

Security Audit Report

Loopring Protocol (V3)

Nov 15, 2019

af://n20637
af://n20639
af://n20640
af://n20650

Type Description Level Status

Implementation 4.3.1 Definitions and implementations of getLRCFeeStats() interface
are inconsistent

Info Updated

Implementation 4.3.2 Assembly code in SignatureBasedAddressWhitelist does
not work

Low Updated

Mechanism Design 4.3.3 Operator influence on the choice of maker/taker orders Low Discussed

Best Practice 4.3.4 Unchecked return values in use of transferTokens() Info To Be
Discussed

Implementation 4.3.5 Unclear intention of transferDeposit() function Medium To Be
Discussed

Protocol Design 4.3.6 Consider about overflow issues of timestamp in Block Low To Be
Discussed

Circuit Code 4.3.7 TransformRingSettlementDataGadget could be optimized Info To Be
Discussed

Documentation 4.3.8 Wrong comment in TakerMakerMatchingGadget Info To Be
Discussed

Circuit Code 4.3.9 Call logic of generateKeyPair() is impractical Low Updated

Circuit Code 4.3.10 Redundant fields in the OffchainWithdrawalBlock class Low To Be
Discussed

1. Introduction

Loopring Protocol (V3) is a decentralized exchange protocol for blockchains. SECBIT
Labs conducted an audit from Aug 15th to Nov 15th, 2019, including an analysis of Smart
Contract and Circuit Code in 3 areas: code bugs, logic flaws and risk assessment. The audit
results show that Loopring Protocol (V3) has no critical security risks, and the SECBIT
team has some tips on logical implementation, potential risks, and code revising (see
part 4 for details).

af://n20652

Circuit Description

DepositCircuit On-chain deposit

OffchainWithdrawalCircuit Off-chain withdrawal

OnchainWithdrawalCircuit Off-chain withdrawal

OrderCancellationCircuit Order cancellation

RingSettlementCircuit Ring settlement for orders

2. Project Information

This part describes the basic information and code structure.

2.1 Basic information

The basic information about the Loopring Protocol (V3) is shown below:

Project website

https://loopring.org/#/protocol
Design details of the protocol

https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DE
SIGN.md
https://github.com/Loopring/whitepaper

Smart contract code

https://github.com/Loopring/protocols/tree/3.0-beta3/packages/loopring_v3
Commit 10100aa616223439516c48f2c76ef386e8f996ff

Circuit code

https://github.com/Loopring/protocol3-circuits/tree/3.0-beta3
Commit 18d853d67aed649aeb2a0487870c6a37773d0d64

2.2 Circuit List

The following content shows the circuits included in the Loopring Protocol (V3) project:

af://n20719
af://n20722
https://loopring.org/#/protocol
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md
https://github.com/Loopring/whitepaper
https://github.com/Loopring/protocols/tree/3.0-beta3/packages/loopring_v3
https://github.com/Loopring/protocol3-circuits/tree/3.0-beta3
af://n20751

Contract Description

ProtocolRegistry Portal of protocol registration and management

LoopringV3 Loopring core contract

ExchangeV3 Exchange core contract

ExchangeProxy Provide upgradability for exchange by proxy mechanism

BlockVerifier Verifier contract for circuit proofs

ProtocolFeeVault Manage the distribution of protocol fees

UserStakingPool Handling users staking related logic

DowntimeCostCalculator Calculate and manage downtime cost

CheckFillRateGadget

OrderMatchingGadget

MaxFillAmountsGadgetFeeCalculatorGadget CheckValidGadget TakerMakerMatchingGadget

MatchingGadgets

RingSettlementGadget

RingSettlementCircuit

RingSettlementCircuit

TransformRingSettlem
entDataGadget

SignatureVerifier

(Internal structure of RingSettlementCircuit)

Each circuit corresponds to a specific type of business logic of DEX. Computations and
proof generations happen off the chain. Data and proofs are submitted to the contract to
get verified. The figure above shows the internal structure of the
RingSettlementCircuit. See the appendix for a more detailed analysis of circuits.

