

Vesting Smart Contracts
Final Security Audit Report

Tezos
Report Version: 16 March 2019

Table of Contents

Overview

Coverage

Target Code and Revision

Manual Code Review

Findings

Code Quality

Vesting Contract

Michelson Implementation

Tezos Implementation

Issues

Issue A: Rejection of Valid Data

Issue B: Possible to Create Invalid Contracts

Issue C: Incorrect Error Locations

Suggestions

Suggestion 1: Documentation Inconsistencies

Other Observations

Insecure RPC Between Tezos-Client and Tezos-Node

Insecure Installation Process

Recommended Next Steps

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

2
This audit makes no statements or warranties and is for discussion purposes only.

Overview
The Tezos Foundation has requested that Least Authority perform a security audit of their Vesting Smart
Contracts, in preparation for the upcoming betanet and mainnet launches of Tezos.

The security audit was performed from June 8 - 14, 2018, by Johan Kjaer and Hannes Mehnert of the
Robur team with support from Ramakrishnan Muthukrishnan of the Least Authority team. This initial
report was issued on June 14, 2018. An updated report following the verification phase has been
delivered on December 14, 2018. A final report following a secondary verification conducted based on the
responses​ provided by Tezos ​(Tezos Foundation Comments on the Least Authority Vesting Smart
Contracts Audit Report, 26 February 2019)​ was issued on March 16, 2009.

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Tezos Vesting Smart Contracts
followed by issue reporting, along with mitigation and remediation instructions outlined in this report. The
following code repositories are in scope:

● https://gitlab.com/tezos/tezos/merge_requests/368
● https://gitlab.com/tezos/tezos/tree/vesting-contracts

Specifically, we examined the Git revisions:

73e87e7a42a9137dd132e5958fa727471e0d9ca1

All file references in this document use Unix-style paths relative to the project’s root directory.

Manual Code Review
In manually reviewing all of the contract code, we looked for any potential issues with code logic, error
handling, and interaction with contracts that are dependencies. We also considered areas where more
defensive programming could reduce the risk of future issues and speed up future audits. Although our
primary focus was on the contract code, we examined some dependency code and behavior when it was
relevant to a particular line of investigation.

Our investigation focused on the following areas:

● Any attack that impacts funds, such as the draining or manipulating of funds.
● Other ways to exploit contracts, including potential ways to disrupt the execution of the contract

(Denial of Service).

We also manually went through the ​vesting-multisig​ contract step-by-step, using the description of
Michelson to infer the current stack, verified the input handling, and that the comments documenting the
behaviour and invariants of the contract corresponded to the actual code.

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

3
This audit makes no statements or warranties and is for discussion purposes only.

https://drive.google.com/open?id=1lX-yJJ_o1fEjC-XN6FTUr1c2vZUEUrCl
https://gitlab.com/tezos/tezos/merge_requests/368
https://gitlab.com/tezos/tezos/tree/vesting-contracts

Findings
Code Quality
The stack-based DSL Michelson is concise, and well documented, although we found some
inconsistencies between documentation and implementation, as noted in ​Suggestion D​.

The cost model of how many instructions a contract may execute and how much storage it may use does
not seem to be documented. In contrast to earlier smart contract languages, Michelson avoids partial
executions of contracts, which causes issues in Ethereum. For example, by specifying that a contract acts
like an atomic transaction, the results either in failure or in a list of "internal operations" to be performed -
dealing with transfer of tez etc. - and storage. These internal operations are executed in a batch once the
contract execution finished.

Vesting Contract
A vesting contract is a contract in which funds can be deposited. A vesting balance - that increases at a
configurable vesting interval by a configurable vesting amount - can be transferred if a threshold of
signatures sign such an operation.

Both the threshold and the keys are configurable, and there are two levels: ​N​ out of ​M​ key lists have to
sign an operation, where each key list requires ​P​ signatures out of ​Q​ keys.

Another operation is "​pour​", where a single key can be configured that is allowed to transfer funds to a
single configured contract. While the vesting amount and interval can only be specified at origination time
of the contract, the ​pour​ information, keys and thresholds, and the delegate can be changed dynamically.
Each of these changes require sufficient group signatures.

