimization . 27
3.11 Other Suggestions . 28

4 Conclusion 30

5 Appendix 31
5.1 Basic Coding Bugs . 31

5.1.1 Constructor Mismatch . 31
5.1.2 Ownership Takeover . 31
5.1.3 Redundant Fallback Function . 31

3/38 PeckShield Audit Report #: 2020-04

Confidential

5.1.4 Overflows & Underflows . 31
5.1.5 Reentrancy . 32
5.1.6 Money-Giving Bug . 32
5.1.7 Blackhole . 32
5.1.8 Unauthorized Self-Destruct . 32
5.1.9 Revert DoS . 32
5.1.10 Unchecked External Call . 33
5.1.11 Gasless Send . 33
5.1.12 Send Instead Of Transfer . 33
5.1.13 Costly Loop . 33
5.1.14 (Unsafe) Use Of Untrusted Libraries . 33
5.1.15 (Unsafe) Use Of Predictable Variables . 34
5.1.16 Transaction Ordering Dependence . 34
5.1.17 Deprecated Uses . 34

5.2 Semantic Consistency Checks . 34
5.3 Additional Recommendations . 34

5.3.1 Avoid Use of Variadic Byte Array . 34
5.3.2 Make Visibility Level Explicit . 35
5.3.3 Make Type Inference Explicit . 35
5.3.4 Adhere To Function Declaration Strictly . 35

References 36

4/38 PeckShield Audit Report #: 2020-04

Confidential

1 | Introduction

Given the opportunity to review the InstaDApp Smart Accounts Smart Accounts design document
and related smart contract source code, we in the report outline our systematic approach to evaluate
potential security issues in the smart contract implementation, expose possible semantic inconsis-
tencies between smart contract code and design document, and provide additional suggestions or
recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About InstaDApp Smart Accounts

InstaDApp is a DeFi portal that aggregates the major protocols using a smart wallet layer and bridge
contracts, making it easy for users to make the best decisions about assets and execute previously
complex transactions seamlessly.

The basic information of InstaDApp Smart Accounts is as follows:

Table 1.1: Basic Information of InstaDApp Smart Accounts

Item Description
Issuer InstaDApp Labs

Website https://instadapp.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report Mar. 18, 2020

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/InstaDApp/dsa-contracts (180509b)

• https://github.com/InstaDApp/sa-contracts/tree/peckshield-edits (ae050f2)

5/38 PeckShield Audit Report #: 2020-04

Confidential

• https://github.com/InstaDApp/sa-contracts/tree/peckshield-edits (83902b7)

• https://github.com/InstaDApp/sa-contracts (bb76c0e)

1.2 About PeckShield

PeckShield Inc. [25] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [20]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

6/38 PeckShield Audit Report #: 2020-04

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/38 PeckShield Audit Report #: 2020-04

Confidential

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [19], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit cannot be considered comprehensive, we always recommend
proceeding with several independent audits and a public bug bounty program to ensure the security
of smart contract(s). Last but not least, this security audit should not be used as an investment
advice.

8/38 PeckShield Audit Report #: 2020-04

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/38 PeckShield Audit Report #: 2020-04

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the InstaDApp Smart Accounts implementation.
During the first phase of our audit, we studied the smart contract source code and ran our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 2

Low 3

Informational 4

Total 10

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/38 PeckShield Audit Report #: 2020-04

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
2 medium-severity vulnerability, 3 low-severity vulnerabilities, and 4 informational recommendations.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Medium Missing Address Validation in changeMaster() Business Logics Resolved
PVE-002 Low Missing Ether Amount Checks in deposit() Data Processing Issues Resolved
PVE-003 Medium Flawed Upgrade Logic in InstaIndex Business Logics Resolved
PVE-004 High Unprotected Initialization Interface in InstaIndex Initialization and Cleanup Confirmed
PVE-005 Info. Possible Data Pollution in Deposit/Withdraw Coding Practices Confirmed
PVE-006 Info. Missing Validation to the Origin While Building

Smart Accounts
Coding Practices Confirmed

PVE-007 Low Missing Array Length Checks in InstaAccount Data Processing Issues Resolved
PVE-008 Info. Flawed Linked List Implementations Data Processing Issues Resolved
PVE-009 Low Missing Disable Function in staticConnectors Behavioral Issues Confirmed
PVE-010 Info. Gas Optimization Resource Management Confirmed

Please refer to Section 3 for details.

11/38 PeckShield Audit Report #: 2020-04

Confidential

3 | Detailed Results

3.1 Missing Address Validation in changeMaster()

• ID: PVE-001

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: contracts/registry/index.sol

• Category: Business Logics[15]

• CWE subcategory: CWE-754 [10]

Description

InstaDApp Smart Accounts has a very important management authority, master, which can be used to
add new accounts and change the check address. The InstaIndex contract provides the changeMaster

() function to allow the current master to modify the privileged address to a new address.

48 /**
49 * @dev Change the Master Address.
50 * @param _newMaster New Master Address.
51 */
52 f unc t i on changeMaster (address _newMaster) ex te rna l i sMa s t e r {
53 r equ i r e (_newMaster != master , "already -a-master") ;
54 r equ i r e (_newMaster != address (0) , "not -valid -address") ;
55 master = _newMaster ;
56 emit LogNewMaster (_newMaster) ;
57 }

Listing 3.1: contracts/ registry /index. sol

As shown in the above code snippets, _newMaster is validated against the current master and the
zero address in line 53-54. However, if you enter a wrong address by mistake, you will never be able
to take the management permissions back.

