

Atomex Smart Contracts
Security Audit Report
Tezos Foundation
Final Report Version: 6 May 2020

Table of Contents

Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Areas of Concern

Findings

General Comments

Specific Issues

Issue A: Updating Ownership of Solidity Fiat Token to Mistaken Address

Issue B: Atomic Swap (Tezos) and FA1.2 Contracts Have Unclear or Absent Error Messages

Issue C: Inconsistencies In Contract Modifier Requirements

Issue D: FA1.2Pascaligo Contract Makes Use of Many Deprecated or Undocumented Functions

Suggestions

Suggestion 1: Improved Documentation for Atomic Swap (Ethereum) Contract

Suggestion 2: Consistency in Redeem Times in the Atomic Swap (Ethereum) and ERC-20
Contracts

Suggestion 3: Comments in the Michelson Code of the Atomic Swap (Tezos) Contract

Recommendations

About Least Authority

Our Methodology

Manual Code Review

Vulnerability Analysis

Documenting Results

Suggested Solutions

Responsible Disclosure

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 1
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Tezos Foundation has requested that Least Authority perform a security audit of the Atomex Smart
Contracts.

● Atomic Swap Contract (Tezos):
○ Smart contract implemented using Morley library framework and developed in a Haskell

based domain specific language that compiles to Michelson
● FA1.2 Contract:

○ Smart contract implemented in PascaLIGO
● Atomic Swap Contract (Ethereum):

○ Smart contract implemented in Solidity
● Atomic ERC-20 Contract:

○ Smart contract implemented in Solidity

Project Dates

Atomic Swap Contract Tezos + FA1.2
● April 8 - April 17: ​Code review ​(Completed)
● April 20:​ Delivery of both Initial Audit Reports ​(Completed)
● May 4 - 5:​ Verification ​(Completed)
● May 6:​ Delivery of both Final Audit Reports ​(Completed)

Atomic Swap Contract Ethereum + Atomic ERC-20 Contract
● April 8 - April 14: ​Code review ​(Completed)
● April 20:​ Delivery of both Initial Audit Reports ​(Completed)
● May 4 - 5:​ Verification ​(Completed)
● May 6:​ Delivery of both Final Audit Reports ​(Completed)

Review Team
● Mirco Richter, Cryptography Researcher and Engineer
● Nathan Ginnever, Security Researcher and Engineer
● Phoebe Jenkins, Security Researcher and Engineer
● Dylan Lott, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Atomex Smart Contracts followed
by issue reporting, along with mitigation and remediation instructions outlined in this report.

● Atomic Swap Contract (Tezos): ​https://github.com/atomex-me/atomex-michelson
● FA1.2 Contract:​ ​https://github.com/atomex-me/atomex-fa12-ligo
● Atomic Swap Contract (Ethereum):​ ​https://github.com/atomex-me/atomex-solidity
● Atomic ERC-20 Contract:​ ​https://github.com/atomex-me/atomex-erc20-solidity

Specifically, we examined the Git revisions for our initial review:

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 2
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/atomex-me/atomex-michelson
https://github.com/atomex-me/atomex-fa12-ligo
https://github.com/atomex-me/atomex-solidity
https://github.com/atomex-me/atomex-erc20-solidity

Atomic Swap Contract (Tezos-Michelson): ​f36c4d600cc0fd0c942f789dc0a0cdd6b1caa885

FA1.2 Contract​:​ ​142c29346d010301dcb1f930d46ccd0d98a462b3

Atomic Swap Contract (Ethereum): ​e5d4c03b4bcd735a0cb456cd99ec6d68cfbb98de

Atomic ERC-20 Contract:​ ​f​e568c33dfffce6c495faf71af8a11ce6dad00f1

For the verification, we examined the Git revision:

 Atomic Swap Contract (Tezos-Michelson): ​82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3

FA1.2 Contract​:​ ​6e093b484d5cf1ddf66245a6eb9d8d11dfbb45da

Atomic Swap Contract (Ethereum): ​cc8b7f5622329098508347568bb1854c121c93c2

Atomic ERC-20 Contract:​ ​3a6e1cefd477cce067437d6b222b05e5ee3d9af1

All file references in this document use Unix-style paths relative to the project’s root directory.

