

Tinlake Contracts + Actions
Security Audit Report
Centrifuge
Final Report Version: 7 April 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

Specific Issues

Issue A: ERC20 Implementation’s ​Approve()​ Susceptible to Front-Running

Issue B: Incorrect Equality Checks

Issue C: Outdated Compiler Versions

Issue D: Ambiguous NULL Ownership

Issue E: Shelf Issue Function May Be Re-entered

Issue F: Division By Zero Is Unchecked In Safe Math

Suggestions

Suggestion 1: Author Test Suite for Registry Contract

Suggestion 2: Improve Documentation

Suggestion 3: Improve Consistency

Suggestion 4: Remove Redundant Code

Recommendations

About Least Authority

Our Methodology

Manual Code Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 1
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Centrifuge has requested that Least Authority perform a security audit of their Tinlake Platform, a smart
contracts framework on Ethereum that enables borrowers to draw loans against non-fungible assets. Any
assets represented on-chain as Non-Fungible Tokens (NFTs) are financed by issuing an ERC-20 token
against all of the collateral NFTs that are deposited into the Tinlake contracts.

Project Dates
● January 27 - February 7:​ Initial Review ​(Completed)
● February 11:​ Initial Audit Report delivered ​(Completed)
● March 5:​ Updated Audit Report delivered ​(Completed)
● April 1 - 3: ​Verification Review ​(Completed)
● April 7:​ Final Audit Report delivered ​(Completed)

Review Team
● Nathan Ginnever, Security Researcher and Engineer
● Emery Rose Hall, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Tinlake Platform followed by issue
reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Core Contracts

○ Tinlake Core Contracts:​ ​https://github.com/LeastAuthority/tinlake
○ Tinlake Math:​ ​https://github.com/LeastAuthority/tinlake-math
○ ERC721 - NFT: ​https://github.com/LeastAuthority/tinlake-title
○ Value Registry:​ ​https://github.com/LeastAuthority/tinlake-registry
○ Tinlake Auth:​ ​https://github.com/LeastAuthority/tinlake-auth

● Proxy Actions
○ Tinlake Actions: ​https://github.com/LeastAuthority/tinlake-actions
○ Tinlake Proxy:​ ​https://github.com/LeastAuthority/tinlake-proxy

Specifically, we examined the Git revisions for our initial review:

tinlake@05bfcd81bb71c9f3c8dc8161089ae5a673e0619a

tinlake-math@23ba2f6a1b0d23ebc8103508807fb0f709a574a8

tinlake-title@c02afb3a571be66cfa151b2234344374d735eb92

tinlake-registry@e022e3d756c4d7fa23becaed4c7fb543fc46171b

tinlake-auth@dc1bc196b5c1d24a543f613cab446ce62498420e

tinlake-actions@99219f891d9976ed3e0967d7f51a067ad2f5b6bb

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 2
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/tinlake
https://github.com/LeastAuthority/tinlake-math
https://github.com/LeastAuthority/tinlake-title
https://github.com/LeastAuthority/tinlake-registry
https://github.com/LeastAuthority/tinlake-auth
https://github.com/LeastAuthority/tinlake-actions
https://github.com/LeastAuthority/tinlake-proxy

tinlake-proxy@ab51c770a10ce15f337b79cd9957f2d027e44649

For the verification, we examined the Git revision:

tinlake@d4a3b98b86e17e8f54c7915b1d9b84db506ba816

tinlake-math@0b4d99fec6e2c37a5cc5d8c1aa20fd95b4cbc93c

tinlake-title@827ac8736ccca9b2229e49ec6aec3da0ea6f5da4

tinlake-registry@1e05ed629d5804136e5d29c7b1a777865e22b5bd

tinlake-auth@0d6c11a1a6cb8505d1c6e9be503240dc0f2a06ab

tinlake-actions@3dfcb815b4f982454a0500c12a8f4f2288e57834

tinlake-proxy@aea3948e19f67fab3728df955cb7b4c691f676f9​5

All file references in this document use Unix-style paths relative to the project’s root directory.