A single operation, "​vest​", can be executed without any signature. "​Vest​" checks whether the current
timestamp is greater than the stored next vesting timestamp, and increases the vesting balance by the
vesting amount, and the next vesting timestamp by the vesting interval.

The implementation of vesting contracts uses a replay counter (initially zero), stored in storage, and
incremented after each successful signed operation (pour, delegate, change keys, change pour). If the
contract execution fails, due to gas limit, insufficient signatures, etc., the replay counter is not
incremented.

The signatures are applied to the hash of the operation, e.g. transfer is a signature over:

(Pair (Left (Left (Pair receiver amount)) (Pair contract_address replay))

Other operations have a different structure - "​(Left (Right ..))​" - but always include the second pair.

We consider this a safe method to sign operations without the possibility to reuse a signature for a
different operation.

Before a transfer, the amount to be transferred is compared to be smaller than or equal to the current
balance of the contract, and also to be smaller than or equal to the current vesting balance. If one of the
checks fail, contract execution is aborted.

Michelson Implementation
Michelson is implemented as a domain-specific language in OCaml, a memory-safe programming
language. The Michelson operations leverage OCaml's GADT mechanism to provide strong typing of the

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

4
This audit makes no statements or warranties and is for discussion purposes only.

parameters. This is an excellent design decision for a contract language since it provides a clear
specification of the interface.

Michelson's integers and natural numbers use the multiple precision arithmetic library ​gmplib ​(via the
zarith​ OCaml library), and thus do not overflow/underflow, but instead may lead to out of memory
exception. Using zarith is a good decision, since the built in integer types in OCaml have silent
underflow/overflow semantics , which can cause issues in applications where correct results are 1

important.

Tezos Implementation
The Tezos code base makes use of a limited interface, ​tezos-stdlib​, to the OCaml standard library.

This is a very sensible decision, since the default compiler-provided standard library itself contains a
plethora of functions that raise exceptions and behave unpredictably.

Notably Tezos avoids ​polymorphic comparison​, a functionality widely regarded as problematic by the
OCaml developer community since it can lead to violations of type abstractions and is a common source
of bugs in OCaml applications.

The code is well organized and concise; following Ethereum best practices and avoids known bugs such
as re-entrancy; and it does not depend particularly on economic assumptions about what is or is not in the
rational self interest of traders.

Issues
We list the issues we found below.

ISSUE / SUGGESTION STATUS

Issue A: Rejection of Valid Data Unresolved

Issue B: Possible to Create Invalid Contracts Unresolved

Issue C: Incorrect Error Locations Unresolved

Suggestion 1: Documentation Inconsistencies Partially Resolved

Issue A: ​Rejection of Valid Data

Synopsis

A vesting contract which is executed with ​N​ / ​M​ signatures, where an additional invalid signature is
provided, fails to execute, since any invalid signature directly leads to failure.

Impact

Aborting upon encountering an invalid signature de facto permits a single signer to "veto" the execution.

Preconditions

The "attacker" must be able to provide an invalid signature (i.e. be part of ​M​).

1 ​http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#1_Integerarithmetic

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

5
This audit makes no statements or warranties and is for discussion purposes only.

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#1_Integerarithmetic
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#1_Integerarithmetic

Technical Details

An example test script is provided as ​rejecting-nplusx-signatures.sh​, which attempts a transfer with two
valid and one invalid signature, where the requirement is 2 valid signatures.

Mitigation

While it might be useful to warn about invalid signatures, the contract should execute as long as the
threshold is met.

Tezos Response

This issue does exist, but since the fault is attributable and since it is possible to re-submit the request
without the invalid signature, it is not a viable vector for denial of service. This issue would be more
significant for contracts involving a larger number of potential signers.

Status

The change request was closed without the changes being merged
(​https://gitlab.com/tezos/tezos/merge_requests/368/​) into the master branch of the Tezos codebase.
The code appears to have been abandoned. While we understand the Tezos development team feels this
is not a significant issue, we still recommend this be resolved.

Verification

Unresolved.

Issue B: ​Possible to Create Invalid Contracts

Synopsis

It is possible to create contracts that can be baked, but always fail on execution.

Impact

This can lead to issues where invalid contracts are mistakenly activated, especially if they are
automatically generated by external tools such as web services or compilers from high-level languages.

If the problem with the contract is only identified at a later stage, this can lead to "frozen funds" that
cannot be recovered.

