
 
 
 

 
 

Formal Verification of FullyBackedBonding 

Summary 
This document describes the specification and verification of Keep using Certora Prover. 
The work was undertaken from Nov 2-16, 2020. The latest commit that was reviewed 
and run through the Certora Prover was 658b02f237e25c370feaba80a7a3b13824190c4. 
 
We verified the contract FullyBackedBonding. An owner of ETH can delegate it to a ​keep 
operator​ by depositing it in FullyBackedBonding. Bonds are locked by application (​keep 
owner​), and when released, they stay in the ​bonding contract​. The scope of verification 
was for ETH-only keep operators. 
 
The Certora Prover proved the implementation of the FullyBackedBonding contract is 
correct with respect to the formal rules written by Keep and the Certora teams. During 
the verification process, the Certora Prover discovered minor bugs in the code listed in 
the table below. All issues were promptly corrected, and the fixes were verified to satisfy 
the specifications up to the limitations of the Certora Prover. The Certora development 
team is currently handling these limitations. The next section formally defines high level 
specifications of FullyBackedBonding. All the rules are publically available in a public 
github: 
https://github.com/keep-network/keep-ecdsa/tree/certora/fullybackedbonding-spec/solidit
y/specs​. 

 Main Issues Discovered 
 

www.certora.com 

Issue Rule broken  Description Severity Mitigation 

System accepts 
invalid 
parameters 

validOperatorState Operator can be set to zero. Low Fixed code, 
added require 

System accepts 
invalid 
parameters 

validOperatorState Authorizer can be set to zero, 
resulting in a bond that cannot 
be authorized and used in a 
keep. 

Low Fixed code, 
added require 

https://github.com/keep-network/keep-ecdsa/tree/certora/fullybackedbonding-spec/solidity/specs
https://github.com/keep-network/keep-ecdsa/tree/certora/fullybackedbonding-spec/solidity/specs


 
 
 

 
 

 

Disclaimer 
The Certora Prover takes as input a contract and a specification and formally proves that 
the contract satisfies the specification in all scenarios. Importantly, the guarantees of the 
Certora Prover are scoped to the provided specification, and any cases not covered by 
the specification are not checked by the Certora Prover. 

We hope that this information is useful, but provide no warranty of any kind, express or 
implied. The contents of this report should not be construed as a complete guarantee 
that the contract is secure in all dimensions. In no event shall Certora or any of its 
employees be liable for any claim, damages or other liability, whether in an action of 
contract, tort or otherwise, arising from, out of or in connection with the results reported 
here. 

Notations 
1.  ​✔   indicates​ ​the rule is formally verified on the latest commit. We write ​✔ *  when 

the rule was verified on a simplified version of the code (or under some 
assumptions).  

2. ✍ ​indicates the rule is not yet formally specified. 
3. 🔁 ​indicates the rule is postponed. 
4. We use ​Hoare triples​ of the form {p} C {q}, which means that if the execution of 

program C starts in any state satisfying p, it will end in a state satisfying q. In 
Solidity, p is similar to require, and q is similar to assert.  
The syntax {p} (C​1​ ​∼​ C​2​) {q} is a generalization of Hoare rules, called ​relational 
properties​. {p} is a requirement on the states before C​1​ and C​2​, and {q} describes 
the states after their executions. Notice that C​1​ and C​2​ result in different states. 
As a special case, C​1​∼​op​ C​2​, where op is a getter, indicating that C​1​ and C​2  ​result 
in states with the same value for op.  

www.certora.com 

Denial of service 
on cyclic 
authorization 

No cyclic 
authorization 

A cyclic authorization setting can 
be made, causing stack overflow 
and denial of service on 
subsequent operations. 

Low In current 
version, cyclic 
authorization is 
impossible as 
the user 
authorized the 
high level 
contract only 

https://en.wikipedia.org/wiki/Hoare_logic
http://software.imdea.org/~gbarthe/__introrelver.pdf
http://software.imdea.org/~gbarthe/__introrelver.pdf


 
 
 

 
 

Verification of FullyBackedBonding 

Overview of scope 

  
 Figure 1: A finite state machine illustrating the functionality of FullyBackBonding​. 
 