Recommendation The transition should be managed by the implementation with a two-step
approach: changeMaster() and updateMaster(). Specifically, the changeMaster() function keeps the
new address in the storage newMaster instead of modifying the master directly. The updateMaster()

12/38 PeckShield Audit Report #: 2020-04

Confidential

function checks whether newMaster is the msg.sender, which means newMaster signs the transaction
and verifies itself as the new master. After that, master could be replaced by newMaster. This had
been addressed in the patched contracts/registry/index.sol.

48 /**
49 * @dev Change the Master Address.
50 * @param _newMaster New Master Address.
51 */
52 f unc t i on changeMaster (address _newMaster) ex te rna l i sMa s t e r {
53 r equ i r e (_newMaster != master , "already -a-master") ;
54 r equ i r e (_newMaster != address (0) , "not -valid -address") ;
55 r equ i r e (newMaster != _newMaster , "already -a-new -master") ;
56 newMaster = _newMaster ;
57 emit LogNewMaster (newMaster) ;
58 }
59
60 /**
61 * @dev update the Master Address.
62 */
63 f unc t i on updateMaster () ex te rna l {
64 r equ i r e (newMaster != address (0) , "not -valid -address") ;
65 r equ i r e (msg . sender == newMaster , "not -master") ;
66 master = newMaster ;
67 newMaster = address (0) ;
68 emit LogUpdateMaster (master) ;
69 }

Listing 3.2: contracts/ registry /index. sol

3.2 Missing Ether Amount Checks in deposit()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: contracts/connectors/basic.sol

• Category: Data Processing Issues [16]

• CWE subcategory: CWE-229 [5]

Description

The function deposit() only processes the ERC-20 assets but does not perform the necessary checks
on ether. Specifically, if the tokenAmt is greater than msg.value, the book-keeping amount could be
greater than the actual ether amount deposited into the InstaAccount instance.

67 /**
68 * @dev Deposit Assets To Smart Account.
69 * @param erc20 Token Address.
70 * @param tokenAmt Token Amount.

13/38 PeckShield Audit Report #: 2020-04

Confidential

71 * @param getId Get Storage ID.
72 * @param setId Set Storage ID.
73 */
74 f unc t i on d e p o s i t (address erc20 , u in t tokenAmt , u in t ge t Id , u in t s e t I d) pub l i c

payable {
75 u in t amt = ge tU in t (ge t Id , tokenAmt) ;
76 i f (e r c20 != getEthAddr ()) {
77 ERC20 In te r f ace token = ERC20 In te r f ace (e r c20) ;
78 amt = amt == u in t (−1) ? token . ba lanceOf (msg . sender) : amt ;
79 token . t r a n s f e rF r om (msg . sender , address (t h i s) , amt) ;
80 }
81 s e tU i n t (s e t I d , amt) ;
82 emit LogDepos i t (erc20 , amt , ge t Id , s e t I d) ;
83 }

Listing 3.3: contracts/connectors/basic . sol

Recommendation Check msg.value against amt. This had been addressed in the patched
contracts/connectors/basic.sol.

67 /**
68 * @dev Deposit Assets To Smart Account.
69 * @param erc20 Token Address.
70 * @param tokenAmt Token Amount.
71 * @param getId Get Storage ID.
72 * @param setId Set Storage ID.
73 */
74 f unc t i on d e p o s i t (address erc20 , u in t tokenAmt , u in t ge t Id , u in t s e t I d) pub l i c

payable {
75 u in t amt = ge tU in t (ge t Id , tokenAmt) ;
76 i f (e r c20 != getEthAddr ()) {
77 ERC20 In te r f ace token = ERC20 In te r f ace (e r c20) ;
78 amt = amt == u in t (−1) ? token . ba lanceOf (msg . sender) : amt ;
79 token . t r a n s f e rF r om (msg . sender , address (t h i s) , amt) ;
80 } e l s e {
81 r equ i r e (msg . va lue == amt , "invalid -ether -amount") ;
82 }
83 s e tU i n t (s e t I d , amt) ;
84 emit LogDepos i t (erc20 , amt , ge t Id , s e t I d) ;
85 }

Listing 3.4: contracts/connectors/basic . sol

14/38 PeckShield Audit Report #: 2020-04

Confidential

3.3 Flawed Upgrade Logic in InstaIndex

• ID: PVE-003

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: contracts/registry/index.sol

• Category:Business Logics [15]

• CWE subcategory: CWE-841 [11]

Description

The addNewAccount() function in InstaIndex is used to add new InstaAccount implementations along
with the corresponding InstaConnectors and check contracts. However, the current addNewAccount

() implementation has some flaws such that the master’s incautious calls may destroy the whole
system. Specifically, the _newAccount is not validated except checking for zero addresses. At least,
the important variable, version, should be validated before adding it into the registry.

77 f unc t i on addNewAccount (address _newAccount , address _connectors , address _check)
ex te rna l i sMa s t e r {

78 r equ i r e (_newAccount != address (0) , "not -valid -address") ;
79 v e r s i onCoun t++;
80 account [v e r s i onCoun t] = _newAccount ;
81 i f (_connectors != address (0)) c onne c t o r s [v e r s i onCoun t] = _connectors ;
82 i f (_check != address (0)) check [v e r s i onCoun t] = _check ;
83 emit LogNewAccount (_newAccount , _connectors , _check) ;
84 }

Listing 3.5: contracts/ registry /index. sol

As shown in the code snippets, version is used to index the connectors mapping (line 136 and
line 138) in InstaIndex. Also, the check mapping is indexed by the version (line 143).