Technical Details

1. An instance of this issue can be triggered (see ​ill-formed-signature-list-for-transfer.sh​) by a long
key list, which is accepted by the initial bake, but any attempt to execute an operation leads to ​gas
limit exceeded​.

2. Another example is provided in ​ill-formed-timestamp.sh​ in which the vesting interval is set
to ​40962844799​ seconds (which is the maximum range of the timestamp type due to usage of
the calendar library) and after one vesting operation, any other vesting leads to ​"Fatal error:
ill-formed data"​.

Mitigation

Upon origination of a vesting contract, the required gas for verifying the multiple signatures could be
extrapolated and if above a certain threshold, the contract could be rejected.

To mitigate the ​ill-formed timestamp example​, it should be ensured that data written to the store can
always be read and interpreted correctly.

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

6
This audit makes no statements or warranties and is for discussion purposes only.

https://gitlab.com/tezos/tezos/merge_requests/368/

Tezos Response
This is more interesting because it is valid for all smart contracts. The mitigation is more complex. It is a
decision of Tezos to build a Turing complete language for its smart contracts. This allows our users to
create almost any contract they can imagine, at the cost of making it harder for us to prove properties
before testing. Determining statically the properties of the program before running it is an open research
problem, and we are constantly working in this domain through formal verification and static analysis to
prove the desired properties.

Status

The change request was closed without the changes being merged
(​https://gitlab.com/tezos/tezos/merge_requests/368/​) into the master branch of the Tezos codebase.
The code appears to have been abandoned. The Tezos development team has communicated that it has
plans to address this issue through formal verification, but have not yet completed the process at this
time.

Verification

Unresolved.

Issue C: ​Incorrect Error Locations

Synopsis

When a vesting operation fails due to the next vesting timestamp being greater than the current time, the
error location is reported incorrectly.

Impact

This can lead to confusion of the developer who attempts to debug their contract.

Technical Details

The attached ​incorrect-error-loc.sh​ exercises this behaviour and reports:

At line 131 characters 17 to 21, script reached FAIL instruction.

The contract dump including line numbers shows a ​SWAP ​operation at ​line 131​.

It is more likely that the ​ASSERT​ in ​line 127​ caused the ​FAIL​.

Mitigation

Tracking error locations more precisely while parsing and interpreting contracts should be done.

Tezos Response

There is a bug in that the actual michelson parser does not track macro locations correctly. It is currently
being rewritten by a developer who is aware of this issue and will fix it.

Status

The change request was closed without the changes being merged
(​https://gitlab.com/tezos/tezos/merge_requests/368/​) into the master branch of the Tezos codebase.
According to the Tezos development team, the Michaelson parser is in the process of being rewritten, but
has not yet been completed.

Verification

Unresolved.

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

7
This audit makes no statements or warranties and is for discussion purposes only.

https://gitlab.com/tezos/tezos/merge_requests/368/
https://gitlab.com/tezos/tezos/merge_requests/368/

Suggestions

Suggestion 1: ​Documentation Inconsistencies
While reading the documentation for Michelson (whitedoc/michelson.rst), we noticed some shortcomings
of the specifications. The Tezos development team has reported to us that the documentation is in the
process of being updated and we’ve noted specifics in this section.

We list the inconsistencies reported and the current status in order of appearance:

Section V – Operations

The ​ITER​ construct (here on lists, but the same applies for set and map) is described as:

ITER​ body: Apply the body expression to each element of a list. The body sequence has access to
the stack.

:: (list 'elt) : 'A -> 'A

iff body :: ['elt : 'A -> 'A]

> ITER body / { a ; <rest> } : S => body ; ITER body / a : {
<rest> } : S

> ITER body / {} : S => S

In the first case, we read this that body is executed with the stack ​a : { <rest> } : S​, while the
implementation executes body with the stack ​a : S​, and again with the head of ​<rest>​ until ​<rest>​ is
the empty list.

Section V – Status

Our suggestion remains that this should be elaborated on in the Michelson Whitepaper to prevent such
confusion from arising.

Section V – Verification

Unresolved.

--

Section VI - Domain specific data types

While the ​tez ​unit is described early in the specification, the ​mutez ​unit (1 / 1,000,000​th​ of a ​tez​) is not
described, and only briefly mentioned in the section that gives examples of value specifications. We
expected it to be described in this section.

