
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Kasta
Date: March 07th, 2022



This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Kasta.

Approved by Andrew Matiukhin | CTO Hacken OU
Evgeniy Bezuglyi | SC Audits Department Lead

Type ERC-20 token vesting
Platform EVM
Language Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/kasta-io/token-vesting
Commit 7C5787FE2408624D95831652DD50CB2B540212F4
Technical
Documentation

YES

JS tests YES
Website https://www.kasta.io/
Timeline February 16, 2022 - March 7, 2022
Changelog February 28, 2022 - Initial audit

March 7, 2022 - Second Review

https://github.com/kasta-io/token-vesting
https://www.kasta.io/


Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Recommendations 10

Disclaimers 11



Introduction

Hacken OÜ (Consultant) was contracted by Kasta (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and
its code review conducted between February 16th, 2022 - February 28th, 2022.

The second review was conducted on March 7th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/kasta-io/token-vesting
Commit:

7c5787fe2408624d95831652dd50cb2b540212f4
Technical Documentation: Yes
JS tests: Yes
Contracts:

KastaVesting.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

https://github.com/kasta-io/token-vesting


Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation



Executive Summary
Score measurements details can be found in the corresponding section of the
methodology.

Documentation quality

The project has good documentation with functional and technical
requirements. The score is 10 out of 10. Weight in total score is 1.

Code quality

The code follows official language style guides and is covered with unit
tests. Most of the code follows those guides, the score is 10 out of 10.
Weight in total score is 1.

Architecture quality

Smart contract of the project follows the best practices.

Clean and clear architecture, the score is 10 out of 10. Weight in total
score is 1.

Security score

As a result of the audit, security engineers found 1 medium and 1 low
severity issue. Security score is 7.5 out of 10. All found issues are
displayed in the “Issues overview” section of the report. Weight in total
score is 7.

After the second audit the code has 1 medium severity issue.

Summary

According to the assessment, the Customer's smart has the following score:
8.25

Notices

1. The KastaVesting contract has a `revokeSchedule` function which sends
available unclaimed tokens to the admin.

2. All claims could be paused by owners.
3. The KastaVesting contract allows creating vesting with the start date

in the past.

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Graph 1. The distribution of vulnerabilities after the audit.



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution



Audit overview

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

The code contains redundant start date limitations in days. As a
result, the contract would be inoperable after January 1st, 2030.

Contracts: KastaVesting.sol

Recommendation: validate the start date without limitations in the
future.

Status: Acknowledged

Low

`vested` amount calculation performs division before multiplication
which potentially may cause rounding issues.

Contracts: KastaVesting.sol

Function: _getAvailableAmount, _getNotVestedAmount

Recommendation: perform multiplication before division.

Status: Fixed



Recommendations

1.Simplify the vesting logic and make it more flexible by removing
calculations in days and using seconds instead. Such an approach is
more flexible and lowers the code complexity.

Contracts: KastaVesting.sol



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.