124 f unc t i on c a s t (
125 address [] c a l l d a t a _targets ,
126 bytes [] c a l l d a t a _datas ,
127 address _or i g i n
128)
129 ex te rna l
130 payable
131 {
132 r equ i r e (i sAuth (msg . sender) msg . sender == in s t a I n d e x , "permission -denied") ;
133 I n d e x I n t e r f a c e i nd e xCon t r a c t = I n d e x I n t e r f a c e (i n s t a I n d e x) ;
134 bool i s S h i e l d = s h i e l d ;
135 i f (! i s S h i e l d) {
136 r equ i r e (C o n n e c t o r s I n t e r f a c e (i n d e xCon t r a c t . c onne c t o r s (v e r s i o n)) . i sConne c t o r (

_ta rge t s) , "not -connector") ;
137 } e l s e {
138 r equ i r e (C o n n e c t o r s I n t e r f a c e (i n d e xCon t r a c t . c onne c t o r s (v e r s i o n)) .

i s S t a t i c C o n n e c t o r (_ta rge t s) , "not -static -connector") ;

15/38 PeckShield Audit Report #: 2020-04

Confidential

139 }
140 f o r (u in t i = 0 ; i < _ta rge t s . l ength ; i++) {
141 s p e l l (_ta rge t s [i] , _datas [i]) ;
142 }
143 address _check = ind e xCon t r a c t . check (v e r s i o n) ;

Listing 3.6: contracts/account. sol

What if the master does not addNewAccount() by the order of different InstaAccount contracts’
version? What if the author of a new InstaAccount contract set wrong version number for the
latest implementation? The cast() may have abnormal behaviors such as using v1 connectors in v2
InstaAccount.

Recommendation Check the version of _newAccount against versionCount. Also, we should
ensure versionCount > 0 when we set master in the constructor (mentioned here). Otherwise, a new
InstaAccount could be added by addNewAccount() without the essential initialization process. This had
been addressed in the patched contracts/registry/index.sol.

77 f unc t i on addNewAccount (address _newAccount , address _connectors , address _check)
ex te rna l i sMa s t e r {

78 r equ i r e (v e r s i onCoun t > 0 , "not -init -yet") ;
79 r equ i r e (_newAccount != address (0) , "not -valid -address") ;
80 r equ i r e ((v e r s i onCoun t +1) == Accoun t I n t e r f a c e (_newAccount) . v e r s i o n , "not -valid -

account -version") ;
81 v e r s i onCoun t++;
82 account [v e r s i onCoun t] = _newAccount ;
83 i f (_connectors != address (0)) c onne c t o r s [v e r s i onCoun t] = _connectors ;
84 i f (_check != address (0)) check [v e r s i onCoun t] = _check ;
85 emit LogNewAccount (_newAccount , _connectors , _check) ;
86 }

Listing 3.7: contracts/ registry /index. sol

3.4 Unprotected Privileged Interface in InstaIndex

• ID: PVE-004

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: contracts/registry/index.sol

• Category:Initialization and Cleanup [17]

• CWE subcategory: CWE-454 [8]

Description

The setBasics() function in InstaIndex contract is designed to be called once to initialize the first
version of InstaAccount along with the InstaList and InstaConnectors contracts. However, there’s no
restriction to enter such as privileged function, which results in possible DoS attacks. Specifically,

16/38 PeckShield Audit Report #: 2020-04

Confidential

a malicious actor could send out front-running transactions calling the setBasics() function with an
alternative _master whenever a legit setBasics() is identified in the tx pool. This enables bad actors
to take-over any InstaIndex contract right after the deployment.

177 f unc t i on s e t B a s i c s (
178 address _master ,
179 address _l i s t ,
180 address _account ,
181 address _connectors
182) ex te rna l {
183 r equ i r e (
184 master == address (0) &&
185 l i s t == address (0) &&
186 account [1] == address (0) &&
187 conne c t o r s [1] == address (0) &&
188 v e r s i onCoun t == 0 ,
189 "already -defined"
190) ;
191 master = _master ;
192 l i s t = _ l i s t ;
193 v e r s i onCoun t++;
194 account [v e r s i onCoun t] = _account ;
195 conne c t o r s [v e r s i onCoun t] = _connectors ;
196 }

Listing 3.8: contracts/ registry /index. sol

Recommendation The master should be set as msg.sender in the constructor. With that, the
setBasics() could be protected by isMaster() modifier to prevent it from being abused.

177 cons t ruc to r () pub l i c {
178 master = msg . sender ;
179 }
180
181 f unc t i on s e t B a s i c s (
182 address _master ,
183 address _l i s t ,
184 address _account ,
185 address _connectors
186) ex te rna l i sMa s t e r {
187 r equ i r e (
188 l i s t == address (0) &&
189 account [1] == address (0) &&
190 conne c t o r s [1] == address (0) &&
191 v e r s i onCoun t == 0 ,
192 "already -defined"
193) ;
194 master = _master ;
195 l i s t = _ l i s t ;
196 v e r s i onCoun t++;
197 account [v e r s i onCoun t] = _account ;
198 conne c t o r s [v e r s i onCoun t] = _connectors ;

17/38 PeckShield Audit Report #: 2020-04

Confidential

199 }

Listing 3.9: Revised contracts/ registry /index. sol

As per discussion with InstaDApp Labs, the design of InstaDApp Smart Accounts allows anyone
to deploy the InstaIndex contract (i.e., the deployer is not necessarily the master), which makes
InstaDApp Smart Accounts an open framework for users and developers. Also, when the InstaIndex

contract is deployed, the deployer might not have the knowledge of who gonna be the future master.
On the other hand, the bad actor cannot make any benefit from launching the DoS attacks. Based
on that, we provide some optimization suggestions to raise the cost of attacking InstaIndex through
the setBasics() function. First, we can consider add some code to burn more gas in setBasics().