Section VI – Status

The following commits address this item by changing the mention of to the "tez" unit throughout the
document to reference the "mutez" unit instead:

15c8c7af869a9e6b0c8bee15f642e7c8eae01f2f

15c8c7af869a9e6b0c8bee15f642e7c8eae01f2f

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

8
This audit makes no statements or warranties and is for discussion purposes only.

5e4bd12d3bbebf523c6b0ab1413586662ff3c867

bf75c86e0ad6b86b36aceb999de885c4ab67dc89

Section VI – Verification

Resolved.

--

Section VII - Domain specific operations

1. Under ​"Operations on Tez"​ it is explained that ​"Tez are internally represented by a 64 bit signed
integer."

In the implementation, Tez are internally represented as ​mutez​, which are in turn represented
using only the positive part of OCaml's ​int64​ data type (which is a 64-bit signed integer).

It follows that it would be more accurate to explain Tez as backed by a signed 43-bit unsigned
integer, ie ​log​2​(2​63​ / 1,000,000)​.

2. The ​INT​ operation does not seem to be documented. From reading the implementation it looks
like this the documentation should explain that the INT operation transforms the type of the NAT
value at the top of the stack to an INT type.

Section VII – Status

1. Addressed by commit ​15c8c7af869a9e6b0c8bee15f642e7c8eae01f2f​ by correcting "Tez"
-> "Mutez".

2. Commit ​15c8c7af869a9e6b0c8bee15f642e7c8eae01f2f​ removes the mention of the "INT"
operation from the syntax definition at "XI - Full grammar", but as of commit 24b0ab4b (master
on November 27th 2018) "INT" is still referenced as an instruction in "X - Annotations" under the
"Variable Annotations" subsection (line 2125).

It also seems to still be mentioned in docs/api/rpc_proposal.rst, and to be implemented in
src/proto_alpha/lib_protocol/src/script_ir_translator.ml and michelson_v1_primitives.ml in the
same directory.

Similarly the "Variable Annotations" section mentions a "IS_NAT" instruction, but that is not
mentioned anywhere else.

Yet it seems to implemented as "ISNAT" (without the underscore) in
src/proto_alpha/lib_protocol/src/michelson_v1_primitives.ml and in use by several test cases
(cps_fact.tz, slices.tz) and mentioned in docs/api/rpc_proposal.rst.

Section VII – Verification

Partially resolved.

--

Section IX - Concrete Syntax (of Michelson)

1. It seems like there is a typo in this sentence: ​"1,234,567.0" means 1234567​89​ tez​. We believe it
should read: ​"1,234,567.0" means 1234567 tez​.

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

9
This audit makes no statements or warranties and is for discussion purposes only.

2. It would seem like the author intended to write ​"RFC 3339"​, but left out a ​"3"​ in this sentence:
"timestamps are written using RFC 339 notation"​.

Being precise when referencing external technical specifications is important since it eases the
task of understanding the project.

Section IX – Status

1. Addressed by commit ​15c8c7af869a9e6b0c8bee15f642e7c8eae01f2f

2. Addressed by commit ​5693ac2fb

Section IX – Verification

 Resolved.

Other Observations
The following section details observations that were not in the scope of this audit, but that we
nonetheless made, and believe should be mentioned.

Insecure RPC Between Tezos-Client and Tezos-Node
The communication between ​tezos-client​ and ​tezos-node​ is done via a HTTP+JSON API, to achieve this
the OCaml libraries ​cohttp​ (HTTP) and ​conduit​ (transport-agnostic communication channels) are used.

Conduit supports TCP and TLS - either using OCaml's TLS library or OCaml's binding to OpenSSL - and
tezos-client​ and ​tezos-node​ have a flag to enable TLS. By default, TCP is used for this communication.
When conduit is used on the server side, a provided private key and X.509 certificate are used, while the
conduit client side ​does not verify​ the server certificate. This means the communication between
tezos-client​ and ​tezos-node​ can be compromised by a man-in-the-middle attacker.

We recommend that Tezos implements certificate verification, either a ​chain of trust​ or verification of
certificate/public-key fingerprints.

A workaround for an initial release might be to restrict the ​tezos-client​ to only communicate with
localhost​.