Figure 1​ displays a finite state machine which explains the contract's functionality. 
The keep owner, when delegating, appoints three addresses: an operator, a beneficiary, 
and an authorizer. Bonds are locked by application (keep owner), and when released, 
they stay in the bonding contract. Unbonded value can be withdrawn from the bonding 
contract to the operator's beneficiary. A keep owner can seize a bond as a result of the 
operator's misbehavior. 
  
The ​Functions​ section lists the view functions used in the verification process. Some 
functions that do not exist in the source code were added by ghost and harness 
variables. 
 
The ​Operations​ section lists the functions we verified. As a convention, we assume a 
function succeeds and returns true unless stated otherwise. We use the notation ​op(u, x) 
to denote any operation instantiated by ​u​ (as ​msg.sender) ​with sending of ​x​ (in 
msg.value)​. 
 
We denote an operator as ​o​. 
 

www.certora.com 

https://www.figure1.com/
https://docs.google.com/document/d/1iuEJqrfEqAX5HFT-oqbN6XdAY76DL-7LuDLObqe_9Hw/edit?userstoinvite=jakub.nowakowski@keep.network&ts=5fa51445#heading=h.767ctq8xu21v
https://docs.google.com/document/d/1iuEJqrfEqAX5HFT-oqbN6XdAY76DL-7LuDLObqe_9Hw/edit?userstoinvite=jakub.nowakowski@keep.network&ts=5fa51445#heading=h.s9g4tekp9q1


 
 
 

 
 

Invariants 
Invariants are properties that should hold after every contract operation.  
 

1.  Valid Operator ✔  
The operator cannot be zero. 
 

beneficiaryOf(o) ≠ ​0  ​⇔  

   ( o ≠ ​0 ​⋀ ownerOf(o) ≠ ​0  ​⋀ authorizerOf(o) ≠ ​0 ​) 
 

2. Valid state of an Operator ✔  
An​ ​operator holding assets must have an owner, a beneficiary, and an 
authorizer. 
 
(unbondedValue(o) + totalLockedBonds(o)) > 0 ⟹  

( ownerOf(o) ≠ 0 ⋀ beneficiaryOf(o) ≠ 0 ⋀ authorizerOf(o) ≠ 0 ) 

 
3. No bankruptcy of the system (no money lost)  ✔ * 

The balance of the system is more than its obligations (the total assets deposited 
in the system and is in either an unbounded or locked state).  
 

 ethSystemBalance ≥ ( unbondedValue(o) + totalLockedBonds(o) )∑
 

o ∈ operator
 

 

4. User cannot gain assets ✔ * 
The total assets of an operator ​o​ ​cannot be more than ever deposited to 
o​. Note that a strict inequality may hold since a holder may seize a bond of 
o​. 
everDeposited(o) ≥ ( unbondedValue(o) + totalLockedBonds(o) ) 

 

5. No cyclic authorization 🔁  
(This invariant does not need to hold on the current implementation.) 
There is no cycle in delegating authorities, as it can cause a denial of service.  
 

ㄱ ( delegatedAuthority(a) = b ⋀ delegatedAuthority(b) = c ⋀  

delegatedAuthority(c) = a ) 

This property can be generalized for cycles of any length. 

www.certora.com 



 
 
 

 
 

Properties 
 

6. Total assets are preserved ✔ * 
The total assets of a user is the sum of assets within the system (either locked or 
unbounded) and outside the system. 
 
The total assets of an operator within the system are preserved, except on 
deposits and on withdrawal and seizing. 
{  b = ​unbondedValue(o) + totalLockedBonds(o)​ } 

op(u, x)  
{ b ​=  unbondedValue(o) + totalLockedBonds(o) + x ​} 
 

Note that this property holds for every successful operation performed by any 
user or holder, ​u​, possibly sending in ​x ​amount of wei (msg.value), except for 
sizeBond and withdraw which are defined differently: 
 
On withdraw, the total assets within the system of operator and the balance of 
the beneficiary is preserved  
 
{ b = ​unbondedValue(o) + totalLockedBonds(o) + beneficiaryOf(o).balance​} 

withdraw(x, o) 
{ b ​= unbondedValue(o) + totalLockedBonds(o) + beneficiaryOf(o).balance​} 

 

Upon seizing a bond, the total assets between the operator's system and the 
destination address receiving the bond value are preserved. 
 