Areas of Concern
All Contracts
The following are areas of concern that will be investigated during the audit, along with any similar
potential issues:

● Correctness of the implementation;
● Adversarial actions and other attacks on the network;
● Potential misuse and gaming of the smart contracts;
● Attacks that impacts funds, such as the draining or the manipulation of funds;
● Mismanagement of funds via transactions;
● DoS/security exploits that would impact the contracts intended use or disrupt the execution of

the contract;
● Vulnerabilities in the smart contracts code;
● Protection against malicious attacks ​and other ways to exploit contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
We reviewed the Atomic Swap contracts for many of the common mistakes made in smart contract
design and implementation. We found all of the contracts to be well designed and thought out.

The Atomic Swap (Ethereum) and ERC-20 contract code is well organized. In particular, both contracts
make good use of truffle testing. We also found that Atomic Swap (Ethereum) and ERC-20 contracts
utilize the latest versions of OpenZeppelin, or older versions if reasonable to do so. Both sets of contracts
use a declarative style that lends itself well to smart contract design, using current industry best practices
for security, including re-entrancy guards, and good validity checks before code execution.

The Tezos Atomic Swap (Tezos) and the FA1.2 contracts are also well organized, and contain Python unit
tests with adequate coverage.

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 3
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Our team found that comments are absent in all contracts and recommend they be included for better
readability and comprehension. ​While maintaining simple code that is self explanatory is desirable to
avoid overly complex smart contract code, labels for what the intended usage of functions and the
parameters will allow new readers to understand critical functionality more easily​ (​Suggestion 1​,
Suggestion 3​). Furthermore, the FA1.2 contract makes use of a number of functions that appear to no
longer be documented which may result in unpredictable behavior or generate cryptic and unhelpful error
messages in the event of a failure (​Issue D​).

While we found the article,​ ​Atomex: cross-chain atomic swaps on practice​, ​to be helpful, there is currently
no design documentation available for any of the contracts. However, the development team has
indicated that documentation creation is in progress. Our team believes that detailed documentation
facilitating better understanding of the correctness of the implementation, outlining the API, and the
intended and expected behavior of the contracts is prudent and its development and completion should
be prioritized (​Suggestion 1​).

Overall, it is clear the security was strongly considered, particularly since the project supports custom
tokens such as ERC-20 and FA1.2 that require careful analysis and threat assessment in comparison to
native currency tokens. ​For example, ERC-20 and FA1.2 tokens require a contract to be formed and called
by the swap contract to do transfers, where it may be possible that incorrect addresses are supplied for
these tokens, and failed transfers would occur. ​Furthermore, the usage of re-entrancy guards, checking
for contract code presence in the token addresses of the ERC-20 implementation of swaps, safe ERC-20,
and modifiers of access control demonstrate a thorough and thoughtful consideration of known security
best practices. The addition of documentation, comments and consistency in checks and modifiers will
further adhere to best practices and enhance the security of the contracts.

Although our audit scope coverage was extensive and allowed us to investigate and analyze all aspects of
the Atomic Swap comprehensively at the contract level, the ​Atomic Swap Client Core Library​ was out of
scope. We recommended that a review of the core library be completed in order to determine whether the
client core is using the contracts in a safe and reliable way.

Specific Issues
We list the issues we found in the code in the order we reported them. In most cases, remediation of an
issue is preferable, but mitigation is suggested as another option for cases where a trade-off could be
required.

ISSUE / SUGGESTION STATUS

Issue A: Updating Ownership of Solidity Fiat Token to Mistaken Address Resolved

Issue B: Atomic Swap (Tezos) and FA1.2 Contracts Have Unclear or Absent
Error Messages

Resolved

Issue C: Inconsistencies In Contract Modifier Requirements Resolved

Issue D: FA1.2 Contract Makes Use of Many Deprecated or Undocumented
Functions

Resolved

Suggestion 1: Improved Documentation for Atomic Swap (Ethereum)
Contract

Unresolved

Suggestion 2: Consistency in Redeem Times in the Atomic Swap (Ethereum) Resolved

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 4
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://medium.com/coinmonks/atomex-cross-chain-atomic-swaps-on-practice-8139571f0ee5
https://github.com/atomex-me/atomex.client.core

and ERC-20 Contracts

Suggestion 3: Comments in the Michelson Code of the Atomic Swap (Tezos)
Contract

Resolved

Issue A: Updating Ownership of Solidity Fiat Token to Mistaken Address

Location

https://github.com/atomex-me/atomex-erc20-solidity/blob/fe568c33dfffce6c495faf71af8a11ce6dad00f
1/contracts/FiatTokenV1.sol#L53

Synopsis

In the Solidity fiat token implementation, updating the owner of the token may provide a mistaken address
that is not controlled by the organization that is intended to control the token. The
transferOwnership()​ function checks that the address provided as the new owner is not zero.
However, if an incorrect address is provided to this function, then control of the token will be lost.

