

TzBTC
Security Audit Report
Tezos Foundation
Final Report Version: 13 March 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Areas of Concern

Findings

General Comments

Specific Issues

Issue A: Lack of Generic Multisig Tests

Issue B: Generic Multisig May Update Owner Set Improperly

Issue C: Multisig Parameters Could Be Improperly Constructed

Suggestions

Suggestion 1: Improve Documentation

Suggestion 2: Consider Protecting Against an Accidental Update to a Malicious Valid Address

Recommendations

About Least Authority

Our Methodology

Security Audit Report | TzBTC | Tezos Foundation 1
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Tezos Foundation has requested that Least Authority perform a security audit of the following:

● TzBTC​ (BTC-backed token on Tezos): Enables the compliant issuance of a fully Bitcoin-backed
token on the Tezos blockchain while aiming to eradicate the risks of a single-point-of-failure. This
is achieved by dividing the various tasks into keyholders that are responsible for the custody of
BTC and the issuance of respective TzBTC, based on an m-out-of-n multi-signature setup and
regulated financial intermediaries that act as gatekeepers to ensure compliance with
money-laundering and terrorist financing legislation.

Project Dates
● November 25 - December 18​: Initial Review ​(Completed)
● January 3​: Initial Audit Report delivered ​(Completed)
● February 24-27:​ Verification Review ​(Completed)
● February 28: ​Final Audit Report delivered ​(Completed)
● March 13: ​Updated​ ​Final Audit Report delivered ​(Completed)

Review Team
● Ramakrishnan Muthukrishnan, Security Researcher and Engineer
● Sajith Sasidharan, Security Researcher and Engineer
● Mirco Richter, Cryptography Researcher and Engineer
● Nathan Ginnever, Security Researcher and Engineer
● Emery Rose Hall, Security Researcher and Engineer
● Alex Leitner, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of TzBTC followed by issue reporting,
along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● TzBTC:​ Tezos Foundation shared ​tezos-btc.tar.gz​ with Least Authority on 7 November 2019

For the TzBTC Contract, we examined the version contained within ​tezos-btc.tar.gz​ with a
SHA256SUM:

af676f6ec4df9e6898533f01b8eac470cfdf3348397338a73722cfc6c398951f

For our follow up verification , we examined the version contained within ​tezos-btc-3a785c4.zip ​with a
SHA256SUM:

​8f920771e4d11db5773999e29927c44bed6a36ba21999bd617b32019d7af4950

All file references in this document use Unix-style paths relative to the project’s root directory.

Security Audit Report | TzBTC | Tezos Foundation 2
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impacts funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● Economic incentives: ensure token economics (monetary incentives to punish bad behavior and

reward good behavior) are included and functional;
● DoS/security exploits that would impact the contracts intended use or disrupt the execution of

the contract;
● Vulnerabilities in the smart contracts code;
● Protection against malicious attacks ​and other ways to exploit contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
As part of our investigation and analysis, we built the Haskell code that generated two executables:
tzbtc​ and ​tzbtc-client​ followed by deploying the code using ​tzbtc-client​ that originated the
version V0 of the contract and upgraded it to V1. Our review of the Lorentz code included looking at each
entry point, running tests, reviewing the upgrade mechanism for vulnerabilities, and examining methods to
get the upgraded contract from the original contract and deserialize it.

A considerable amount of the review time was applied to surveying how upgrades work and what can be
modified (code, parameters, number of parameters in an upgraded entrypoint, types of the parameters in
the upgraded code, etc.) and what safety guarantees are or are not provided during the upgrade.

Although the use of a statically typed language, Haskell (with many dependent typing features turned on),
and the target typed language, Michelson, helps to arrive at correct programs, we recommend the use of
formal verification tools. It would be useful to derive properties from these contracts and add them in the
form of property tests.

We found the Michelson code difficult to read because of its low level nature. There are certain useful
idioms and patterns that become apparent only after one has read a substantial portion of the code.
Some of them seem to be captured by the Morley’s Macro module. Even with that, we found Lorentz code
difficult to understand.

We spent a significant portion of time asking questions that could be addressed with the availability of
better documentation. We recommend that additional documentation be written to incorporate answers
to common questions. The ​Michelson web page​ does not document common idioms. However, the 4-part
Michelson tutorial was very helpful in becoming familiar with the other tools.

Security Audit Report | TzBTC | Tezos Foundation 3
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://tezos.gitlab.io/whitedoc/michelson.html

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: Lack of Generic Multisig Tests Resolved

Issue B: Generic Multisig May Update Owner Set Improperly Resolved

Issue C: Multisig Parameters Could Be Improperly Constructed Resolved

Suggestion 1: Improve Documentation Resolved

Suggestion 2: Consider Protecting Against an Accidental Update to a
Malicious Valid Address

Unresolved

Issue A: Lack of Generic Multisig Tests

Location

/tezos-btc/contracts/MultisigGeneric.tz

/tezos-btc/src/Lorentz/Contracts/TZBTC/MultiSig.hs

Synopsis

Tests that confirm the intended functionality of the generic multisig contract were not present in the code.
Since there are no tests on the multisig contract itself, it is assumed that tests exist elsewhere. It is
difficult to understand the functionality of the multisig contract without proper tests.