Supporting Documentation
The following documentation was available to the review team:

● Centrifuge Developer documents:
 ​https://developer.centrifuge.io/tinlake/overview/introduction/

● Tinlake Naxos Audit slides:
https://docs.google.com/presentation/d/1XyWHoNVJEhSYDWJkKypg63rWloDgZ2tcH8epHSoE7
JQ/edit#slide=id.g7582d8baba_0_98

● Tinlake Audit Kickoff slides:
https://docs.google.com/presentation/d/1chxnoHBJtRbK3dVFPo3vEm9WyQoJeVsm2N6oeehM
bmA/edit#slide=id.g6e26b0590b_0_1

● Tinlake Documentation HackMD:​ ​https://centrifuge.hackmd.io/hkpb7qqYTNiFSADz0rOGXQ?both

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impacts funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● Economic incentives: ensure token economics (monetary incentives to punish bad behavior and

reward good behavior) are included and functional;
● DoS/security exploits that would impact the contracts intended use or disrupt the execution of

the contract;
● Vulnerabilities in the smart contracts code;
● Protection against malicious attacks ​and other ways to exploit contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 3
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://developer.centrifuge.io/tinlake/overview/introduction/
https://docs.google.com/presentation/d/1XyWHoNVJEhSYDWJkKypg63rWloDgZ2tcH8epHSoE7JQ/edit#slide=id.g7582d8baba_0_98
https://docs.google.com/presentation/d/1XyWHoNVJEhSYDWJkKypg63rWloDgZ2tcH8epHSoE7JQ/edit#slide=id.g7582d8baba_0_98
https://docs.google.com/presentation/d/1chxnoHBJtRbK3dVFPo3vEm9WyQoJeVsm2N6oeehMbmA/edit#slide=id.g6e26b0590b_0_1
https://docs.google.com/presentation/d/1chxnoHBJtRbK3dVFPo3vEm9WyQoJeVsm2N6oeehMbmA/edit#slide=id.g6e26b0590b_0_1
https://centrifuge.hackmd.io/hkpb7qqYTNiFSADz0rOGXQ?both

Findings
General Comments
Tinlake is a complex system of customizable modular contracts meant to support independent
configurations for ERC-20 / ERC-721 minting and other financial functions (i.e. collateral governance or
portfolio risk management). It is apparent that careful thought was placed into the modules of this
system and that a good design pattern of customizability and upgradeability was applied throughout the
codebase. Generally, the code quality is very good and only has minor duplication of code oversights.

The Tinlake collateralized debt system makes use of real world assets represented as NFTs with variable
loan value, length, repayment schedules and interest rates. Given the complexity due to the broad
spectrum of possible use cases, it is difficult to understand all feasible scenarios involved in the modular
contracts provided and how they will operate under situations such as oracle failures, repayment failures,
asset seizure and loan reimbursement.

Because of this, it is important that both developers and auditors are able to comprehend these scenarios
in order to prevent the introduction of security vulnerabilities during events like failed loan repayments
that might take place. Our audit only found limited apparent vulnerabilities in the contract code, however,
it is suggested that further review be conducted to examine all possibilities of how the Tinlake contracts
will be used.

During the course of the audit, the Centrifuge team expanded the Tinlake system documentation by
including additional flow charts and explanations for how the overall components work together. Our
team found this aided in explaining the use of collateralized debt financial instruments on the blockchain.
Furthermore, the inclusion of additional scenarios outlined in​ ​Drop & Tin: An Intro to Tranches​ were
valuable in understanding how the modules work together over time. In addition to this list of possible
scenarios,​ ​we​ ​suggest continuing to expand on this documentation over time such that it adequately
covers other scenarios including different time frames for repayment, extreme cases where all loans
default or all assets are priced incorrectly, and the inability of an asset to identify a market in which it can
be sold in the event that the loan defaults.

A second step would be to build upon such a list with an adversarial analysis through threat modeling.
Although this is helpful activity for any system, it could be especially so for a complex system like Tinlake
where there are many different ways for the contracts to be used and documenting the scenarios can help
onboard reviewers and capture specific areas of risk.

Finally, given that real world events are difficult to model statistically in a comprehensive manner, it is
strongly suggested to continue conducting audits over periodically to identify new potential
vulnerabilities.