2.3 Contract List

The following content shows the main contracts included in the Loopring Protocol (V3)
project:

af://n20777

SignatureBasedAddressWhitelist Signature-based user whitelist contract

LzDecompressor Lz decompression contract

The picture below shows the dependencies and call logic of core smart contracts.
Implementations can be divided into 3 layers:

ProtocolRegistry -> Protocol -> Exchange

The ProtocolRegistry is the entry of protocol registration and management, for
registering and managing the implementation of the protocol. The Protocol is the
protocol implementation, which is used to manage the sub-exchanges of itself. The
Exchange is the implementation of the specific exchange. One can create and run
multiple instances of it.

LoopringV3

+ protocolRegistry:address
+ protocolFeeVault:address payable
+ blockVerifierAddress:address
+ downtimeCostCalculator:address
- exchanges:mapping (uint => Exchange)

+ depositExchangeStake(
 uint exchangeId,
 uint amountLRC,
):uint
+ depositProtocolFeeStake(
 uint exchangeId,
 uint amountLRC,
)

ProtocolRegistry

+ defaultProtocol:address
+ exchanges:address[]
- protocols:mapping(
 address => Protocol
)
- impls:mapping(address => Implementation)
- exchangeToProtocol:mapping
+ registerProtocol(
 address protocol,
 address implementation,
)
+ upgradeProtocol(
 address protocol,
 address implementation,
)
+ forgeExchange(
 address protocol,
 bool supportUpgradability,
 bool onchainDataAvailability,
)

ExchangePr
oxy

ExchangeV3

- state:ExchangeData.State

+ initialize(
 address _loopringAddress,
 address _owner,
 uint _id,
 address payable _operator,
 bool _onchainDataAvailability,
)
+ clone():address
+ commitBlock(
 uint8 blockType,
 uint16 blockSize,
 uint8 blockVersion,
 bytes calldata data,
 bytes calldata offchainData,
)
+ verifyBlocks(
 uint[] blckIndices,
 uint[] proofs,
)

DowntimeCostCalculator

+ basePricePerMinute:uint
+ maxPenalty:uint
+ gracePeriodsMinutes:uint
+ gracePeriodPricePerMinute:uint
+ maxAwailableDowntimeMinutes:uint

+ getDowntimeCostLRC(
 uint totalTimeInMaintenanceSeconds,
 uint totalDEXLifeTimeSeconds,
 uint numDowntimeMinutes,
 uint exchangeStakedLRC,
 uint durationToPurchaseMinutes
):uint
+ function getTotalCost(
 uint totalTimeInMaintenanceSeconds,
 uint totalDEXLifeTimeSeconds,
 uint downtimeMinutes
):uint

ProtocolFeeVault

+ userStakingPoolAddress:address
+ lrcAddress:address
+ oedaxAddress:address
+ daoAddress:address
+ claimStakingReward（uint amount)
+ withdraw(
 address token,
 uint amount,
)
+ getLRCFeeStats():uint,uint,uint,uint,uint,uint,uint,ui
nt

UserStakingPool

+ protocolFeeVaultAddress:address

+ setProtocolFeeVault(
 address protocolFeeVaultAddress,
)
+ stake(uint amount)
+ withdraw(uint amount)
+ claim():uint

BlockVerifier

+ circuits:mapping()

+ registerCircuit(
 uint8 blockType,
 bool onchainDataAvailability,
 uint16 blockSize,
 uint8 blockVersion,
 uint[18] vk,
)
+ verifyProofs(
 uint8 blockType,
 bool onchainDataAvailability,
 uint16 blockSize,
 uint8 blockVersion,
 uint[] publicInputs,
 uint[] proofs,
)

Register

Cloned
Exchange

Exchange Instances

Clone

Forge

Register
or upgrage as

implementation
of protocol

(Code Structure of Loopring V3 Smart Contract)

3. Code Analysis

This part describes details of code assessment, including 2 items: "role classification"
and "functional analysis".

3.1 Role Classification

There are several key roles in the protocol, namely Registry Owner, Protocol Owner,
Exchange Owner, Exchange Operator, Exchange User, and Normal User.