177 f unc t i on s e t B a s i c s (
178 address _master ,
179 address _l i s t ,
180 address _account ,
181 address _connectors
182) ex te rna l {
183 r equ i r e (
184 master == address (0) &&
185 l i s t == address (0) &&
186 account [1] == address (0) &&
187 conne c t o r s [1] == address (0) &&
188 v e r s i onCoun t == 0 ,
189 "already -defined"
190) ;
191 master = _master ;
192 l i s t = _ l i s t ;
193 v e r s i onCoun t++;
194 account [v e r s i onCoun t] = _account ;
195 conne c t o r s [v e r s i onCoun t] = _connectors ;
196
197 /* Burn gas to prevent DoS attack */
198 f o r (uint256 i = 0 ; i < 22231 ; i++) {}
199 }

Listing 3.10: contracts/ registry /index. sol

Moreover, we can consider obfuscating the logic of setBasics(), which makes the attacker fail to
identify the entry to setBasics() function. However, this simply violates the open source convention
of Ethereum smart contracts.

18/38 PeckShield Audit Report #: 2020-04

Confidential

3.5 Possible Data Pollution in Deposit/Withdraw

• ID: PVE-005

• Severity: Informational

• Likelihood: None

• Impact: None

• Target: contracts/account.sol

• Category:Coding Practices [13]

• CWE subcategory: CWE-621 [9]

Description

In the InstaAccount contract, the cast() function is designed to be used to call multiple functions in
multiple connectors in one transaction. The deposit() and withdraw() functions are implemented as
the basic connector since they are the two most common operations.

67 ∗ @dev Depos i t A s s e t s To Smart Account .
68 ∗ @param erc20 Token Address .
69 ∗ @param tokenAmt Token Amount .
70 ∗ @param ge t I d Get Storage ID .
71 ∗ @param s e t I d Set Storage ID .
72 ∗/
73 f unc t i on d e p o s i t (address erc20 , u in t tokenAmt , u in t ge t Id , u in t s e t I d) pub l i c payable

{
74 u in t amt = ge tU in t (ge t Id , tokenAmt) ;
75 i f (e r c20 != getEthAddr ()) {
76 ERC20 In te r f ace token = ERC20 In te r f ace (e r c20) ;
77 amt = amt == u in t (−1) ? token . ba lanceOf (msg . sender) : amt ;
78 token . t r a n s f e rF r om (msg . sender , address (t h i s) , amt) ;
79 }
80 s e tU i n t (s e t I d , amt) ;
81 emit LogDepos i t (erc20 , amt , ge t Id , s e t I d) ;
82 }

Listing 3.11: contracts/connectors/basic . sol

As shown in the above code snippets, after transferFrom(), the setUint() function is called to
store the amt into the memory using setId as the index (line 81).

85 /**
86 * @dev Withdraw Assets To Smart Account.
87 * @param erc20 Token Address.
88 * @param tokenAmt Token Amount.
89 * @param to Withdraw token address.
90 * @param getId Get Storage ID.
91 * @param setId Set Storage ID.
92 */
93 f unc t i on withdraw (
94 address erc20 ,
95 u in t tokenAmt ,
96 address payable to ,

19/38 PeckShield Audit Report #: 2020-04

Confidential

97 u in t ge t Id ,
98 u in t s e t I d
99) pub l i c payable {

100 r equ i r e (A c c oun t I n t e r f a c e (address (t h i s)) . i sAu th (to) , "invalid -to -address") ;
101 u in t amt = ge tU in t (ge t Id , tokenAmt) ;
102 i f (e r c20 == getEthAddr ()) {
103 amt = amt == u in t (−1) ? address (t h i s) . balance : amt ;
104 to . t r a n s f e r (amt) ;
105 } e l s e {
106 ERC20 In te r f ace token = ERC20 In te r f ace (e r c20) ;
107 amt = amt == u in t (−1) ? token . ba lanceOf (address (t h i s)) : amt ;
108 token . t r a n s f e r (to , amt) ;
109 }
110 s e tU i n t (s e t I d , amt) ;
111 emit LogWithdraw (erc20 , amt , to , ge t I d , s e t I d) ;
112 }

Listing 3.12: contracts/connectors/basic . sol

On the other hand, the withdraw() function retrieves the amount by calling the getUint() function
with getId as the index. After that, the amt of assets are transferred. Here, we show an example
of data pollution. If someone deposit() 10 tokens twice, she should have 20 tokens to withdraw().
However, in the current implementation, only 10 tokens would be book-kept in the memory (i.e., the
second setUint() will overwrite the first setUint().

Recommendation As per discussion with InstaDApp Labs, the setUint()/getUint() are the
infrastructure provided to the developers. It means the developers need to implement their own ways
to perform the operations such as deposit() and withdraw(). We recommend that the use cases of
temporary memory should be clearly explained in the documentation. Especially, remind developers
that, as we mention above, the potential risks of calling deposit() twice.

3.6 Missing Validation to the Origin While Building Smart
Accounts

• ID: PVE-006

• Severity: Informational

• Likelihood: None

• Impact: None

• Target: contracts/registry/index.sol

• Category:Coding Practices [13]

• CWE subcategory: CWE-1041 [3]

Description

In the InstaIndex contract, the public function, build(), allows arbitrary users to create a smart
account for a specific _owner. While building the account, the caller can specify the accountVersion

20/38 PeckShield Audit Report #: 2020-04

Confidential

and _origin, which indicates what version of InstaAccount contract to be used and where the account
is created from. However, throughout the build() function, there’s no logic to validate the _origin,
leading to fabricated data being logged on the blockchain (line 167).