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: ERC20 Implementation’s ​Approve()​ Susceptible to Front-Running Unresolved

Issue B: Incorrect Equality Checks Resolved

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 4
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://develop.developer.centrifuge.io/tinlake/further-information/droptin/

Issue C: Outdated Compiler Versions Resolved

Issue D: Ambiguous NULL Ownership Unresolved

Issue E: Shelf Issue Function May Be Re-entered Resolved

Issue F: Division By Zero Is Unchecked In Safe Math Resolved

Suggestion 1: Author Test Suite for Registry Contract Resolved

Suggestion 2: Improve Documentation Resolved

Suggestion 3: Improve Consistency Resolved

Suggestion 4: Remove Redundant Code Resolved

Issue A: ERC20 Implementation’s ​Approve()​ Susceptible to Front-Running

Location

https://github.com/centrifuge/tinlake-erc20/blob/master/src/erc20.sol#L85

Synopsis

There are a few places in the Tinlake system that rely on the transfer of approved tokens. It may be
possible that some of these transfers could be done in such a way that the approver is left with an
unexpected balance. This depends on the ability or requirement of the approver to update their balance. If
this case is present then this issue recorded within​ ​[REC19]​ ​may be of relevance:

An ERC20 security issue, known as the "multiple withdrawal attack", was raised on GitHub and has
been open since November 2016. The issue concerns ERC20's defined method ​approve()​ which
was envisioned as a way for token holders to give permission for other users and dapps to
withdraw a capped number of tokens. The security issue arises when a token holder wants to
adjust the amount of approved tokens from ​N​ to ​M​ (this could be an increase or decrease). If
malicious, a user or dapp who is approved for ​N​ tokens can front-run the adjustment transaction to
first withdraw ​N​ tokens, then allow the approval to be confirmed, and withdraw an additional ​M
tokens.

Impact

High. Possible loss of tokens.

Preconditions

There must be an approval adjustment that is vulnerable to this attack.

Feasibility

Approval adjustments that could be vulnerable must be able to be acted upon by the approved party and
must be able to be spent quickly enough to make this feasible. An example of this may be in the lender
contract that mints tokens based on an approved currency amount. However, we are unsure if balance
adjustments to the approval can be made to incentivise the lender into acting on minting or burning in
favor of receiving or redeeming more currency than was expected.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 5
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/centrifuge/tinlake-erc20/blob/master/src/erc20.sol#L85
https://arxiv.org/abs/1907.00903

Technical Details

Full details of this attack, along with a number of approaches to mitigation, is contained in​ ​[REC19]​.

Mitigation

Enforce approval balance is set to 0 before adjusting an approval or CAS approved to eliminate the
possibility that the approved amount of a token is ever less or more than expected. See the paper linked in
the technical details for more in-depth mitigation details.

In addition, create detailed documentation of every token transfer that uses this method to ensure that
there are no cases where a party may conceal the intended approval amount of a token.

Status

The Centrifuge team has acknowledged the existence of the multiple withdrawal attack within the
approve() ​function and have decided not to deviate from the MakerDAO DAI stablecoin ERC 20
implementation that also includes this attack vector.

We strongly encourage the Centrifuge team to examine every possible way that a token’s approved
amount to a spender, whether user or contract, might need to be adjusted and whether or not it could be
possible for the multiple withdrawal attack to cause any amount of tokens to be spent unexpectedly. If
understanding every possible scenario that a token’s approval may need to be adjusted is not possible,
then we encourage the Centrifuge team to implement the suggested safety method to prevent unknown
or unforeseen situations.

Verification

Unresolved.

Issue B: Incorrect Equality Checks

Location

https://github.com/LeastAuthority/tinlake/blob/89adc6386e5e8bae73f88d6e2a92bb70f6c8f7df/src/borr
ower/pile.sol#L66

https://github.com/LeastAuthority/tinlake/blob/89adc6386e5e8bae73f88d6e2a92bb70f6c8f7df/src/borr
ower/pile.sol#L77

Synopsis

The condition ​now <= lastUpdated​ can never be less than ​now​. This requirement is placed on
decDebt()​ and ​debt()​, and given that ​lastUpdated​ is not initialized and defaults to 0, these
functions can not be called until after ​file()​ sets it to now. Given that any subsequent call to
incDebt()​ or​ debt()​ will always be after now unless within the same block, these functions may only
be called in the same block that ​file()​ is called. There is no documentation on the intended behavior of
these checks.

The condition ​now >= lastUpdate​ seems to be an unnecessary check as ​lastUpdate​ can only be set
to ​now,​ where ​now​ can either be within the current block and equal to ​lastUpdated,​or from a future
block and always greater than ​lastUpdated​.