Registry Owner

Description

Administrator for protocol registry contract

Authority

Register or upgrade protocol
Disable or enable protocol
Set the default protocol

Method of Authorization

The creator of the ProtocolRegistry contract automatically
becomes owner
Authorized by transferring the ownership of the contract

Protocol Owner

Description

Protocol administrator

Authority

Update settings of protocol
Update fee settings

Method of Authorization

Protocol contract creator automatically becomes owner
Authorized by transferring the ownership of the contract

Exchange Owner

Description

Exchange administrator

Authority

Register Tokens
Turn on/off the deposit function of a specific token

af://n20820
af://n20823

Withdraw the assets staked by the exchange owner
Handling assets that were mistakenly transferred to the exchange
address
Set exchange operator
Set fees
Set up a whitelist contract
Turn on/off maintenance mode
Shutdown the exchange aber properly processed the users' assets

Method of Authorization

Exchange contract creator automatically becomes owner
Authorized by transferring the ownership of the contract

Exchange Operator

Description

The operator who is responsible for updating the exchange states

Authority

commitBlock()
verifyBlocks()
revertBlock()
withdrawBlockFee()

Method of Authorization

Set by Exchange Owner

Exchange User

Description

Users who created accounts in the exchange

Authority

Account registration and updating
Deposit and withdraw

Method of Authorization

User registered through the exchange contract

Normal User

Description

Normal Ethereum account

Authority

Execute other operations allowed by the contract

Method of Authorization

No authorization required

3.2 Functional Analysis

The Loopring V3 adopts the design approach similar to zk-rollup. As known, zk-rollup
uses a Merkle tree to store account status. The smart contract only needs to save the
Merkle root. The child node of the tree is a map of AccountID => (pubkey,
balance). Here, zk-rollup is most simplified into transfers of a single type of currency
between accounts.

Decentralized exchanges like Loopring need to maintain more states, such as balances
and order history of each currency. Loopring uses a sub-Merkle tree to maintain
account, balance, and trade history. It also uses the quad-Merkle tree structure and
Poseidon hash to future improve performance.

Loopring V3 stores all states of a single sub-exchange into a Merkle tree, in which the
exchange contract only saves the root of it. The rest of the states is saved and computed
off the chain. The calldata is used to store critical data at the same time. So the data
availability is guaranteed when reducing the cost of on-chain storage.

The key functions are divided into the following items:

commitBlock()

The exchange operator is responsible for submitting blocks to the contract. Note
the distinction with block concept in the blockchain. Here the block means a
virtual block in the smart contract. There are five types of blocks corresponding to
the five business logics in the circuit as previously mentioned. A certain type of
work is packaged into one block, which improves the efficiency a lot by batch
verify.

generateProof()

The operator is responsible for maintaining the state of the entire exchange off the
chain. The Merkle tree is updated by user actions such as deposit, withdrawal,
order settlement or cancellation. The correctness of state update is checked in
circuit code, which is also called constraints in a circuit. Thus the operator must
update the states according to the actual operation of users. The zkSNARKs circuit
code is implemented with the EthSnarks library. Each circuit requires a
trusted setup to generate a pair of proving key and verification key.
The operator needs to generate proof each time with the corresponding
providing key.

verifyBlcoks()

The operator generates a zkSNARKs proof for each block off the chain and submits
it to the contract. The proof is verified with the corresponding verification
key. It takes a relatively long time to generate a proof. Thus submission and
verification of a block are separated here. The operator could also submit proofs in
disorder. A block could have three status as COMMITTED, VERIFIED, and

af://n20951

FINALIZED and could be changed from COMMITTED to VERIFIED when the proof
is accepted by contract. If all blocks before some block have been verified, they are
all considered to be FINALIZED. If the exchange is created with data-availability
enabled, the operator must also submit more detailed data when commitBlock()
to get the block verified successfully later.

deposit()

The user deposits to exchange by calling the contract. The operator must process
the request within a certain period and package it into the block for submitting
and verifying.

withdraw()

Users have several ways to withdraw and the two most commonly used are called
OnchainWithdrawal and OffchainWithdrawal. Users do not have to call
contracts in off-chain mode, which is more convenient except there is a potential
risk that the operator could deliberately not process the request. Users could
manually make a withdrawal request in the contract. This on-chain request will be
processed within a certain period (just like deposit function).

Particularly, Loopring V3 also considers the safety of user assets in extreme cases
such as the operator stopping the maintenance of the exchange contract and also
abandoning its staking and the exchange entering into the withdrawal mode.
Users only need to provide the Merkle proof of their assets to withdraw their assets
properly.

4. Audit Detail

This part describes the process and detailed results of the audit, also demonstrate the
problems and potential risks.