152 /**
153 * @dev Create a new Smart Account for a user.
154 * @param _owner Owner of the Smart Account.
155 * @param accountVersion Account Module version.
156 * @param _origin Where Smart Account is created.
157 */
158 f unc t i on b u i l d (
159 address _owner ,
160 u in t accountVe r s i on ,
161 address _or i g i n
162) pub l i c r e tu rn s (address _account) {
163 r equ i r e (a c coun tVe r s i on != 0 && accoun tVe r s i on <= ver s i onCount , "not -valid -

account") ;
164 _account = c r e a t eC l o n e (a c coun tVe r s i on) ;
165 L i s t I n t e r f a c e (l i s t) . i n i t (_account) ;
166 Accoun t I n t e r f a c e (_account) . enab l e (_owner) ;
167 emit AccountCreated (msg . sender , _owner , _account , _o r i g i n) ;
168 }

Listing 3.13: contracts/ registry /index. sol

Recommendation Validate the _origin before emitting logs. If it’s not an valid _origin, log it
as an unknown origin.

152 /**
153 * @dev Create a new Smart Account for a user.
154 * @param _owner Owner of the Smart Account.
155 * @param accountVersion Account Module version.
156 * @param _origin Where Smart Account is created.
157 */
158 f unc t i on b u i l d (
159 address _owner ,
160 u in t accountVe r s i on ,
161 address _or i g i n
162) pub l i c r e tu rn s (address _account) {
163 r equ i r e (a c coun tVe r s i on != 0 && accoun tVe r s i on <= ver s i onCount , "not -valid -

account") ;
164 _account = c r e a t eC l o n e (a c coun tVe r s i on) ;
165 L i s t I n t e r f a c e (l i s t) . i n i t (_account) ;
166 Accoun t I n t e r f a c e (_account) . enab l e (_owner) ;
167 i f (_o r i g i n != msg . sender && _or i g i n != tx . o r i g i n && ! v a l i d O r i g i n [_o r i g i n]) {
168 emit AccountCreated (msg . sender , _owner , _account , address (0)) ;
169 } e l s e {
170 emit AccountCreated (msg . sender , _owner , _account , _o r i g i n) ;
171 }
172 }

Listing 3.14: contracts/ registry /index. sol

21/38 PeckShield Audit Report #: 2020-04

Confidential

3.7 Missing Array Length Checks in InstaAccount

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: contracts/account.sol

• Category: Data Processing Issues [16]

• CWE subcategory: CWE-130 [4]

Description

In the InstaAccount contract, the cast() cast plays an important role of calling connectors with
corresponding input data. Specifically, multiple _targets and _datas are packed in two arrays and
passed into cast() which issues the invocations to the functions in each connector one-by-one in one
transaction (line 141).

118 /**
119 * @dev This is the main function , Where all the different functions are called
120 * from Smart Account.
121 * @param _targets Array of Target(s) to of Connector.
122 * @param _datas Array of Calldata(S) of function.
123 */
124 f unc t i on c a s t (
125 address [] c a l l d a t a _targets ,
126 bytes [] c a l l d a t a _datas ,
127 address _or i g i n
128)
129 ex te rna l
130 payable
131 {
132 r equ i r e (i sAuth (msg . sender) msg . sender == in s t a I n d e x , "permission -denied") ;
133 I n d e x I n t e r f a c e i nd e xCon t r a c t = I n d e x I n t e r f a c e (i n s t a I n d e x) ;
134 bool i s S h i e l d = s h i e l d ;
135 i f (! i s S h i e l d) {
136 r equ i r e (C o n n e c t o r s I n t e r f a c e (i n d e xCon t r a c t . c onne c t o r s (v e r s i o n)) . i sConne c t o r (

_ta rge t s) , "not -connector") ;
137 } e l s e {
138 r equ i r e (C o n n e c t o r s I n t e r f a c e (i n d e xCon t r a c t . c onne c t o r s (v e r s i o n)) .

i s S t a t i c C o n n e c t o r (_ta rge t s) , "not -static -connector") ;
139 }
140 f o r (u in t i = 0 ; i < _ta rge t s . l ength ; i++) {
141 s p e l l (_ta rge t s [i] , _datas [i]) ;
142 }
143 address _check = ind e xCon t r a c t . check (v e r s i o n) ;
144 i f (_check != address (0) && ! i s S h i e l d) r equ i r e (Ch e c k I n t e r f a c e (_check) . i sOk () , "

not -ok") ;
145 emit LogCast (_or ig in , msg . sender , msg . va lue) ;
146 }

Listing 3.15: contracts/account. sol

22/38 PeckShield Audit Report #: 2020-04

Confidential

However, if the two arrays do not have an identical length, there will be a problem. For exam-
ple, when _datas.length < _targets.length, the fallback function of the remaining targets might be
invoked due to the _data[i] beyond _datas.length are undetermined (likely to be 0).

Recommendation Check the lengths of the two arrays. This had been addressed in the patched
contracts/account.sol by validating _targets.length == _datas.length.

118 /**
119 * @dev This is the main function , Where all the different functions are called
120 * from Smart Account.
121 * @param _targets Array of Target(s) to of Connector.
122 * @param _datas Array of Calldata(S) of function.
123 */
124 f unc t i on c a s t (
125 address [] c a l l d a t a _targets ,
126 bytes [] c a l l d a t a _datas ,
127 address _or i g i n
128)
129 ex te rna l
130 payable
131 {
132 r equ i r e (i sAuth (msg . sender) msg . sender == in s t a I n d e x , "permission -denied") ;
133 r equ i r e (_ta rge t s . l ength == _datas . length , "array -length -invalid") ;
134 I n d e x I n t e r f a c e i nd e xCon t r a c t = I n d e x I n t e r f a c e (i n s t a I n d e x) ;
135 bool i s S h i e l d = s h i e l d ;
136 i f (! i s S h i e l d) {
137 r equ i r e (C o n n e c t o r s I n t e r f a c e (i n d e xCon t r a c t . c onne c t o r s (v e r s i o n)) . i sConne c t o r (

_ta rge t s) , "not -connector") ;
138 } e l s e {
139 r equ i r e (C o n n e c t o r s I n t e r f a c e (i n d e xCon t r a c t . c onne c t o r s (v e r s i o n)) .

