
Customer: ITHEUM
Date: August 10th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Itheum Limited

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Claims portal, vesting, rewards, airdrops

Platform Elrond

Network Elrond

Language Rust

Methods Manual Review, Automated Review, Architecture review

Website https://www.itheum.io/

Timeline 18.07.2022 – 08.08.2022

Changelog 21.07.2022 – Initial Review
10.08.2022 – Second Review

www.hacken.io
2

https://www.itheum.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 16

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by Itheum Limited (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Itheum/itheumcore-elrond-sc-claims
Commit:

6ebbe1f271753b7a61fb0625c10648c23ccebb8a
Technical Documentation:

Type: Technical description
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e84760

1650f6c
Type: Functional requirements
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e84760

1650f6c
Integration and Unit Tests: Yes
Contracts:

File: ./src/events.rs
SHA3: cbc915b3c348b2098137347208b415b623738bb2ff741a4f900675f444e0446a
File: ./src/lib.rs
SHA3: a2b58563c57c575485ff9f9a299376c9678ef6e40b7c98e6253903e79541c9b1
File: ./src/views.rs
SHA3: e1b4904739fdfbfb108e7db512f785748bf020610aeb3ca16e363dc1f2c2ee4c
File: ./src/storage.rs
SHA3: 069edf1c04cbad58bfc17e5f4d9b8ed7e0144756de8f42f80c2df754437ca591

Second review scope
Repository:

https://github.com/Itheum/itheumcore-elrond-sc-claims
Commit:

086b7e4c7329db725358a0b8c45ee73d7dcb5f8a
Technical Documentation:

Type: Technical description
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e84760

1650f6c
Type: Functional requirements
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e84760

1650f6c
Integration and Unit Tests: Yes
Contracts:

File: ./src/events.rs
SHA3: 95633b5b400026c8c08749a839a441dc4e7d83426a1a1a0cb733c6319df0b9e3
File: ./src/lib.rs
SHA3: fea97bb7944cb98fe047d6ee56aef3d9436c98fbc90aabec4ae8a0e929650bb6
File: ./src/views.rs
SHA3: d0bdc78e30401790f78e9049ef74e3e63be051b26a2e440ff731dd72d64bbe11
File: ./src/storage.rs
SHA3: 0f52e6d07b476e30f2a93e974b7753f9bb73b53ddb79fee01b61bd1c92f7b271

www.hacken.io
4

https://github.com/Itheum/itheumcore-elrond-sc-claims
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e847601650f6c
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e847601650f6c
https://github.com/Itheum/itheumcore-elrond-sc-claims
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e847601650f6c
https://itheum.notion.site/Elrond-Claims-Contract-b4d52fc1f3f7452f864e847601650f6c

File: ./src/requirements.rs
SHA3: 8c2917415b0e6964856662e9fe9377839a7db8a058f033c8d2c955de437faa25

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided superficial and internal functional and technical
requirements. The total Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 10 out of 10.

Architecture quality
The architecture quality score is 10 out of 10.

Security score
As a result of the second audit, the code contains only 1 low severity
issue. The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

www.hacken.io
7

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21 July 2022 6 1 0 0

08 August 2022 1 0 0 0

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Description Status

Default Visibility
Functions and state variables visibility
should be set explicitly. Visibility levels
should be specified consciously.

Passed

Integer Overflow and
Underflow

If unchecked math is used, all math operations
should be safe from overflows and underflows. Passed

Outdated Compiler
Version

It is recommended to use a recent version of
the Rust compiler. Passed

Floating Pragma
Contracts should be deployed with the same
compiler version and flags that they have been
tested thoroughly.

Not Relevant

Unchecked Call Return
Value

The return value of a message call should be
checked. Passed

Access Control &
Authorization

Ownership takeover should not be possible. All
crucial functions should be protected. Users
could not affect data that belongs to other
users.

Passed

SELFDESTRUCT
Instruction

The contract should not be self-destructible
while it has funds belonging to users. Not Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert Violation Properly functioning code should never reach a
failing assert statement. Passed

Deprecated Rust
Functions

Deprecated built-in functions should never be
used. Passed

Delegatecall to
Untrusted Callee

Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

Execution of the code should never be blocked
by a specific contract state unless it is
required.

Passed

www.hacken.io
8

Race Conditions Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values as a
proxy for time

Block numbers should not be used for time
calculations. Passed

Signature Unique Id

Signed messages should always have a unique
id. A transaction hash should not be used as a
unique id. Chain identifier should always be
used. All parameters from the signature should
be used in signer recovery

Passed

Shadowing State
Variable

State variables should not be shadowed. Passed

Weak Sources of
Randomness

Random values should never be generated from
Chain Attributes or be predictable. Not Relevant

Incorrect Inheritance
Order

When inheriting multiple contracts, especially
if they have identical functions, a developer
should carefully specify inheritance in the
correct order.

Not Relevant

Calls Only to Trusted
Addresses

All external calls should be performed only to
trusted addresses. Passed

Presence of unused
variables

The code should not contain unused variables
if this is not justified by design. Passed

EIP standards
violation

EIP standards should not be violated. Not Relevant

Assets integrity Funds are protected and cannot be withdrawn
without proper permissions. Passed

User Balances
manipulation

Contract owners or any other third party
should not be able to access funds belonging
to users.

Passed

Data Consistency Smart contract data should be consistent all
over the data flow. Passed

Flashloan Attack

When working with exchange rates, they should
be received from a trusted source and not be
vulnerable to short-term rate changes that can
be achieved by using flash loans. Oracles
should be used.

Not Relevant

Token Supply
manipulation

Tokens can be minted only according to rules
specified in a whitepaper or any other
documentation provided by the customer.