4.1 Audit Process

The audit strictly followed the audit specification of SECBIT Labs. We analyzed the
project from code bug, logical implementation and potential risks. The process consists
of four steps:

Fully analysis of code line by line.
Evaluation of vulnerabilities and potential risks revealed in the source code.
Communication on assessment and confirmation.
Audit report writing.

4.2 Audit Result

af://n20974
af://n20976
af://n20987

Number Classification Result

1 Normal functioning of features defined by the contract ✓

2 No obvious bug (e.g. overflow, underflow) ✓

3 Pass Solidity compiler check with no potential error ✓

4 Pass common tools check with no obvious vulnerability ✓

5 No obvious gas-consuming operation ✓

6 Meet with ERC20 ✓

7 No risk in low-level call (call, delegatecall, callcode) and in-line
assembly

✓

8 No deprecated or outdated usage ✓

9 Explicit implementation, visibility, variable type and Solidity version
number

✓

10 No redundant code ✓

11 No potential risk manipulated by timestamp and network environment ✓

12 Explicit business logic ✓

13 Implementation consistent with annotation and other info ✓

14 No hidden code about any logic that is not mentioned in design ✓

15 No ambiguous logic ✓

16 No risk threatening the developing team ✓

17 No risk threatening exchanges, wallets, and DApps ✓

Aber scanning with adelaide, sf-checker and badmsg.sender (internal version)
developed by SECBIT Labs and open source tools including Mythril, Slither, SmartCheck,
and Securify, the auditing team performed a manual assessment. The team inspected
the contract line by line and the result could be categorized into twenty-one types:

18 No risk threatening token holders ✓

19 No privilege on managing others' balances ✓

20 No minting method ✓

21 Correct managing hierarchy ✓

Risk Type Risk Level Impact Status

Implementation Info Inconsistency of document and
implementation

Updated

Risk Type Risk Level Impact Status

Implementation Low Functional fail Updated

4.3 Issues

4.3.1 Definitions and implementations of getLRCFeeStats()getLRCFeeStats() interface are
inconsistent

Description

The documentation of getLRCFeeStats() in IProtocolFeeVault does not match
with the implementation, which could be in the wrong sequence.

Suggestion

Fix the comments.

Status

It has been corrected in the new version by developers themselves.

4.3.2 Assembly code in SignatureBasedAddressWhitelistSignatureBasedAddressWhitelist does not work

 /// @return accumulatedDAOFund The accumulated amount of LRC to
burn.
 /// @return accumulatedBurn The accumulated amount of LRC as
developer pool.

af://n21078
af://n21079
af://n21091
https://github.com/Loopring/protocols/blob/3.0-beta3/packages/loopring_v3/contracts/iface/IProtocolFeeVault.sol#L70-L71
af://n21094
af://n21096
af://n21098

Risk Type Risk Level Impact Status

Mechanism Design Low Affect the transaction price within a
limited range

Discussed

Case A Taker (A) Maker (B)

tokenS WETH GTO

tokenB GTO WETH

Description

Comments said to take first 8 bytes. But the actual value contains the length
information of the permission variable. So the t variable is completely wrong.
Besides, this single contract lacks test cases.

Suggestion

The extracted data should be truncated. Write test cases for this single contract.

Status

It has been corrected in the new version by developers themselves.

4.3.3 Operator influence on the choice of maker/taker orders

Description

The design doc writes about the choice of maker/taker orders as follows.

The operator chooses which order is the maker and which order is the taker. The
first order in the ring is always the taker order, the second order is always the
maker order. We always use the rate of the second order for the trade.

Is there any room for the operator to manipulate?

A ring matching example. Both two orders are buy orders. The buy order option is
designed to help takers earn spreading.

 assembly {
 t := mload(add(permission, 8)) // first 8 bytes as time in
second since epoch
 ...
 }

af://n21111
af://n21114
af://n21116
af://n21118
af://n21130
https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/DESIGN.md#different-treatment-of-maker-and-taker-orders

amountS 101 200

amountB 100 200

isBuy true true

fill.S 101 -> 100 (spread = 1) 100

fill.B 100 100

target price (WETH/GTO) 1.01 1

settle price (WETH/GTO) 1 1

balance tokenS 1 100

balance tokenB 100 100

Case B Taker (B) Maker (A)

tokenS GTO WETH

tokenB WETH GTO

amountS 200 101

amountB 200 100

isBuy true true

fill.S 101 -> 100 (spread = 1) 101

fill.B 101 100

target price (WETH/GTO) 1 1.01

settle price (WETH/GTO) 1.01 1.01

In this case, the operator settles the ring at the price 1 (WETH/GTO). The taker (A) got
the spreading.