Impact

The multisig contract will be the controlling address of the token and unexpected behavior can cause loss
of control of the token.

Mitigation

We suggest writing proper tests on the multisig contract.

Status

Multisig tests for various cases have been added, located at ​test/Test/MultiSig.hs​. There are a few
incorrect comments due to copy/paste from a previous test (“Use Alice's public key but bob's secret.”) at
Line 168, 206, 246.

Verification

Resolved.

Issue B: Generic Multisig May Update Owner Set Improperly

Location

/tezos-btc/contracts/MultisigGeneric.tz

Security Audit Report | TzBTC | Tezos Foundation 4
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Synopsis

Change_keys​ allows for changing control of the multisig contract by changing the owner keys. The
/tzbtc/README.md points to a multisig contract with functionality to update the signing accounts
existing on the multisig where there could be issues with locking the contract’s ownership out at the
multisig level.

Impact

Control will be lost if there is not a proper modifier to limit the ability of ownership change to prevent the
case where there are no owners of the multisig.

Preconditions

An improper call to update the owner set to a null set or a set below the threshold of necessary signers to
execute a block of code. It appears that the update function simply replaces state with the incoming
transaction. If a null set of keys is updated to that state the contract and everything it owns will render
useless.

Feasibility

This mistake could happen easily if no checks are provided.

Remediation

Consider adding checks to the ​change_keys​ function that will not allow for a null set or lower than
required threshold set of owners to be introduced.

Status

A new command called ​deployMultisigContract​ has been added and a corresponding eponymous
function in ​src/Client/IO.hs​ checks whether the passed threshold is a non-zero value and is lower
than or equal to the list of keys.

Verification

Resolved.

Issue C: Multisig Parameters Could Be Improperly Constructed

Location

/tezos-btc/contracts/MultisigGeneric.tz

/tezos-btc/src/Lorentz/Contracts/TZBTC/MultiSig.hs

Synopsis

We did not identify any tests for the multisig wallet that could be used to control sensitive operations on
the token. If a generic multisig wallet is used, then signers may unknowingly process an unexpected
transaction.

Impact

The parameters may be improperly constructed before signing which could lead to signatures on
transactions that were not intended (i.e. an improper update address). If the multisig contract owns the
token, this could cause total loss of control.

Security Audit Report | TzBTC | Tezos Foundation 5
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Feasibility

The client provides packages and documentation about ways to execute human readable multisig
transactions for each multisig function that the general contract wraps so that the likelihood of this
mistake happening is reduced.

Technical Details

The contract allows for the “generic multisig” contract to control execution of generic functions on the
contract system. The inputs to this multisig signing will be Michelson code snippets that are difficult to
read. We did not identify any client side tools that will help the signers understand the code that is being
proposed to the multisig wallet.

Mitigation

Consider using a ​multisig wrapper contract​ that only allows signing specific parameters.

Status

The generic multisig contract that allowed signers to act as a blockchain entity, executing arbitrary code,
has been replaced with a specific multisig contract that only executes what the wrapped contract
expects.

Verification

Resolved.

Suggestions

Suggestion 1: Improve Documentation

Location

README.md

Synopsis

We found there to be a lack of documentation for common idioms, which is not included on the ​Michelson
web page.

Mitigation

We recommend including documentation that would allow new contributors and reviewers to understand
the entire system more easily and efficiently.

Status

A considerable amount of information on using the tezos-client has been added to the README.md. The
generated documentation (using the command “​tzbtc printContractDoc​”) has additional
information and pointers on upgradeable contracts. The Morley ​upgradeable contracts documentation
has also been updated.

Verification

Resolved.

Security Audit Report | TzBTC | Tezos Foundation 6
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://medium.com/tqtezos/multisig-contracts-from-generic-to-wrapping-906d2a783fd3
https://tezos.gitlab.io/whitedoc/michelson.html
https://tezos.gitlab.io/whitedoc/michelson.html
https://gitlab.com/morley-framework/morley/-/blob/a30dddb633ee880761c3cbf1d4a69ee040ffad25/docs/upgradeableContracts.md

Suggestion 2: Consider Protecting Against an Accidental Update to a
Malicious Valid Address

Location

Lines 200 and 216 in:

src/Lorentz/Contracts/TZBTC/Impl.hs

Synopsis

The current two step process to update the ownership of the contract is not a full solution to improper
format in an owner update in the case of an accidental update to a malicious, but valid, address.

Mitigation

We recommend investigating alternative protections against this. An accidental update is only feasible if
the owner account is compromised such that the attacker can set the new owner to themselves.

Status

Tezos states that the current two step procedure is sufficient. We recommend that our suggested
mitigation of investigating alternative protections be reconsidered.

Verification

Unresolved.

Recommendations
We recommend addressing the errors noted in the Status section of ​Issue A​ and reconsider the use of
alternative protections in ​Suggestion 2​.

Otherwise, we commend Tezos for addressing the ​Issues and Suggestions​ in this report and recommend
that future development releases continue to apply security best practices and that additional security
audits be conducted to address any potential issues and vulnerabilities.

Security Audit Report | TzBTC | Tezos Foundation 7
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/​.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create

Security Audit Report | TzBTC | Tezos Foundation 8
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | TzBTC | Tezos Foundation 9
13 March 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