Impact

The use of the less than operator will never be used. Without documentation as to why it is used, this will
lead to confusion in understanding this functionality.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 6
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://arxiv.org/abs/1907.00903
https://github.com/centrifuge/tinlake/blob/89adc6386e5e8bae73f88d6e2a92bb70f6c8f7df/src/borrower/pile.sol#L66
https://github.com/centrifuge/tinlake/blob/89adc6386e5e8bae73f88d6e2a92bb70f6c8f7df/src/borrower/pile.sol#L66
https://github.com/centrifuge/tinlake/blob/89adc6386e5e8bae73f88d6e2a92bb70f6c8f7df/src/borrower/pile.sol#L77
https://github.com/centrifuge/tinlake/blob/89adc6386e5e8bae73f88d6e2a92bb70f6c8f7df/src/borrower/pile.sol#L77

Remediation

The intended equality check might be ​now == lastUpdated​ for ​debt()​ and​ incDebt()​, to ensure
that a function is called within the same block. Document the purpose of this check.

Status

A ​commit that changes the equality check​ to the suggested remediation of ​== rather than <=​ has
been added.

Verification

Resolved.

Issue C: Outdated Compiler Versions

Synopsis

A number of contracts are using an outdated pragma. Some are as low as 0.4.23, such as the
dapphub/ds-note contract. In most other cases, the pragma is set to 0.5.3, which is still over a year behind
the current release.

Impact

The outdated compiler version can subject contracts to security issues fixed in newer compiler versions.

Remediation

Update all contracts to use the latest version 0.5.16 or 0.6.2 (at the time of this report).

Status

Commits have been accepted throughout the codebases, including the DS-Note dependency, which
enforce any build to use solidity >=0.5.15.

Verification

Resolved.

Issue D: Ambiguous NULL Ownership

Location

https://github.com/LeastAuthority/tinlake-auth/blob/master/src/auth.sol#L23

Synopsis

The ability to drain the ownership of a contract to 0 owners is an ambiguous way to disable functionality.
Auth is used similar to a 1 of N multisig, where wards may be added or removed and only one ward is
required to execute a function modified with Auth. It could become possible for the removal of all wards
from the state by calling ​deny()​. This would leave the contracts that depend on this authentication in an
unusable state.

Impact

All contracts that rely on the authentication could become null and unusable.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 7
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/centrifuge/tinlake/pull/326/commits/acf87320a289d7c907ef109a4d1f888b8877c5aa
https://github.com/centrifuge/tinlake-auth/blob/master/src/auth.sol#L23

Preconditions

The last owner or ward of the authenticated contract must deny themselves access by accident in order
for a contract that relies heavily on authentication to lose control, where or when it was not intended to
lose all ownership.

Remediation

Add a minimal amount of state that tracks the amount of wards that own a contract and ensure that it is
intentional if the amount of wards becomes 0. Add a function that explicitly declares the intended
functionality of removing all wards is to remove all functionality from a ward controlled contract.

Status

The Centrifuge team has stated that they are aware of the possibility that total ownership of a contract or
functionality could be inadvertently removed. However, they note that this is an unlikely edge case, as an
owner must remove all other owners and then lastly remove themselves. As a result, the Centrifuge team
does not intend to implement the suggested remediation as they consider the ability to remove all owners
from the contract with the ​deny()​ function an intended feature. We encourage the Centrifuge team to be
explicit about when and where it is intended to remove all owners to prevent any accidental cases, which
could potentially cause irreparable damage.

Verification

Unresolved.

Issue E: Shelf Issue Function May Be Re-entered

Location

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/shelf.sol#L112

Synopsis

Issue()​ in ​Shelf.sol​ calls the ​ownerOf()​ function of a supplied NFT. If a custom NFT is provided to
this function, the ​ownerOf()​ function may call back to ​issue()​ and update the state of the shelf
contract in unexpected ways.

Impact

There may be a case that an NFT is vetted and contains a custom malicious ​ownerOf()​ that will register
many NFT loans to the shelf contract. There may be other unintended state manipulations from
ownerOf()​.

Remediation

Modify ​ownerOf()​ with ​view​ so that it is unable to make state updates.

Status

A ​commit that modifies ​ownerOf()​ to be a view function and can no longer alter state upon re-entry has
been added to the NFT contract.