{ b = ​unbondedValue(o) + totalLockedBonds(o) + ​destination​.balance ​} 

seizeBond​(o, ref, x, destination) 
{ b ​= unbondedValue(o) + totalLockedBonds(o) + ​destination​.balance ​} 
 
 
 

 

 
 
 
 
 

www.certora.com 



 
 
 

 
 

7. Integrity of withdrawal ✔  
A successful withdrawal of a value x of an operator decreases the operator's 
value by x and transfers x to the operator's beneficiary. The maximal withdrawal 
is limited to the total amount the operator has deposited. 
 
{  

beneficiary = beneficiaryOf(o) ⋀  

u = unbondedValue(o)           ⋀  

b = beneficiary.balanceOf()    ⋀ 

s = ethSystemBalance() 

}  

withdraw(x, o)  

{ 

     u - x = unbondedValue(o)     ⋀  

     ​b + x = beneficiary.balanceOf() ⋀ 
     s - x = ethSystemBalance()   ⋀ 

     x ≤ everDeposited(o)  

}  

 
 

8. Maximal withdraw ✔  
When withdrawing all deposits of an operator, the assets of that operator are 
zeroed out. 
 
withdraw(everDeposited(o), o) ⟹  

( unbondedValue(o) = 0 ⋀ totalLockedBonds(o) = 0 ​) 
 

 
 

9. Additivity of withdraw ✔  
Withdrawing is additive: the sum of two withdrawals is identical to a withdrawal of 
the sum. 
 

( withdraw(x, o); withdraw(y, o) ) ​∼​ withdraw(x+y, o)  
 
Here we expect the effect of withdrawing x and then withdrawing y to be the 
same as withdrawing them simultaneously. The correctness of this rule on all 
inputs increases the confidence that the protocol is less fragile, e.g., to rounding 
errors. 
 
 
 

www.certora.com 



 
 
 

 
 

10.No front running on withdraw  ✔  
Withdrawals from different operators is independent. If one can withdraw x from 
the unbounded amount of operator o​1​, then she should also be able to withdraw x 
after another user has performed an operation as operator o​2​. 
 

{ o​1​≠o​2 ​}  r​1 ​= withdraw(x, o​1​)  ​∼​r1 = r2​ ( op(o​2​, y); r​2 ​= withdraw(x, o​1​) ) 
 

 

Here we compare two arbitrary executions of the program: one with a single 
withdrawal and another in which a different operator performs a Keep operation. 
We require that if one withdrawal succeeds, so will the other and vice versa. 

 
 

11.Deposit and withdraw are inverse functions ✔  
Withdraw is the inverse function of deposit concerning the system's 
balance and an operator's unbounded value. 
{  

   u = unbondedValue(o)   ⋀  

   b = ethSystemBalance()  

} 

 
( deposit(x, o); r = withdraw(x, o) ) 
 
{  

   r                      ⋀ 

   u = unbondedValue(o)   ⋀  

   b = ethSystemBalance() 

} 

 
 

 
 
 
 
 
 
 
 
 

www.certora.com 



 
 
 

 
 

12.Valid change to BalanceOf ✔  
On Keep operation op by user ​s​ sending ​x​ amount, the ETH balance of a user 
(operator or not) changes as follows:  

 
{ b = o.balance ​} 
 
op(s,x) 
 
{  b = o.balance ∨ 

   ( b + x = o.balance ∧ isDepositOp(op) ) ∨ 

   ( b ≤ o.balance   ∧  (isSeizeBond(op) || isWithdraw(op) ) ) 

} 

 
where ​isDepositOp ​is true for any of the deposit operations (deposit, delegate or 
topup). 
 
 

13.Valid change to totalLockedBonds ✔ * 
The total locked bonds of an operator o change as follows:  
 
{  

   u = unbondedValue(o)   ⋀ 

   l = totalLockedBonds(o)  

} 

op 
{  

  totalLockedBonds(o) = l                                       ∨ 

  ( l ≥ totalLockedBonds(o) ⋀ isSeizeBond(op) ∨ isFreeBond(op)) ∨ 

  ( l ≤ totalLockedBonds(o) ≤ l + u ⋀ isCreateBond(op) )  

} 

 
 
  

www.certora.com 



 
 
 

 
 

14.Valid change to unboundedValue ✔  
On Keep operation op by user ​u​ sending ​x​ amount, the unbounded value of 
operator o changes as follows:  
 
{  u = unbondedValue(o) } 

 
op(s, x) 
 