If the operator just switches the role of taker and maker.

balance tokenS 100 0

balance tokenB 101 100

Risk Type Risk Level Impact Status

Best Practice Info Avoid the best practice To Be Discussed

In this case, the operator settles the ring at the price 1.01 (WETH/GTO). The taker (B)
got the spreading.

So, the operator could choose which user to get a better price.

Status

Brecht Devos replied in the issue#623。

The operator has the right to decide on order-matching by design. It is acceptable that
an operator could affect the price in a limited range since no user got a price worse than
expected.

4.3.4 Unchecked return values in use of transferTokens()transferTokens()

Description

Return values are unchecked in withdrawFromMerkleTreeFor() and
withdrawFromDepositRequest() function.

The condition allowFailure = false is used in these two cases and the transaction
will be reverted in advance when something wrong in transferTokens() function. So
there is no risk in not checking return values here.

Suggestion

Add a check or comment description.

 // Transfer the tokens
 transferTokens(
 S,
 _deposit.accountID,
 _deposit.tokenID,
 amount,
 false
);

af://n21238
https://github.com/Loopring/protocols/issues/623#ssuecomment-545473082
af://n21241
af://n21253
https://github.com/Loopring/protocols/blob/9877790576591846d7af912125f33627e80175f1/packages/loopring_v3/contracts/impl/libexchange/ExchangeWithdrawals.sol#L172
https://github.com/Loopring/protocols/blob/9877790576591846d7af912125f33627e80175f1/packages/loopring_v3/contracts/impl/libexchange/ExchangeWithdrawals.sol#L224
af://n21258

Risk Type Risk Level Impact Status

Implementation Medium Ambiguity Updated

Status

To be discussed.

4.3.5 Unclear intention of transferDeposit()transferDeposit() function

Description

We take Ethers from msg.sender but tokens from accountOwner in
transferDeposit() function.

In the scenario of deposit, it seems to be unreasonable to take assets from two accounts.
The current implementation is that someone else pays the ETH fee for accountOwner
and updates the deposit with assets of accountOwner himself. The original intent
could be someone depositing for others with his balance.

Suggestion

Remove the meaningless accountOwner parameter directly in transferDeposit()
function and use msg.sender as first argument in safeTransferFrom().

Status

 function transferDeposit(
 address accountOwner,
 ...
)
 private
 {
 ...
 require(msg.value >= totalRequiredETH, "INSUFFICIENT_FEE");
 uint feeSurplus = msg.value.sub(totalRequiredETH);
 msg.sender.transferETH(feeSurplus, gasleft());
 ...
 tokenAddress.safeTransferFrom(
 accountOwner,
 address(this),
 amount
)
 ...
 }

af://n21260
af://n21262
af://n21274
https://github.com/Loopring/protocols/blob/9877790576591846d7af912125f33627e80175f1/packages/loopring_v3/contracts/impl/libexchange/ExchangeDeposits.sol#L172
af://n21278
af://n21280

Risk Type Risk Level Impact Status

Protocol Design Low Time overflow, affecting protocol
stability

To be
discussed

Risk Type Risk Level Impact Status

Circuit Code Info Redundant Code To be discussed

It has been updated in the new version by developers themselves. The msg.sender is
used in transferDeposit() as first argument. We recommend to remove it directly.

4.3.6 Consider about overflow issues of the timestamp in BlockBlock

Description

The timestamp is stored in uint32 in Block data structure and there is a risk of
overflow. The time variable could not be represented correctly aber the year 2106.

Bitcoin also uses the uint32 type for timestamp while Ethereum uses uint256 instead.
Nonetheless, there should be enough time for the protocol to upgrade.

Suggestion

Know about this issue and discuss the possibility and necessity of replacing uint32
with uint256.

Status

To be discussed.