Impact

High. The impact of this mistake is significant as control of the token will be lost if an address is provided
for which the organization does not have a corresponding private key.

Preconditions

An accidental address must be authorized by an Ethereum transaction from the current valid owner of the
fiat token.

Feasibility

The likelihood of providing an account that is incorrect during the transfer of ownership is low. Transfer of
ownership of a fiat token may not happen frequently or may be controlled by a multisig account where
many individuals must agree that the new account is accurate.

Mitigation

A two step method to transfer ownership, while costing a bit of extra gas, could prevent a rare case where
ownership is transferred to an account that is not controlled by the intended organization. This process
would have two functions that would be called to transfer ownership. The first step is to propose a new
owner, modified to have access only by the current owner. This will store the potential new owner in the
token contracts state. The second step is to call a function that accepts the new owner that is modified to
only have access to the new owner’s account. As a result, if the account being updated to is not
controlled, the current owner may still reverse the mistake and try again.

Status

The ​Ownable.sol​ contract has been ​updated with the suggested mitigation​. The contract now has the
ability to propose and accept ownership transfers with the functions ​proposeOwner()​ and
acceptOwnership()​.

Verification

Resolved.

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 5
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/atomex-me/atomex-erc20-solidity/blob/fe568c33dfffce6c495faf71af8a11ce6dad00f1/contracts/FiatTokenV1.sol#L53
https://github.com/atomex-me/atomex-erc20-solidity/blob/fe568c33dfffce6c495faf71af8a11ce6dad00f1/contracts/FiatTokenV1.sol#L53
https://github.com/atomex-me/atomex-erc20-solidity/blob/master/contracts/FiatTokenV1.sol#L30-L78

Issue B: Atomic Swap (Tezos) and FA1.2 Contracts Have Unclear or Absent
Error Messages

Location

https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3
/src/atomex.ligo

https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf
3/src/atomex.tz

Synopsis

Empty strings instead of a reason for a failed transaction should be provided are present in multiple
locations of the FA1.2 contract. For example, the contract will fail with an empty string if a user attempts
to redeem before the timeout or tries to redeem with an incorrect secret seed. The FA1.2 contract also
makes use of deprecated functions which generate highly cryptic error messages on failure.

Although the Atomic Swap (Tezos) contract has error messages, further clarification about the cause of
the error is recommended. For example, if the source of the transaction fails, the check on atomex.tz line
79 results in a message stating “wrong sender address" without further explanation on the issue.

Impact

When a transaction executes in a way that will fail, the client software or initiator of the transaction may
have a difficult time identifying the failure case. While this does not create an immediate security
problem, it could cause client software or users to be unable to take appropriate actions to correct a
mistake.

Remediation

Provide the appropriate corresponding reasoning for failures as opposed to empty strings.

Status

This suggested remediation has been implemented and the ​Atomic Swap (Tezos)​ and ​FA1.2​ contracts
now have clear error messages for expected failure modes.

Verification

Resolved.

Issue C: Inconsistencies In Contract Modifier Requirements

Location

https://github.com/atomex-me/atomex-solidity/blob/e5d4c03b4bcd735a0cb456cd99ec6d68cfbb98de/c
ontracts/AtomicSwap.sol#L91

https://github.com/atomex-me/atomex-erc20-solidity/blob/fe568c33dfffce6c495faf71af8a11ce6dad00f
1/contracts/AtomicSwap.sol#L150​0

https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3
/src/atomex.ligo#L40-L47

