
Kin Token Audit

SEPTEMBER 11, 2017 | IN SECURITY AUDITS | BY OPENZEPPELIN SECURITY

The Kik team asked us to review and audit their Kin Token (KIN) contract. We looked at the code and now publish our results.

The audited contracts are in the kik-interactive/kin-token repository. The version used for this report is commit
3ed3a383b9304274ec22f41769716cadb854727f .

The code is good, very straightforward, and excellently tested.

Here’s our assessment and recommendations, in order of importance.

 Announcements Security Audits Events Perspectives Website 

https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://kik.com/
https://github.com/kikinteractive/kin-token/tree/3ed3a383b9304274ec22f41769716cadb854727f/contracts
https://blog.openzeppelin.com/announcements/
https://blog.openzeppelin.com/security-audits/
https://blog.openzeppelin.com/ozevents/
https://blog.openzeppelin.com/perspectives/
https://openzeppelin.com/
https://blog.openzeppelin.com/

Update: The Kik team followed most of our recommendations and updated the contract. The issues that weren’t fixed do not affect public sale
participants. The new commit is 376114bf92e4a1a245bc7bb2c8c84c02885db125 ._

Critical Severity

Revoking a vesting grant takes vested tokens away

The revoke function in VestingTrustee allows the owner to revoke an address’s vesting grant, in the case that it is revocable. This consists of
erasing the grant and transferring the remaining tokens to the owner. The function considers “remaining tokens” to be all those that haven’t been
unlocked and transferred yet. However, it is likely that remaining tokens should be considered to be only those which have not yet vested,
regardless of whether they’ve been transferred or not. Consider changing revoke to first transfer vested tokens to the grantee, and only the
remaining as a refund to the owner.

Update: The team assured us that, although they have not implemented our suggested change, the risk is mitigated by the fact that all vesting grants
will be made irrevocable as soon as possible after the sale and that revocation will be only possible by getting access to the multisig owner of the
contract. There is no risk for an irrevocable grant, so there would be no problem for investors after made irrevocable.

High Severity

Unexpected value for MAX_TOKENS_SOLD

The state variable MAX_TOKENS_SOLD in KinTokenSale represents the maximum number of tokens to be sold during the crowdsale, which is
defined to be 1 trillion according to the whitepaper (chapter 6, Kin token issuance). However, the value in the contract is 512192121951 (slightly
above half a trillion). Update this constant to reflect the value indicated in the whitepaper.

Update: The team pointed out that this number represents the amount that will be offered during the sale, while the remaining half of the 1 trillion
offered to the public has been sold in a presale._

Token ownership can be transferred while minting

The KinTokenSale contract allows the owner to transfer the token ownership to a different address at any moment, using the function
requestKinTokenOwnershipTransfer . Since the token is in a minting state during the sale (i.e. new tokens can be created by the owner), this harms

the trustlessness of the contract, as it would allow the owner to mint themselves an arbitrary number of tokens, against what was established in
paper.

A comment next to the function correctly states that transferring token ownership would prevent the token sale to continue operating. If such a
thing happened, the function acceptKinTokenOwnership would allow the sale to become the token owner again, and continue operating.

https://github.com/kikinteractive/kin-token/pull/4
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/VestingTrustee.sol#L90
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/VestingTrustee.sol#L151
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L33
https://kin.kik.com/papers/Kin_Whitepaper_V1_English.pdf
https://medium.com/kinfoundation/kin-tde-if-you-want-to-participate-you-must-register-by-september-9-9-00-a-m-et-2f1304a4aa4b
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L310
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L308-L309
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L316

However, in the meantime, an owner could end the minting phase of the token manually, violating the explicit requirement that grants be
distributed before minting is ended, and that this be done after the sale period.

We recommend to remove the functions requestKinTokenOwnershipTransfer and acceptKinTokenOwnership , as they are not needed and
compromise the correctness and security of the sale.