Passed

Gas Limit and Loops

Transaction execution costs should not depend
dramatically on the amount of data stored on
the contract. There should not be any cases
when execution fails due to the block Gas
limit.

Passed

Style guide violation Style guides and best practices should be
followed. Passed

www.hacken.io
9

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a comprehensive
description of how to compile, build and
deploy the code.

Passed

Secure Oracles Usage

The code should have the ability to pause
specific data feeds that it relies on. This
should be done to protect a contract from
compromised oracles.

Not Relevant

Tests Coverage

The code should be covered with unit tests.
Test coverage should be 100%, with both
negative and positive cases covered. Usage of
contracts by multiple users should be tested.

Passed

Stable Imports The code should not reference draft contracts,
that may be changed in the future. Passed

www.hacken.io
10

System Overview

Itheum is the world's 1st decentralized, cross-chain data brokerage
platform. Itheum has the following contracts:

● ClaimsContract — A simple “upgradeable contract” that holds a mapping
from addresses and a “claim type” to a “claim amount” and a “claim
add date”. A “claim type” is an u32 taking values between 0 and 2.
The “claim amount” is a BigUint, which represents the amount of
Itheum they can take out. The “claim add date” is a timestamp on when
the claim for the address and “claim type” was last modified in the
smart contract.

Privileged roles
● The Owner of the smart contract - can manually put in a new “claim

amount” for an address and a “claim type”.
● Itheum Token Owner - the owner of the Itheum token on Elrond.
● Itheum Token is a ESDT token on Elrond.
● DEX DApp - Itheum DEX to interact with this contract using its own

wallet.

Risks
● In case the contract owner keys leak, an attacker can get access to

all funds that belong to Claims contract and will be able to send
them to any address.

www.hacken.io
11

Findings

Critical

No critical severity issues were found.

High

No critical severity issues were found.

Medium

1. Requirements incompliance.

The documentation states that the contract should implement the
following feature: ‘Owner of Claims Contract and Owners of Token
should be different’. This feature is not implemented.

File: ./src/lib.rs

Contract: ClaimsContract

Function: set_reward_token

Recommendation: Either implement the missing logic or remove the
corresponding statement from the documentation.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)

Low

1. Zero valued transactions.

Happens when a function tries to send zero funds to a target.
Remove_claim function does not contain zero value validation for
‘amount’ parameter.

The function remove_claim can execute a zero-valued transaction if
‘amount’ is zero.

This can lead to a transaction with zero value to be sent. Missing a
zero value check can lead to unnecessary storage updates and
emitting events because nothing was changed.

File: ./src/lib.rs

Contract: ClaimsContract

Function: remove_claim

Recommendation: Add zero validation for ‘amount’ parameter inside
‘remove_claim’ function.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)

www.hacken.io
12

2. Missing parameter zero value check.

Remove_claims function does not contain zero value validation for the
‘tuple.2’ value inside the loop.

Missing a zero value check can lead to unnecessary storage updates
and emitting events because nothing was changed.

File: ./src/lib.rs

Contract: ClaimsContract

Function: remove_claims

Recommendation: Add zero validation for ‘tuple.2’ inside
‘remove_claims’ function.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)

3. Duplicate code.

Duplication of code may lead to unnecessary Gas consumption. There
are ‘require’ statement duplications in add_claim, add_claims,
remove_claim, remove_claims, harvest_claims .

Code duplication can lead to big size wasm code uploaded to the
network and unnecessary Gas consumption.

File: ./src/lib.rs

Contract: ClaimsContract

Functions: dd_claim, add_claims, remove_claim, remove_claims,
harvest_claims

Recommendation: Extract require statement with the error message:
‘Reward token is not set’ to a separate method.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)

4. Unnecessary reading from storage.

When Claim Contract is paused, there is no reason to read data about
reward token value from storage.

This can lead to more Gas consumption when the contract is paused.

File: ./src/lib.rs

Contract: ClaimsContract

Function: harvest_claim

Recommendation: Move require statement with message ‘Contract is
paused’ before reading the reward token value from storage.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)
www.hacken.io

13

5. Misleading method name.

Method name should represent the method logic and should not mislead
it.

‘Pause’ method implements logic that contradicts its name.

This makes code harder to read.

File: ./src/lib.rs

Contract: ClaimsContract

Function: pause

Recommendation: Change method name to fit the logic or split pause
and unpause functionality to 2 different methods.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)

6. Missing event emitting.

Events for critical state changes should be emitted for tracking
things off-chain. ‘Harvest_claim’ method does not emit events for
collected rewards type in case if ‘claim_type’ parameter was None.

This can lead to a lack of event data on the main network for

analytics.

File: ./src/lib.rs

Contract: ClaimsContract

Function: harvest_claim

Recommendation: Add information to event ‘all_claims_collected_event’
about rewards for any type or emit 3 different events for each reward
type when ‘claim_type’ parameter has None value.

Status: Fixed (Revised commit: 086b7e4c7329db725358a0b8c45ee73d7dcb5f8a)

7. “#![feature]” attribute may not be used on the stable release
channel.

Feature attributes are only allowed on the nightly release channel.
Stable or beta compilers will not comply. This can lead to a lack of
event data on the main network for analytics.

The file lib.rs contains #![feature] attribute, if needed the
feature, make sure to use a nightly release of the compiler (but be
warned that the feature may be removed or altered in the future).

File: ./src/lib.rs

www.hacken.io
14

Recommendation: Consider removing #![feature(proc_macro_quote)] and
quote import from lib.rs.

Status: New

www.hacken.io
15

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
16