4.3.7 TransformRingSettlementDataGadgetTransformRingSettlementDataGadget could be optimized

Description

In RingSettlementCircuit.h, the generate_r1cs_constraints() function of
TransformRingSettlementDataGadget could be further optimized into the
following code.

 struct Block
 {
 // The time the block was created.
 uint32 timestamp;
 }

af://n21282
af://n21294
af://n21298
af://n21300
af://n21302
af://n21314
https://github.com/Loopring/protocol3-circuits/blob/18d853d67aed649aeb2a0487870c6a37773d0d64/Circuits/RingSettlementCircuit.h#L64-L65

Risk Type Risk Level Impact Status

Documentation Info Wrong comments of code To be discussed

There is no need to do data compression work in the circuit. The compressedData
variable and related code are useless. The original code introduces more redundant
operations on data.

Suggestion

Consider removing the compressedData related code.

Status

To be discussed.

4.3.8 Wrong comment in TakerMakerMatchingGadgetTakerMakerMatchingGadget

Description

struct Range
{
 unsigned int offset;
 unsigned int length;
};

std::vector<Range> ranges;
ranges.push_back({{0, 40}}); // orderA.orderID +
orderB.orderID
ranges.push_back({{40, 40}}); // orderA.accountID +
orderB.accountID
ranges.push_back({{80, 8}, {120, 8}}); // orderA.tokenS +
orderB.tokenS
ranges.push_back({{88, 24},{128, 24}}); // orderA.fillS +
orderB.fillS
ranges.push_back({{112, 8}}); // orderA.data
ranges.push_back({{152, 8}}); // orderB.data
for(const Range& subRange : ranges)
{

 for (unsigned int i = 0; i < numRings; i++)
 {
 transformedData.add(subArray(data, i * ringSize +
subRange.offset, subRange.length));
 }
}

af://n21318
af://n21320
af://n21322
af://n21334

Risk Type Risk Level Impact Status

Circuit Code Low Wrong comments of code Updated

Suggestion

Correct to .takerFill.B < makerFill.S.

Status

To be discussed.

4.3.9 Call logic of generateKeyPair()generateKeyPair() is impractical

Description

The call logic of generateKeyPair() in main.cpp of circuit code does not meet
requirements of production.

Whenever the Mode is Prove or CreateKeys, the circuit code always tries to
generateKeyPair(). A trusted setup is required in the actual scenario of production
for generateKeyPair(), which needs more people to join. The logic of regenerate
KeyPair when it is not found is not realistic.

Suggestion

Separate CreateKeys and Prove actions. When pk and vk do not exist, the Prove
operation should be not allowed.

Status

It has been updated in the new version by developers themselves.

4.3.10 Redundant fields in the OffchainWithdrawalBlockOffchainWithdrawalBlock class

takerFillB_lt_makerFillS(pb, takerFill.B, makerFill.S,
NUM_BITS_AMOUNT, FMT(prefix, ".takerFill.B < makerFill.B")),

 if (mode == Mode::CreateKeys || mode == Mode::Prove)
 {
 if (!generateKeyPair(pb, baseFilename))
 {
 std::cerr << "Failed to generate keys!" << std::endl;
 return 1;
 }
 }

af://n21336
af://n21338
af://n21340
af://n21352
https://github.com/Loopring/protocol3-circuits/blob/18d853d67aed649aeb2a0487870c6a37773d0d64/main.cpp#L365-L372
af://n21356
af://n21358
af://n21360

Risk Type Risk Level Impact Status

Circuit Code Low Redundant Fields To Be Discussed

Description

The startIndex and count fields are not used in OffchainWithdrawalBlock class
of Data.h file.

Suggestion

Remove unused fields.

Status

To be discussed.

class OffchainWithdrawalBlock
{
public:
 ethsnarks::FieldT exchangeID;
 ethsnarks::FieldT merkleRootBefore;
 ethsnarks::FieldT merkleRootAfter;
 libff::bigint<libff::alt_bn128_r_limbs> startHash;
 ethsnarks::FieldT startIndex; // unused
 ethsnarks::FieldT count; // unused
 ethsnarks::FieldT operatorAccountID;
 AccountUpdate accountUpdate_O;
 std::vector<Loopring::OffchainWithdrawal> withdrawals;
};

af://n21372
af://n21375
af://n21377

Risk Type Risk Level Impact Status

Parameter Settings Medium Protocol Stability To Be Discussed

4.4 Risks

4.4.1 Consider about exception handing in extreme cases

Description

Currently a lot of time limit related parameters in ExchangeData.sol are hardcoded,
which are unchangeable aber contract deployment. The exchange contract has strict
time limits on the processing of on-chain requests and the time validity of orders. It is
necessary to consider whether the protocol can still operate stably under extreme
circumstances. Most of these parameters also involve a power restriction of operators,
which should be chosen very carefully.