i s S t a t i c C o n n e c t o r (_ta rge t s) , "not -static -connector") ;
140 }
141 f o r (u in t i = 0 ; i < _ta rge t s . l ength ; i++) {
142 s p e l l (_ta rge t s [i] , _datas [i]) ;
143 }
144 address _check = ind e xCon t r a c t . check (v e r s i o n) ;
145 i f (_check != address (0) && ! i s S h i e l d) r equ i r e (Ch e c k I n t e r f a c e (_check) . i sOk () , "

not -ok") ;
146 emit LogCast (_or ig in , msg . sender , msg . va lue) ;
147 }

Listing 3.16: contracts/account. sol

23/38 PeckShield Audit Report #: 2020-04

Confidential

3.8 Flawed Linked List Implementations

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: Medium

• Target: contracts/registry/connectors.

sol, contracts/registry/list.sol

• Category: Data Processing Issues [16]

• CWE subcategory: CWE-237 [6]

Description

The list is used for book-keeping the _connectors in InstaConnectors contract. However, the
removeFromList() could be improved in many ways. First, the storage slot of list[_connector] is
not deleted after it is not linked to other connectors. Since some gas would be refunded by removing
the storage slot, it is worth to add delete list[_connector] in the end of removeFromList(). More-
over, removeFromList() could be called twice (or more) with the same _connector while the second call
would reset both the first and last pointers. Fortunately, removeFromList() is an internal function
with sanity checks in its caller, disable(). There’s no existing path to trigger this bug but we should
always make each function block secure.

114 f unc t i on removeFromList (address _connector) i n t e r n a l {
115 i f (l i s t [_connector] . p r ev != address (0)) {
116 l i s t [l i s t [_connector] . p r ev] . nex t = l i s t [_connector] . nex t ;
117 } e l s e {
118 f i r s t = l i s t [_connector] . nex t ;
119 }
120 i f (l i s t [_connector] . nex t != address (0)) {
121 l i s t [l i s t [_connector] . nex t] . p r ev = l i s t [_connector] . p r ev ;
122 } e l s e {
123 l a s t = l i s t [_connector] . p r ev ;
124 }
125 count = sub (count , 1) ;
126
127 emit LogD i sab l e (_connector) ;
128 }

Listing 3.17: contracts/ registry /connectors. sol

Similar logic applies to addToList(). If a _connector is addToList() twice, the list would no longer
track all the connectors. For example, we have first → A ↔ B ↔ C ↔ D ← last in the list and
we add A again into list. D and A would be connected in line 98-99 and last would point to A in
line 104, which results in D ↔ A ← last. However, first still points to A, which means we cannot
track B, C, D from first.

96 f unc t i on addToL i s t (address _connector) i n t e r n a l {
97 i f (l a s t != address (0)) {
98 l i s t [_connector] . p r ev = l a s t ;

24/38 PeckShield Audit Report #: 2020-04

Confidential

99 l i s t [l a s t] . nex t = _connector ;
100 }
101 i f (f i r s t == address (0)) {
102 f i r s t = _connector ;
103 }
104 l a s t = _connector ;
105 count = add (count , 1) ;
106
107 emit LogEnable (_connector) ;
108 }

Listing 3.18: contracts/ registry /connectors. sol

We have identified some other linked list implementations which have similar flaws. They are
listed in the following:

77 f unc t i on addAccount (address _owner , uint64 _account) i n t e r n a l {
78 i f (u s e r L i n k [_owner] . l a s t != 0) {
79 u s e r L i s t [_owner] [_account] . p r ev = u s e r L i n k [_owner] . l a s t ;
80 u s e r L i s t [_owner] [u s e r L i n k [_owner] . l a s t] . nex t = _account ;
81 }
82 i f (u s e r L i n k [_owner] . f i r s t == 0) u s e r L i n k [_owner] . f i r s t = _account ;
83 u s e r L i n k [_owner] . l a s t = _account ;
84 u s e r L i n k [_owner] . count = add (u s e r L i n k [_owner] . count , 1) ;
85 }

Listing 3.19: contracts/ registry / list . sol

92 f unc t i on removeAccount (address _owner , uint64 _account) i n t e r n a l {
93 uint64 _prev = u s e r L i s t [_owner] [_account] . p r ev ;
94 uint64 _next = u s e r L i s t [_owner] [_account] . nex t ;
95 i f (_prev != 0) u s e r L i s t [_owner] [_prev] . nex t = _next ;
96 i f (_next != 0) u s e r L i s t [_owner] [_next] . p r ev = _prev ;
97 i f (_prev == 0) u s e r L i n k [_owner] . f i r s t = _next ;
98 i f (_next == 0) u s e r L i n k [_owner] . l a s t = _prev ;
99 u s e r L i n k [_owner] . count = sub (u s e r L i n k [_owner] . count , 1) ;

100 de le te u s e r L i s t [_owner] [_account] ;
101 }

Listing 3.20: contracts/ registry / list . sol

108 f unc t i on addUser (address _owner , uint64 _account) i n t e r n a l {
109 i f (accountL ink [_account] . l a s t != address (0)) {
110 a c c o un t L i s t [_account] [_owner] . p r ev = accountL ink [_account] . l a s t ;
111 a c c o un t L i s t [_account] [a ccountL ink [_account] . l a s t] . nex t = _owner ;
112 }
113 i f (accountL ink [_account] . f i r s t == address (0)) accountL ink [_account] . f i r s t =

_owner ;
114 accountL ink [_account] . l a s t = _owner ;
115 accountL ink [_account] . count = add (accountL ink [_account] . count , 1) ;
116 }