{  

    u = unbondedValue(o)                                         ∨ 

  ( u + x = unbondedValue(o) ∧ isDepositOp(op) )                 ∨ 

  ( u ≥ unbondedValue(o) ∧ isWithdraw(op) ∧ (s=o ∨ u=owner(s) )  ∨ 

                (  ​u ≥ unbondedValue(o) ∧ isCreateBond(op) ) 
} 

 
 

15.Valid change to everDeposited ✔  
On Keep operation op by user ​u​ sending ​x​ amount, the unbounded value of 
operator o changes as follows:  
 
{   e = everDeposited(o) } 

op(s,x) 
{  

    e = everDeposited(o)                         ∨ 

  ( e + x = everDeposited(o) ∧ isDepositOp(op) ) 

} 

 

16.  CreateBond and freeBond are inverse operations 🔁 
 

17.  Only the holder can manipulate the Bond 🔁 
 

18.  Deposit is possible (no denial of service) 🔁 
 

19.  Additivity of deposit 🔁 
 

20.  Integrity of deposit  🔁 
 

21.  No change to others 🔁 
An operation regarding operator o​1​ does not affect operator o​2​. 
 

www.certora.com 



 
 
 

 
 

Functions 
ethSystemBalance() :  uint 
Returns the current ETH balance deposited in the system (namely, the 
FullyBackedBonding contract). 
 
totalLockedBonds(address operator) :  uint 
Returns the total amount of locked bonds of ​operator​ ​across all bonds ​operator​ is 
participating in. 
 
everDeposited(address operator) :  uint 
Returns the total amount deposited to ​operator.  
 
unbondedValue(address operator) :  uint 
Returns the amount of ETH that ​operator ​has unlocked and is available for withdrawal. 
 
ownerOf(address operator) :  address 
Returns the owner of ​operator​. 
 
authorizerOf(address operator) :  address 
Returns the authorizer of ​operator​. 
 
beneficiaryOf(address operator) :  address 
Returns the beneficiary of ​operator. 
 
delegatedAuthority(address u) : address 
Returns the immediate delegated authority address of ​u​. 

  

www.certora.com 



 
 
 

 
 

Operations 
delegate(address owner, address operator, address beneficiary, uint amount) : bool 
Returns true when successfully registers a new ​owner​,​ ​operator​, ​beneficiary​ ​and 
authorizer, and deposits ​amount.  
 
deposit(address sender, uint x, address operator) : bool 
Returns true when successfully deposits ​x​ amount of wei to ​operator​’s​ ​bond. 
 
topUp(address sender, uint x, address operator) : bool 
Returns true when successfully deposits ​x​ amount of wei to ​operator​’s​ ​bond 
 
withdraw(uint x, address operator) : bool 
Returns true when successfully withdraws​ ​x​ amount of wei from ​operator​’s​ ​bond.  
 
createBond(address operator, address holder, uint referenceID, 

            uint amount, address authorizedSortitionPool) : bool 
Creates a bond for the given ​operator​, ​holder​, ​referenceID​ and​ amount. ​Returns true if 
the bond was created successfully, and false otherwise. 
 
reassignBond(address holder, address operator, uint referenceID , 

address newHolder ,uint newReferenceID) : bool 
Reassigns the bond ​referenceID​ from ​holder​ to ​newHolder​ under a ​newReferenceID​. 
Returns true if the bond was reassigned successfully, and false otherwise. 
 
freeBond(address holder, address operator, uint referenceID) : bool 
Frees the bond ​referenceID​ and allows ​operator​ to withdraw. Returns true if the bond 
was freed successfully, and false otherwise. 

 
seizeBond(address holder, address operator, uint referenceID,  

         uint  x, address destination) : bool 
Seizes ​x​ amount of a bond ​referenceID​ as a result of ​operator​'s misbehaviour and 
sends it to ​destination​. Returns true if the value was seized successfully, and false 
otherwise. 
 
authorizeSortitionPoolContract(address, address) : bool 
Authorizes sortition pool for the provided operator. Returns true if the pool was created 
successfully, and false otherwise. 
 

www.certora.com 



 
 
 

 
 
authorizeOperatorContract(address operator,  address contract) : void 
Authorizes ​operator​’s ​contract​ to access staked token balance of the provided 
operator​. 
 
claimDelegatedAuthority(address source) : void 
Grant the sender the same authority as ​source​. 

www.certora.com 