Key parameters such as MAX_PROOF_GENERATION_TIME_IN_SECONDS,
MAX_AGE_REQUEST_UNTIL_WITHDRAW_MODE,
TIMESTAMP_HALF_WINDOW_SIZE_IN_SECONDS need special attention.

Suggestion

Think about and simulate extreme conditions
Choose values based on special scenarios such as an excessive volume of
transactions, crowded Ethereum network, unstable backend for operators, etc.
The backend needs to be tested thoughtfully and to be robust enough to deal with
instability or congestion of blockchain network, transaction sending, and
monitoring, chain fork processing, anti-DOS attacks, etc.

Status

To be discussed.

af://n21380
af://n21381
af://n21393
af://n21396
af://n21404

5. Conclusion

The Loopring Protocol (V3) takes advantage of zkSNARKs technology to completely
design and implement a high-performance decentralized exchange protocol. Aber
auditing and analyzing the contract and circuit code of it, SECBIT Labs found some
issues to optimize and proposed corresponding suggestions, which have been shown
above. Particularly, SECBIT Labs holds the view that the Loopring Protocol (V3) project
has a high quality of code with a clean structure, good function naming conventions,
complete annotations, and well-designed test cases. For the first time, Loopring
implements the circuit code of complicated on-chain businesses for real, which
resulting in significant compression of on-chain computations. They have achieved great
improvements in the practical use of zero-knowledge proof techniques. It's impressive to
see the pursuit of both performance and decentralization together with the efforts to
secure user assets, which are all happening to this protocol. The experience of their
research on layer-2 for scaling is valuable to the whole community.

af://n21407

Disclaimer

SECBIT smart contract audit service assesses the contract's correctness, security, and
performability in code quality, logic design, and potential risks. The report is provided
"as is", without any warranties about the code practicability, business model,
management system's applicability and anything related to the contract adaptation. This
audit report is not to be taken as an endorsement of the platform, team, company or
investment.

af://n21411

Level Description

High Severely damage the contract's integrity and allow attackers to steal ethers and
tokens, or lock ethers inside the contract.

Medium Damage contract's security under given conditions and cause impairment of
benefit for stakeholders.

Low Cause no actual impairment to contract.

Info Relevant to practice or rationality could possibly bring risks.

APPENDIX

Vulnerability/Risk Level Classification

af://n21414
af://n21415

Analysis Diagram on Circuit Code

DepositCircuit

exchangeID
merkleRootB

efore
merkleRootA

fter
depositBlockHashStart

publicDataHash

accumulateHash
End

startIndex count

depositBlockHashStart getOnchainData

hash(A+B) getOnchainData

hash(A+B) getOnchainData

 tx0.........txn

DepositCircuit
publicDataHash

uncappedBalance
After

uncappedBalance
After

constants.maxAmount

updateBalance

updateAccount

DepositGadget tx0 ... txn

NewAccountRoot
DepositCircuit
MerkletreeState

constants.padding_0000
accountID
publicKeyX
publicKeyY

tokenID
amount

Update User
Account

newBalanceLeaf

af://n21434
af://n21435

RingsettlementCircuit

RingSettlementCircuit
publicData

exchangeID
merkleRootB

efore
merkleRootA

fter
timestamp

protocolTak
erFeeBips

protocolMak
erFeeBips

labelHasher

OnchainDataAvailability

constants.padding_0000
oepratorAccountID

transformData(tx0...txn)