Verification

Resolved.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 8
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/shelf.sol#L112
https://github.com/centrifuge/tinlake/pull/326/commits/de5854b441b040d56761989a23d080063af3fab4
https://github.com/centrifuge/tinlake/pull/326/commits/de5854b441b040d56761989a23d080063af3fab4

Issue F: Division By Zero Is Unchecked In Safe Math

Location

https://github.com/LeastAuthority/tinlake-math/blob/master/src/math.sol#L34

Synopsis

Safe division requires checking that there is no division by zero. While the default behavior of Solidity is to
revert in this case as of compiler version 0.4.0, it reverts using an invalid opcode rather than a gas
preserving revert. The safeDiv provided in the math library for Tinlake does not do any checks for zero
division.

Impact

Any call to safe division that may divide by zero will throw an opcode that does not provide information as
to what happened and deplete the gas provided to the transaction.

Remediation

Place a require statement in ​safeDiv​ that ensures the divisor must be greater than zero, and supply an
error message if this is not the case.

require(y > 0, “Division by zero”);

Status

The ​pull request to the safe math library​ now requires that division by zero is not possible and an error
message is supplied.

Verification

Resolved.

Suggestions

Suggestion 1: Author Test Suite for Registry Contract

Location

https://github.com/LeastAuthority/tinlake-registry/blob/master/src/registry.t.sol

Synopsis

The test file for the registry contract contains stubbed test functions and does not actually implement a
test suite.

Mitigation

Author tests for the registry contract for better coverage.

Status

Unit​ ​tests for the registry ​have been committed​, which provide coverage of the functionality of the
registry.

Verification

Resolved.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 9
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/centrifuge/tinlake-math/blob/master/src/math.sol#L34
https://github.com/centrifuge/tinlake-math/pull/6
https://github.com/LeastAuthority/tinlake-registry/blob/master/src/registry.t.sol
https://github.com/centrifuge/tinlake-registry/pull/3/commits/315033e7ef0152a050cc687f09f355409909839c

Suggestion 2: Improve Documentation

Location

https://github.com/LeastAuthority/tinlake/blob/develop/src/lender/tranche/tranche.sol

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/shelf.sol

Synopsis

The overview documentation for Tinlake in the ​HackMD​ provides a good overview of the entire system,
including diagrams that show internal dependencies of the interworking modules. We suggest that the
internal dependencies of each module be further documented, specifically the events that may occur over
time that trigger the actions taken by these modules or oracles acting external to these modules.

We also strongly recommend Increasing documentation on the authentication system with information on
why each method is modified with wards. There are many wards throughout the system, some of which
are contracts while others are trusted oracles or potentially other permissioned roles. Adding
documentation to these wards will increase the ability to reason about where trust is being placed.

Furthermore, a few external methods are missing documentation. For example, there is no description of
the ​recover()​ and ​close()​ functions in the shelf contract. The ​operator documentation​ is also still
nonexistent. A few contracts also have minimal code comments (i.e. the shelf and tranche contracts
listed in the locations section above).

Mitigation

Create more documentation for all of the specific functionality of each Tinlake contract. In addition,
include more code comments (i.e. the rationale behind deployment strategies, inheritance, and ownership
of modularized components). Place a comment on each ward setting as that documents the role of this
permission.

Status

A ​pull request including a list of comments​ has been added to the codebase. As a result, the Tinlake
Developer Documentation​ now contains more information about the way modules interact, thus providing
a clearer understanding and easier comprehension for those who are new to the system. The Centrifuge
team has also notified Least Authority that they will continue to update the documentation, particularly as
additional examples and scenarios of possible events that may occur over time throughout the system
are made apparent.

Verification

Resolved.

Suggestion 3: Improve Consistency

Location

Byte string not used to select storage:

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/shelf.sol#L102

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/pile.sol#L118

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/collect/collector.sol#L84

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 10
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://developer.centrifuge.io/tinlake/overview/introduction/
https://github.com/centrifuge/tinlake/blob/develop/src/lender/tranche/tranche.sol
https://github.com/centrifuge/tinlake/blob/develop/src/borrower/shelf.sol
https://centrifuge.hackmd.io/hkpb7qqYTNiFSADz0rOGXQ?both
https://centrifuge.hackmd.io/3PYM3FtJQaWXC_Sx4ymbqQ#Operator
https://github.com/centrifuge/tinlake/pull/310/
https://developer.centrifuge.io/tinlake/overview/introduction/
https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/shelf.sol#L102
https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/pile.sol#L118
https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/collect/collector.sol#L84

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/ceiling/principal.sol#L33

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/ceiling/creditline.sol#L57

Byte string used to select storage:

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/price/pool.sol#L38

https://github.com/LeastAuthority/tinlake/blob/develop/src/lender/tranche/senior_tranche.sol#L55

https://github.com/LeastAuthority/tinlake/blob/develop/src/lender/assessor/base.sol#L79

Synopsis

In several instances, we found some inconsistency with design patterns, where optimization is the goal
for choosing a superior pattern (i.e. The ​file()​ functionality sometimes uses the byte string selector
with a single value approach and other times supplies all values with no selector). This could cause some
confusion in a client implementation as to which method to apply for various modules.