Update: The team replied that the owner will be a multisig wallet, which mitigates the risk. Due to time constraints, the functions will be kept as the
only method to pause the sale in an emergency.

All vesting grants are revocable

It should be noted that all vesting grants are revocable (indicated by the last parameter, true), including the large grant given to Kik. If a grant is
revoked, all of its vesting tokens are immediately transferred to the owner of VestingTrustee . Make sure that this is in fact desired.

Update: The team has clarified that this is a temporary measure so that possible errors can be fixed afterwards, and that all grants will be manually
made irrevocable as soon as possible.

Medium Severity

Participation caps can be altered mid-crowdsale

The functions setTier1Participants , setTier2Participants , and setHardParticipationCap allow the owner of the token sale contract to
modify the cap for any participant at any point in time, even after the crowdsale has started. To improve the public trust on the sale mechanics, it
is recommended that once the sale starts, all caps are frozen and cannot be modified. Consider adding an onlyBeforeSale modifier to these
functions.

Update: The team explained that this is intentional so that potential errors in the KYC process can be corrected by changing a participant’s tier at any
moment.

Possible to transfer more balance than necessary to VestingTrustee

It should be noted that it is possible to transfer more token balance than necessary to VestingTrustee . In that case, the only way to recover the
surplus is to create a new grant that allows to immediately unlock its full amount. Although this is not a problem in the context of the trustee
managed by the token sale contract, it could be inconvenient if VestingTrustee were to be used by itself.

Low Severity

https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinToken.sol#L51
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L257
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L310
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L316
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L285-L286
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L192
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L198
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L204

Pending state variables should be replaced by constructor parameters

The state variables WEI_PER_USD , KIN_FOUNDATION_ADDRESS , and KIK_ADDRESS are meant to be replaced before deployment by the updated
values (they are marked “ TODO ”). This is error prone, as one could forget to update them. Consider adding these variables as constructor
parameters to enforce that they be set at construction.

Update: The suggestion was accepted and it will be implemented soon.

Magic constants

Consider rewriting the operations involving the magic constant 100000000000 (0.1 trillion) in initTokenGrants of KinTokenSale . Instead of
calculating 60% of 10 trillions as 60 * 100000000000 , make use of the constant MAX_TOKENS (10 trillions) in the operation, in order to improve
clarity and maintainability. The same applies to the calculation of 30% in the same function .

Update: Fixed in this commit._

Unbounded loops

Functions addTokenGrant and deleteTokenGrant in KinTokenSale both iterate over the entire tokenGrantees storage array. If a large number of
tokenGrantees is added, then a call to either function may end up requiring more gas than the block gas limit, making it impossible to add or

remove any grantees. (See Gas Limit and Loops in the Solidity documentation.)

Consider adding a MAX_TOKEN_GRANTEES constant, set to a value which ensures that both addTokenGrant and deleteTokenGrant can execute
without consuming the entire block gas limit. Enforce in all calls to addTokenGrant that the total number of tokenGrantees is less than
MAX_TOKEN_GRANTEES .

Additionally, the loop in addTokenGrant is not needed, since there will never be a grantee address for which the previous check succeeds.

Update: Fixed in this commit._

Notes & Additional Information

Congratulations on writing such a thorough test suite! There are 620 tests in total, with most of them covering the integration of all contracts
into the token sale contract.

The documentation of grant in VestingTrustee does not state that its user should first do a transfer of tokens to the contract. Consider
making this explicit in the documentation. (Update: Fixed here.)