Listing 3.21: contracts/ registry / list . sol

25/38 PeckShield Audit Report #: 2020-04

Confidential

123 f unc t i on removeUser (address _owner , uint64 _account) i n t e r n a l {
124 address _prev = a c c o un t L i s t [_account] [_owner] . p r ev ;
125 address _next = a c c o un t L i s t [_account] [_owner] . nex t ;
126 i f (_prev != address (0)) a c c o un t L i s t [_account] [_prev] . nex t = _next ;
127 i f (_next != address (0)) a c c o un t L i s t [_account] [_next] . p r ev = _prev ;
128 i f (_prev == address (0)) accountL ink [_account] . f i r s t = _next ;
129 i f (_next == address (0)) accountL ink [_account] . l a s t = _prev ;
130 accountL ink [_account] . count = sub (accountL ink [_account] . count , 1) ;
131 de le te a c c o un t L i s t [_account] [_owner] ;
132 }

Listing 3.22: contracts/ registry / list . sol

Recommendation Delete list[_connector] after removing _connector from the list. Also,
validate _connector before adding it into the list or removing it from the list.

114 f unc t i on removeFromList (address _connector) i n t e r n a l {
115 r equ i r e (! (l i s t [_connector] . p r ev == address (0) && l i s t [_connector] . nex t ==

address (0)) , "not -in -list") ;
116 i f (l i s t [_connector] . p r ev != address (0)) {
117 l i s t [l i s t [_connector] . p r ev] . nex t = l i s t [_connector] . nex t ;
118 } e l s e {
119 f i r s t = l i s t [_connector] . nex t ;
120 }
121 i f (l i s t [_connector] . nex t != address (0)) {
122 l i s t [l i s t [_connector] . nex t] . p r ev = l i s t [_connector] . p r ev ;
123 } e l s e {
124 l a s t = l i s t [_connector] . p r ev ;
125 }
126 count = sub (count , 1) ;
127 de le te l i s t [_connector] ;
128
129 emit LogD i sab l e (_connector) ;
130 }

Listing 3.23: contracts/ registry /connectors. sol

96 f unc t i on addToL i s t (address _connector) i n t e r n a l {
97 r equ i r e (l i s t [_connector] . p r ev == address (0) && l i s t [_connector] . nex t == address

(0) , "already -in -list") ;
98 i f (l a s t != address (0)) {
99 l i s t [_connector] . p r ev = l a s t ;

100 l i s t [l a s t] . nex t = _connector ;
101 }
102 i f (f i r s t == address (0)) {
103 f i r s t = _connector ;
104 }
105 l a s t = _connector ;
106 count = add (count , 1) ;
107
108 emit LogEnable (_connector) ;
109 }

Listing 3.24: contracts/ registry /connectors. sol

26/38 PeckShield Audit Report #: 2020-04

Confidential

Last but not the least, if the order of elements in the list doesn’t matter, we suggest to replace
all the linked lists with arrays, which makes the implementation simpler and easier to maintain.

In the patch, the issue is partially fixed by deleting the storage slot of list[_connector] after it is
not linked to other connectors. But, the sanity checks before adding/removing an item to/from the
list are not addressed in the patch. As mentioned earlier, those internal functions are guarded by the
callers with sanity checks. It should be fine for now.

3.9 Missing Disable Function in staticConnectors

• ID: PVE-009

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: contracts/registry/connectors.

sol

• Category:Behavioral Issues [14]

• CWE subcategory: CWE-431 [7]

Description

In the InstaConnectors contract, it maintains two type of connector objects: connectors and staticConnectors

. Our analysis found that the staticConnectors object does not have a disable function. It means
that the administrator can never delete the existing staticConnectors. If there’s an instance of
staticConnectors which must be deleted, it can only be done by re-deploying the contract.

Recommendation Add disableStatic(address _connector) function in the InstaConnectors

contract.

3.10 Gas Optimization

• ID: PVE-010

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: contracts/registry/index.sol

• Category:Resource Management [18]

• CWE subcategory: CWE-920 [12]

Description

In AddressIndex contract, the addNewAccount() function validates the version of _newAccount after
versionCount++, which is a waste of gas. Specifically, in the case that AccountInterface(_newAccount

).version()!= versionCount +1, the EVM execution reverts after versionCount++ (line 88) with extra
gas comsumption for the SSTORE opcode which stores versionCount+1 into storage.

27/38 PeckShield Audit Report #: 2020-04

Confidential

80 /**
81 * @dev Add New Account Module.
82 * @param _newAccount The New Account Module Address.
83 * @param _connectors Connectors Registry Module Address.
84 * @param _check Check Module Address.
85 */
86 f unc t i on addNewAccount (address _newAccount , address _connectors , address _check)

ex te rna l i sMa s t e r {
87 r equ i r e (_newAccount != address (0) , "not -valid -address") ;
88 v e r s i onCoun t++;
89 r equ i r e (A c c oun t I n t e r f a c e (_newAccount) . v e r s i o n () == ve r s i onCount , "not -valid -

version") ;
90 account [v e r s i onCoun t] = _newAccount ;
91 i f (_connectors != address (0)) c onne c t o r s [v e r s i onCoun t] = _connectors ;
92 i f (_check != address (0)) check [v e r s i onCoun t] = _check ;
93 emit LogNewAccount (_newAccount , _connectors , _check) ;
94 }

Listing 3.25: contracts/ registry /index. sol

Recommendation Move the require statement before versionCount++, which not only saves
some gas but also makes the function comply to the checks-effects-interactions conversion [2].