Mitigation

Choose to implement ​file()​ functions to always take a byte string to select the functionality of storage
so that it remains consistent.

Status

A ​pull request that replaces the functions​ that were not using the byte string selector with a version where
all functions are consistent has been added to the codebase.

Verification

Resolved.

Suggestion 4: Remove Redundant Code

Location

https://github.com/LeastAuthority/tinlake-math/blob/master/src/interest.sol#L28

https://github.com/LeastAuthority/tinlake-math/blob/master/src/interest.sol#L42

https://github.com/LeastAuthority/tinlake/blob/develop/src/root.sol#L65

Synopsis

We found redundant code in several locations:

The ​block.timestamp >= lastUpdated​ check in ​Interest#compounding()on line 28 ​is
redundant as it will always be checked again on line 42 in ​Interest#chargeInterest()​.

The function call that sets the distributor address in the collector contract is called twice within the same
function body and appears to be redundant. This is a simple oversight, and we suggest that more time is
spent ensuring that the code base is correctly linted and does not contain any unnecessary complexity.

Impact

This is not a security threat and only causes incoherency in the code.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 11
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/ceiling/principal.sol#L33
https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/ceiling/creditline.sol#L57
https://github.com/LeastAuthority/tinlake/blob/develop/src/borrower/price/pool.sol#L38
https://github.com/LeastAuthority/tinlake/blob/develop/src/lender/tranche/senior_tranche.sol#L55
https://github.com/LeastAuthority/tinlake/blob/develop/src/lender/assessor/base.sol#L79
https://github.com/centrifuge/tinlake/pull/327
https://github.com/centrifuge/tinlake-math/blob/master/src/interest.sol#L28
https://github.com/centrifuge/tinlake-math/blob/master/src/interest.sol#L42
https://github.com/centrifuge/tinlake/blob/develop/src/root.sol#L65

Remediation

Remove the check from ​Interest#compounding()​.

Remove the second call
to​DependLike(borrowerDeployer.collector()).depend(“distributor”, distributor_)​.

Status

A ​commit that removes​ the duplicate ​DependLike()​ code has been added.

A ​commit that creates​ an internal function for ​chargeInterest()​ to create an alternative execution
path that will not call the time check twice has been added.

Verification

Resolved.

Recommendations
We recommend that the unresolved ​Issues ​and​ Suggestions​ stated above are addressed as soon as
possible and followed up with a second verification by the auditing team.

We commend the Centrifuge team for expanding on the documentation such that it covers additional
scenarios and we encourage continuous improvement of the documentation so that it incorporates new
potential scenarios in addition to threat modeling.

We also recommend improved documentation on the​ ​ward system for a specific NFT deployment​,
including additional details on all permission levels for the example provided on ​SME invoices​. Further
clarification and documentation on the​ ​Events​ section would also help in providing more complete and
comprehensive documentation. These changes will simplify the effort to both further develop and audit
the codebase, therefore minimizing the risk that security vulnerabilities will go undiscovered​.

Finally, we recommend periodic security reviews to build upon this foundation and reduce the risk for new
vulnerabilities in the system.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 12
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/centrifuge/tinlake/pull/309/commits/db300d8691d30ce8bd098ff23f42c2ad2b8e0342
https://github.com/centrifuge/tinlake/pull/309/commits/https://github.com/centrifuge/tinlake-math/pull/7/files/b303aa6a37af6fa4b8331b0e3005c413d334ffa8#diff-ce05ad65afdfbd6d3732005c195928cd
https://developer.centrifuge.io/tinlake/contracts/deployments/#governance-functions-using-the-ward-pattern
https://developer.centrifuge.io/tinlake/tinlake-js/events/

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/​.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 13
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Tinlake Contracts + Actions | Centrifuge 14
7 April 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