Tezos Response

We have mitigated this issue to some extent by the documentation change identified, recommending that
communications be restricted to localhost. We are waiting on cohttp to support TLS authentication, but
are investigating other RPC mutual authentication.

Status

The temporary workaround suggested in our initial report (restricting the listener to the localhost
loopback interface) was added to the documentation in commit id
f626e9d6ae7d83c6f6f4af2cfeb3a84b17dfcd28​. This document recommends to protect the
tezos-node control interface from external connections, but does not prevent local applications running in
different execution contexts from accessing it.

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

10
This audit makes no statements or warranties and is for discussion purposes only.

Our recommendation remains that Tezos makes mutually authenticated RPC mandatory, which would
both protect against same-host attackers and re-enable the possibility to have the node listen on the
external network interfaces if Tezos should wish to do so.

Verification

Partially resolved.

Insecure Installation Process
The installation instructions for Tezos currently contains a number of insecure steps where the user is
vulnerable to man-in-the-middle attacks.

These include accessing cloning code from ​gitlab.com​ without verifying the authorship, and installing
dependencies from OPAM (the OCaml package manager) which does not verify authorship of the code it
installs. This leaves the users of Tezos in its current state vulnerable to compromise by malicious
attackers, and we recommend that this be remedied before a Tezos version intended for public
consumption be released.

We recommend that the Tezos developers start signing their committed code cryptographically using the
code signing capabilities built into the ​git​ source control utility, this can be done with ​git-tag --sign​ for
tags/releases, and ​git-commit --gpg-sign​ for commits. The signing keys used by trusted developer
should be published in a way that makes updates to the list of keys transparent, for example on
keybase.io , or in an append-only log backed by a reputable blockchain. 2

While an early draft proposal for package signing for OPAM exists, in the meantime, the OCaml
dependencies could be declared in a way that allows users to install them from their operating system's
package manager (from Debian's package repositories, for example), or they could be vendored inside the
Tezos repository as ​git subtrees​ pinned to specific revision hashes.

The commits updating these pinnings could then be signed with ​git​ by the Tezos developers, establishing
a "chain of trust."

The OCaml compiler itself presents another problem since their releases are not cryptographically signed.
This unfortunately makes usage of OCaml inherently insecure, since there is no safe way to install the
OCaml compiler, but using packages signed by OS vendors would at least make targeted attacks harder.

Tezos Response

This is an area of active improvement. We already started signing our commits, on release, we have the
intention to sign tags and downloadable archives, and we will improve our handling of external
dependencies. The opam repository has been pinned with sha256. Additionally, we are investigating other
ecosystem-level ways to handle code signing, audit reporting, and interoperability.

Status

Most of the git commits to the master branch are now signed by authors of the Tezos project using
OpenPGP keys, as can be witnessed starting from commit
4a436c2f18ffb84b87e8cd85ed45eedb584efa2c​.

We did not see signs of the documentation having been updated with instructions to validate these
signatures, nor did we find a list of contributors whose keys are supposed to be trusted to submit
commits. We would expect this information to be available in e.g. docs/introduction/howtoget.rst which
details the installation process.

2 ​https://keybase.io/

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

11
This audit makes no statements or warranties and is for discussion purposes only.

https://keybase.io/

The build process invokes a script called `install_build_deps.sh` that sources another script called
`versions.sh` that specifies a commit hash of the opam repository that tezos controls with all the build
dependencies. When it is necessary to change the dependency versions, the admin manually refreshes
that repository and updates the commit hash variable.

Verification

Partially resolved.

Recommendations
We recommend that the unresolved ​Issues ​and​ Suggestions​ stated above be addressed as soon as
possible in addition to continuing discussions on all of the ​Other Observations​ listed above.

In future security audits, we strongly suggest that audit results are responded to in a more timely manner
and verification is performed within a reasonable time frame of the initial review and delivery of the initial
audit report. Over time, it becomes increasingly difficult for auditing teams to contribute value if the focus
becomes on the code diffs of a significantly changed codebase (due to further development over time)
and not the security issues themselves. Prompt responses can better facilitate meaningful auditor input
throughout future development releases.

Security Audit Report | Tezos
2019 Least Authority TFA GmbH

12
This audit makes no statements or warranties and is for discussion purposes only.