https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf
3/src/atomex.tz#L29

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 6
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3/src/atomex.ligo
https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3/src/atomex.ligo
https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3/src/atomex.tz
https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3/src/atomex.tz
https://github.com/atomex-me/atomex-michelson/blob/master/src/atomex.tz
https://github.com/atomex-me/atomex-fa12-ligo/blob/master/src/atomex.ligo
https://github.com/atomex-me/atomex-solidity/blob/e5d4c03b4bcd735a0cb456cd99ec6d68cfbb98de/contracts/AtomicSwap.sol#L91
https://github.com/atomex-me/atomex-solidity/blob/e5d4c03b4bcd735a0cb456cd99ec6d68cfbb98de/contracts/AtomicSwap.sol#L91
https://github.com/atomex-me/atomex-erc20-solidity/blob/fe568c33dfffce6c495faf71af8a11ce6dad00f1/contracts/AtomicSwap.sol#L150
https://github.com/atomex-me/atomex-erc20-solidity/blob/fe568c33dfffce6c495faf71af8a11ce6dad00f1/contracts/AtomicSwap.sol#L150
https://github.com/LeastAuthority/atomex-erc20-solidity/blob/master/contracts/AtomicSwap.sol#L150
https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3/src/atomex.ligo#L40-L47
https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3/src/atomex.ligo#L40-L47
https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3/src/atomex.tz#L29
https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3/src/atomex.tz#L29

Synopsis

The modifiers for how a function should restrict the access to the function body are not consistent
among the different contract implementations. For example:

● The Atomic Swap (Ethereum) contract does not check that the provided ​participant​ is
non-zero;

● The Atomic ERC-20 contract checks that the ​participant​ is non-zero;
● The FA1.2 contract checks that only the ​participant​ is not the source of the transaction; and
● The Atomic Swap (Tezos) contract only checks that the ​participant​ exists and has proper

typing.

Impact

The intended requirements for the participants of a swap’s address are not clear. Some contracts have
strict requirements for address validation while others do not, which implies that some contracts lack
guarantees that a participant address is the intended address. Without stricter requirements, an
accidental address could be provided and go unnoticed. This could lead to a case where a redemption is
not possible on one end of the swap, while it is possible on the other.

Preconditions

A mistaken participant address must be supplied.

Feasibility

This is only moderately feasible as any given party may witness the mistake and not complete a swap and
await a refund.

Remediation

Ensure that all participant address requirements are satisfied in each implementation of the swaps
contracts.

For the Atomic Swap (Ethereum) and ERC-20 contracts, ensure that there is a check for a non-zero
address provided.

Status

Following a refactor by the Atomex team, the ​Atomic Swap (Ethereum)​ contract has been updated to
include a check to ensure that non-zero addresses are present in the participant parameter, making this
consistent with the edge case checking done in the ​ERC-20 contracts​.

After further discussion with the Atomex team in which they state that the only undesirable address in the
parameter is the sender, we agree the ​Atomic Swap (Tezos)​ and ​FA1.2​ contract checks are adequate and
do not need to be consistent or present in the initialization functions of the Atomic Swap (Tezos)
contract.

Verification

Resolved.

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 7
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/atomex-me/atomex-solidity/blob/master/contracts/Atomex.sol#L87
https://github.com/atomex-me/atomex-erc20-solidity/blob/master/contracts/Atomex.sol#L156
https://github.com/atomex-me/atomex-michelson/blob/master/src/atomex.tz#L30
https://github.com/atomex-me/atomex-fa12-ligo/blob/master/src/atomex.ligo#L68

Issue D: FA1.2 Contract Makes Use of Many Deprecated or Undocumented
Functions

Location

https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3
/src/atomex.ligo

Synopsis

The FA1.2 contract makes use of a number of functions that are deprecated in official PascaLIGO
documentation, or are entirely absent from the latest version of it.

Impact

Deprecated and undocumented functions, especially when used to avoid error handling, can behave in
ways that are hard to predict or may change over time. In cases of failure, the above functions will often
generate cryptic and unhelpful error messages. For the functions with no documentation, it is impossible
to have confidence in the behavior of the function, especially for edge cases or in future updates of the
PascaLIGO compiler.

Technical Details

In many cases, these are functions that have the potential to fail, but avoid handling the failure. For
example, ​get_entrypoint​ will fail if pointed to a contract without the specified entrypoint with a
confusing error message such as “bad address for get_entrypoint (%transfer)”. The PascaLIGO reference
suggests ​Tezos.get_entrypoint_opt​, which requires explicit handling of the failure case. In the case
of the function ​get_force​, it seems to be entirely absent from the PascaLIGO documentation.

Mitigation

In general, we noticed the following deprecated functions, and provide suggested replacements:

Deprecated Function Replacement

get_entrypoint Tezos.get_entrypoint_opt

transaction Tezos.transaction

size Bytes.length

source Tezos.source

get_force Big_map.find_opt

Status

This issue has been resolved by ​removing references to deprecated functions​.

Verification

Resolved.