orderA.orderID + orderB.orderID
orderA.accountID + orderB.accountID

orderA.tokenS + orderB.tokenS
orderA.fillS + orderB.fillS

orderA.data
orderB.data

orderA.orderID + orderB.orderID
orderA.accountID + orderB.accountID

orderA.tokenS + orderB.tokenS
orderA.fillS + orderB.fillS

orderA.data
orderB.data

 tx0.........txn

publicDataHash

RingSettlementCircuit

newTradingHistroy
LeafA

updateBalanceS_A

updateBalanceB_A

updateAccount_A

Update User A

updateTradeHistory
_A

newTradingHistroy
LeafB

updateBalanceS_B

updateBalanceB_B

updateAccount_B

Update User B

updateTradeHistory
_B

newBalanceLeafP

updateBalanceA_P

updateBalanceB_P

Update
Protocol
balance

newBalanceLeafO

updateBalanceA_O

updateBalanceB_O

Update
 Operator

balance

FeeCalculatorGadget

CheckFillRateGadget

OrderMatchingGadget

MaxFillAmountsGadget CheckValidGadget TakerMakerMatchingGadget

MatchingGadgets

caculate value：
fill

filled
filledAfter

operator fee
protocol fee

rebate

tx0 ... txn

ringSettlemnet
Gadgets

updateAccountP updateAccount_O newAccountRoot

SignatureVerifier

transformData

af://n21438

OrderCancellationCircuit

orderCancellationCircuit
publicData

exchangeID
merkleRootB

efore
merkleRootA

fter
labeHasher

publicDataHash

OnchainDataAvailability

constants.padding_0000
oepratorAccountID

cancelPublicData(tx0...txn)

accountID
orderID

orderTokenID
feeTokenID

fFree

accountID
orderID

orderTokenID
feeTokenID

fFree
 tx0.........txn

oldOrderID_leq_newOr
derID

oldOrderID_lt_newOrd
erID

oldOrderID_eq_newOr
derID

filled_after=0 tradeHistroyBefore.filledfeePayment nonce_after

newTradingHistroy
LeafA

updateTradeHistroy
_A

updateBalanceT_A

updateBalanceF_A

signatureVerifiy

updateAccount_A

operatorBalanceRoot_
before

updateBalanceF_O

OrderCancellationG
adgets

updateAccount_O

NewAccountRoot

tx0 ... txn

orderCancellationCircuit
merkletreeState

Update
Account

A

Update
Operator
Balance

newBalanceLeaf

af://n21441

OnchainWithdrawalCircuit

exchangeID
merkleRootB

efore
merkleRootA

fter

publicDataHash

getApprovedWithdrawalD
ata

tokenID
accountID

amountWithdrawn

tokenID
accountID

amountWithdrawn

withdrawalBlock
HashStart

accumulateHash
End

startIndex count

withdrawalBlockHashStart getOnchainData

hash(A+B) getOnchainData

hash(A+B) getOnchainData

 tx0.........txn

 tx0.........txn

onchainWithd
rawalCircuit
publishDataH

ash

constants.padding_0000
accountID
tokenID

amountRequested

amountToSubtractamountToWithdraw tradingHistoryAfter publicKeyYAfterpublicKeyXAfter nonceAfter

b
sh

ut
d
o
w

n

balanceAfter

updateBalance_A

updateAccount_A

onchainWithdrawalGadget

newAccountRoot
onchainWithd
rawalCircuit
MerkletreeSt

ate

Update Account A

newBalanceLeaf
tx0 ... txn

af://n21444

OffchainWithdrawalCircuit

exchangeID
merkleRootB

efore
merkleRootA

fter

publicDataHash

getApprovedWithdrawalD
ata

labelHasher

OnchainDataAvailability

constants.padding_0000
oepratorAccountID

dataAvailabilityData(tx0...txn)

feeTokenID
fFee tx0.........txn

feeTokenID
fFree

tokenID
accountID

amountWithdrawn

tokenID
accountID

amountWithdrawn

offchainWithd
rawalCircuit
publishDataH

ash

balanceAfter nonce_after feePayment

newBalanceLeaf

updateBalanceF_A

updateBalance_A

updateAccount_A updateBalanceF_O

offchainWithdrawalGadget

update userA

updateAccount_O newAccountRoot

offchainWithdra
walCircuit

merkletreeState

newBalanceLeaf
operatorBalancesR

oot

update
operator
balance

tx0 ... txn

af://n21447

SECBIT Labs is devoted to constructing a common-consensus, reliable and ordered
blockchain economic entity.

http://www.secbit.io

audit@secbit.io

@secbit_io

af://n21450
af://n21456
http://www.secbit.io/
mailto:audit@secbit.io
https://twitter.com/secbit_io