80 /**
81 * @dev Add New Account Module.
82 * @param _newAccount The New Account Module Address.
83 * @param _connectors Connectors Registry Module Address.
84 * @param _check Check Module Address.
85 */
86 f unc t i on addNewAccount (address _newAccount , address _connectors , address _check)

ex te rna l i sMa s t e r {
87 r equ i r e (_newAccount != address (0) , "not -valid -address") ;
88 r equ i r e (A c c oun t I n t e r f a c e (_newAccount) . v e r s i o n () == ve r s i onCoun t +1, "not -valid -

version") ;
89 v e r s i onCoun t++;
90 account [v e r s i onCoun t] = _newAccount ;
91 i f (_connectors != address (0)) c onne c t o r s [v e r s i onCoun t] = _connectors ;
92 i f (_check != address (0)) check [v e r s i onCoun t] = _check ;
93 emit LogNewAccount (_newAccount , _connectors , _check) ;
94 }

Listing 3.26: contracts/ registry /index. sol

3.11 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version con-
sistencies, it is always suggested to use fixed compiler versions whenever possible. As an example,
we highly encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.6.0;

instead of pragma solidity ^0.6.0;.

28/38 PeckShield Audit Report #: 2020-04

Confidential

Moreover, we strongly suggest not to use experimental Solidity features or third-party unaudited
libraries. If necessary, refactor current code base to only use stable features or trusted libraries. In
case there is an absolute need of leveraging experimental features or integrating external libraries,
make necessary contingency plans.

29/38 PeckShield Audit Report #: 2020-04

Confidential

4 | Conclusion

In this audit, we thoroughly analyzed the InstaDApp Smart Accounts documentation and implemen-
tation. The audited system does involve various intricacies in both design and implementation. The
current code base is well organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

30/38 PeckShield Audit Report #: 2020-04

Confidential

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [21, 22,
23, 24, 26].

• Result: Not found

• Severity: Critical

31/38 PeckShield Audit Report #: 2020-04

Confidential

5.1.5 Reentrancy

• Description: Reentrancy [27] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

32/38 PeckShield Audit Report #: 2020-04

Confidential

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

33/38 PeckShield Audit Report #: 2020-04

Confidential

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

34/38 PeckShield Audit Report #: 2020-04

Confidential

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

35/38 PeckShield Audit Report #: 2020-04

Confidential

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] ethereum. Security Considerations. https://solidity.readthedocs.io/en/v0.6.4/

security-considerations.html#use-the-checks-effects-interactions-pattern.

[3] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[4] MITRE. CWE-130: Improper Handling of Length Parameter Inconsistency. https://cwe.mitre.

org/data/definitions/130.html.

[5] MITRE. CWE-229: Improper Handling of Values. https://cwe.mitre.org/data/definitions/229.

html.

[6] MITRE. CWE-237: Improper Handling of Structural Elements. https://cwe.mitre.org/data/

definitions/237.html.

[7] MITRE. CWE-431: Missing Handler. https://cwe.mitre.org/data/definitions/431.html.

[8] MITRE. CWE-454: External Initialization of Trusted Variables or Data Stores. https://cwe.

mitre.org/data/definitions/454.html.

[9] MITRE. CWE-621: Variable Extraction Error. https://cwe.mitre.org/data/definitions/621.

html.

36/38 PeckShield Audit Report #: 2020-04

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://solidity.readthedocs.io/en/v0.6.4/security-considerations.html#use-the-checks-effects-interactions-pattern
https://solidity.readthedocs.io/en/v0.6.4/security-considerations.html#use-the-checks-effects-interactions-pattern
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/229.html
https://cwe.mitre.org/data/definitions/229.html
https://cwe.mitre.org/data/definitions/237.html
https://cwe.mitre.org/data/definitions/237.html
https://cwe.mitre.org/data/definitions/431.html
https://cwe.mitre.org/data/definitions/454.html
https://cwe.mitre.org/data/definitions/454.html
https://cwe.mitre.org/data/definitions/621.html
https://cwe.mitre.org/data/definitions/621.html

Confidential

[10] MITRE. CWE-754: Improper Check for Unusual or Exceptional Conditions. https://cwe.mitre.

org/data/definitions/754.html.

[11] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[12] MITRE. CWE-920: Improper Restriction of Power Consumption. https://cwe.mitre.org/data/

definitions/920.html.

[13] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[14] MITRE. CWE CATEGORY: Behavioral Problems. https://cwe.mitre.org/data/definitions/438.

html.

[15] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[16] MITRE. CWE CATEGORY: Data Processing Errors. https://cwe.mitre.org/data/definitions/

19.html.

[17] MITRE. CWE CATEGORY: Initialization and Cleanup Errors. https://cwe.mitre.org/data/

definitions/452.html.

[18] MITRE. CWE CATEGORY: Resource Management Errors. https://cwe.mitre.org/data/

definitions/399.html.

[19] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[20] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[21] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

37/38 PeckShield Audit Report #: 2020-04

https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/920.html
https://cwe.mitre.org/data/definitions/920.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/19.html
https://cwe.mitre.org/data/definitions/19.html
https://cwe.mitre.org/data/definitions/452.html
https://cwe.mitre.org/data/definitions/452.html
https://cwe.mitre.org/data/definitions/399.html
https://cwe.mitre.org/data/definitions/399.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/

Confidential

[22] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[23] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[24] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[25] PeckShield. PeckShield Inc. https://www.peckshield.com.

[26] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[27] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

38/38 PeckShield Audit Report #: 2020-04

https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About InstaDApp Smart Accounts
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Missing Address Validation in changeMaster()
	Missing Ether Amount Checks in deposit()
	Flawed Upgrade Logic in InstaIndex
	Unprotected Privileged Interface in InstaIndex
	Possible Data Pollution in Deposit/Withdraw
	Missing Validation to the Origin While Building Smart Accounts
	Missing Array Length Checks in InstaAccount
	Flawed Linked List Implementations
	Missing Disable Function in staticConnectors
	Gas Optimization
	Other Suggestions

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