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 8
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3/src/atomex.ligo
https://github.com/atomex-me/atomex-fa12-ligo/blob/142c29346d010301dcb1f930d46ccd0d98a462b3/src/atomex.ligo
https://github.com/atomex-me/atomex-fa12-ligo/blob/master/src/atomex.ligo

Suggestions

Suggestion 1: Improved Documentation for Atomic Swap Contract APIs

Location

All contracts.

Synopsis

There is limited documentation for the Atomic Swap (Ethereum), ERC-20, Atomic Swap (Tezos), and
FA1.2 contracts. While there are links provided to the OpenZeppelin repositories for the source of the
Ethereum token code, there are no comments provided for any of the code's functionality or intended
usage. A ​blog post provides an overview of expected functionality​, but the expected operation of the
actual contract entrypoints is ambiguous.

For example, we initially found it difficult to understand the countdown and payoff logic without
documentation. The countdown state is only used for the ERC-20 contract and not the Atomic Swaps
(Ethereum) contract. Additional explanations would help facilitate better understanding and appreciation
of this feature.

Remediation

Atomic Swap (Ethereum) and ERC-20 contracts: adhere to the ​standard Solidity comment format​ and
provide comments for each function in the form of its inputs and intended usage.

Atomic Swap (Tezos) and FA1.2 contracts: create a design document with the expected API and possible
failure modes for all contracts.

Status

The Atomex team has stated that the creation of documentation is in progress and that they intend to
develop both technical articles in addition to introductory content, as recommended.

Verification

Unresolved.

Suggestion 2: Consistency in Redeem Times in the Atomic Swap
(Ethereum) and ERC-20 Contracts

Location

Atomic Swap (Ethereum) and ERC-20 contracts.

Synopsis

In the Atomic Swap (Ethereum) and ERC-20 contracts, the time at which a redeem is considered valid is
somewhat inconsistent. The Atomic Swap (Ethereum) enforces that the blocktime is strictly less than the
refund time:

require(block.timestamp < swaps[_hashedSecret].refundTimestamp

The ERC-20 version allows for the block timestamp to be equal to the refund timeout:

require(block.timestamp <= swaps[_hashedSecret].refundTimestamp

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 9
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://medium.com/coinmonks/atomex-cross-chain-atomic-swaps-on-practice-8139571f0ee5
https://solidity.readthedocs.io/en/v0.5.12/natspec-format.html

This should have no impact on security.

Mitigation

Make both either equal to or less than or equal to block timestamps.

Status

Time validations have been updated to use a uniform operator check for the ​Atomic Swap (Ethereum)​ and
ERC-20​ contracts​.

Verification

Resolved.

Suggestion 3: Comments in Michelson Code of the Atomic Swap (Tezos)
Contract

Location

https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf
3/src/atomex.tz

Synopsis

The Michelson code can be unclear, especially when looking at a single branch of a conditional
statement. Without comments, it can be difficult to tell what any given code block in Michelson is
intended to be doing, without reading and understanding the entire contract. This can result in requiring a
significant amount of time to make small code changes, especially for someone unfamiliar with the
contract code.

Mitigation

A small number of comments to indicate which code block corresponds to which entrypoint would be
helpful. For longer code blocks, comments indicating what procedure is being accomplished over the next
few lines would also be valuable.

Status

This issue has been resolved by ​adding comments showing the structure of the Michelson program​ to the
Atomic Swap (Tezos) contract, as recommended.

Verification

Resolved.

Recommendations
We recommend that the remaining ​Suggestion​ stated above be addressed as soon as possible and that
further audits are considered if future changes are made to the contracts.

We commend the following of security best practices and encourage continued efforts as suggested in
the ​General Comments​.

Additionally, the ​Atomic Swap Client Core Library​ should be reviewed as it was out of scope for this audit.

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 10
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/atomex-me/atomex-solidity/blob/master/contracts/Atomex.sol#L115
https://github.com/atomex-me/atomex-erc20-solidity/blob/master/contracts/Atomex.sol#L184
https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3/src/atomex.tz
https://github.com/atomex-me/atomex-michelson/blob/82f452d1ea4d0263b7a4eaab782a6e02b06bcaf3/src/atomex.tz
https://github.com/atomex-me/atomex-michelson/blob/master/src/atomex.tz
https://github.com/atomex-me/atomex.client.core

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/​.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 11
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Atomex Smart Contracts | Tezos Foundation 12
6 May 2020 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