There is one use of var in the codebase, which infers the variable type from the right hand of the assignment. We recommend avoiding this
feature because in some cases it might infer a smaller integer type than the developer might think. It is best to be explicit regarding types; in

https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L38
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L86
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L87
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L138
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L142
https://github.com/kikinteractive/kin-token/pull/4/commits/ec89ff120dcbc80b116cf2bae61018059c10160e
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L148
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L165
http://solidity.readthedocs.io/en/latest/security-considerations.html#gas-limit-and-loops
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L148
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L153
https://github.com/kikinteractive/kin-token/pull/4/commits/77ac3eb20b2905be0df7d4626c95ecbf25d5534c
https://github.com/kikinteractive/kin-token/tree/3ed3a383b9304274ec22f41769716cadb854727f/test
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/VestingTrustee.sol#L51
https://github.com/kikinteractive/kin-token/pull/4/commits/8e127a5b3cfb08d6f7d5d5801b1e91ad29f244df
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/BasicToken.sol#L67
https://medium.com/zeppelin-blog/onward-with-ethereum-smart-contract-security-97a827e47702#c528

this case consider replacing it for uint256 . (Update: Fixed here.)

The name of the constant TOKEN_DECIMALS is misleading. While the decimals constant in the KinToken contract is set to the number of
decimal positions (18), the constant TOKEN_DECIMALS is set to 10**18 , i.e. one unit of the token. Consider either renaming the constant, or
changing its value to 18 and updating its usage across the contract. (Update: Fixed here.)

The comment in line 47 of KinTokenSale , regarding state variables startTime and endTime , mentions “blocks” but it should say
“timestamps.” (Update: Fixed here.)

The documentation of unlockVestedTokens indicates it has a return value, but it doesn’t. Remove the comment to avoid potential confusion.
(Update: Fixed here.)

Consider defining a helper function saleEnded to avoid the duplication in onlyDuringSale and onlyAfterSale . (Update: Fixed here.)

The variable tokensVested refers to tokens that have not yet vested. Consider renaming the variable to tokensVesting . (Update: Fixed here.)

endMinting fails silently when minting has already ended. Consider reverting the transaction instead.

There is a typo in Ownable , where it says perviously it should say previously. (Update: Fixed here.)

Consider using require(isMinting) in onlyDuringMinting , instead of revert , and the same in onlyAfterMinting , for more concise code.
(Update: Fixed here.)

Conclusion

One critical and three high severity issues were found and explained, along with recommendations on how to fix them. Some changes were
proposed to follow best practices and reduce potential attack surface.

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns as they relate to the Kin Token
contract. We have not reviewed the related Kin project. The above should not be construed as investment advice. For general information about smart
contract security, check out our thoughts here.

Security Audits

If you are interested in smart contract security, you can continue the discussion in our forum, or even better, join the team

If you are building a project of your own and would like to request a security audit, please do so here.

https://github.com/kikinteractive/kin-token/pull/4/commits/66eb8ac9652e36c8734f31d6c214645cc45ea789
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L27
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinToken.sol#L16
https://github.com/kikinteractive/kin-token/pull/4/commits/92d8f68189f6c0f910759b048a49951f2b31e929
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L47
https://github.com/kikinteractive/kin-token/pull/4/commits/6c83f4f8c09b425b13b5428736d0dd0e46dd129f
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/VestingTrustee.sol#L151
https://github.com/kikinteractive/kin-token/pull/4/commits/2048dcc532e1ab3af4b031075aca0655946a3fa9
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L93
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L102
https://github.com/kikinteractive/kin-token/pull/4/commits/b40a854239682234aabec144451b70b45b5f0005
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinTokenSale.sol#L274
https://github.com/kikinteractive/kin-token/pull/4/commits/b55a28ba47c2c71d3402df8fbb8acbb9cc88e5c5
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/KinToken.sol#L52-L54
https://github.com/kikinteractive/kin-token/blob/3ed3a383b9304274ec22f41769716cadb854727f/contracts/Ownable.sol#L46
https://github.com/kikinteractive/kin-token/pull/4/commits/ae0970572953447ff4c8fc3031d18e5bddc7e460
https://github.com/kikinteractive/kin-token/pull/4/commits/fc84a366cdf717fb3e7698684af5f174e1b169f8
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
http://forum.openzeppelin.com/
http://openzeppelin.com/jobs
http://openzeppelin.com/security-audits

