
Mars Protocol
CW-Asset

CosmWasm Smart Contract
Security Audit

Prepared by: Halborn

Date of Engagement: January 13, 2022 - January 21, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 2

CONTACTS 2

1 EXECUTIVE OVERVIEW 3

1.1 AUDIT SUMMARY 4

1.2 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 5

1.3 SCOPE 7

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 8

3 FINDINGS & TECH DETAILS 9

3.1 (HAL-01) LACK OF DENOM VALIDATION ON CHECKED ASSET - LOW 11

Description 11

Code Location 11

Risk Level 12

Recommendation 12

Remediation plan 12

4 AUTOMATED TESTING 12

4.1 AUTOMATED ANALYSIS 14

Description 14

1

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 01/13/2022 Jose C. Ramirez

0.2 Document Updates 01/20/2022 Jose C. Ramirez

0.3 Draft Version 01/21/2022 Jose C. Ramirez

0.4 Draft Review 01/21/2022 Gabi Urrutia

1.0 Remediation Plan 02/08/2022 Jose C. Ramirez

1.1 Remediation Plan Review 02/08/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Jose C. Ramirez Halborn jose.ramirez@halborn.com

2

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:jose.ramirez@halborn.com

3

EXECUTIVE OVERVIEW

1.1 AUDIT SUMMARY

Mars Protocol engaged Halborn to conduct a security assessment on a

CosmWasm smart contract beginning on January 13th, 2022 and ending January

21st, 2022.

The security engineers involved on the audit are blockchain and smart-

contract security experts with advanced penetration testing, smart-

contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to achieve the following:

• Ensure that smart contract functions work as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn haven’t identified relevant risks as common best

practices were followed on the development. The only detail worth of

mention was the lack of validation on native coins ‘denom’ field that was

properly addressed by Mars Protocol.

External threats, such as financial related attacks, oracle attacks, and

inter-contract functions and calls should be validated for expected logic

and state.

4

EX
EC

UT
IV

E
OV

ER
VI

EW

1.2 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Fuzz testing (Halborn custom fuzzing tool)

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

5

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

6

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 SCOPE

Code repository: https://github.com/mars-protocol/cw-asset

1. CosmWasm Smart Contracts - CW-Asset

(a) Commit ID: 1795e1698d4a346b9116b1e53be4d10465c506d4

(b) Files in scope:

i. asset_info.rs

ii. asset_list.rs

iii. asset.rs

Out-of-scope: External libraries and financial related attacks

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/mars-protocol/cw-asset
https://github.com/mars-protocol/cw-asset/tree/1795e1698d4a346b9116b1e53be4d10465c506d4

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 1 0

IM
PA
CT

LIKELIHOOD

(HAL-01)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) LACK OF DENOM VALIDATION
ON CHECKED ASSET

Low SOLVED - 02/08/2022

9

EX
EC

UT
IV

E
OV

ER
VI

EW

10

FINDINGS & TECH
DETAILS

3.1 (HAL-01) LACK OF DENOM
VALIDATION ON CHECKED ASSET - LOW

Description:

Assets’ information could be stored both as AssetInfoUnchecked and

AssetInfo. Validation of an asset’s info was done through the check()

function part of the AssetInfoUnchecked implementation. However, only

concerning CW20 tokens there were actual validation steps being applied

but none for Native coins.

Using some format rules upon “checking” an AssetInfoUnchecked element

avoids potentially undesirable situations. For instance, if a user

creates (mistakenly or not) a fake native coin ‘UUSD’ instead of ‘uusd’,

it will be stored in contract’s storage. As a result, when other users’

operations use this fake coin, they will always fail and make users spend

transactions fees needlessly.

Listing 1: Proof of concept (Lines 3)

1 let uusd = Asset :: native("uusd", 5u128);

2 let uusd2 = Asset :: native("UUSD", 5u128);

3 assert_eq!(uusd2 == uusd , true); //This will fail as they are

deemed to be different assets.

Code Location:

Listing 2: asset_info.rs (Lines 88)

83 pub fn check (&self , api: &dyn Api) -> StdResult <AssetInfo > {

84 Ok(match self {

85 AssetInfoUnchecked ::Cw20(contract_addr) => {

86 AssetInfo ::Cw20(api.addr_validate(contract_addr)?)

87 }

88 AssetInfoUnchecked :: Native(denom) => AssetInfo :: Native(

denom.clone ()),

89 })

11

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 1

Recommendation:

Enforce some basic format rules on denom such as being 4 lowercase a-z

characters. A more strict option would be to perform white-listing by

comparing the denom against the complete list of valid native coins on

Terra.

Remediation plan:

SOLVED: the check function was modified to perform white-listing by

accepting a list of valid denoms to compare the asset’s details with, as

suggested above.

This issue was fixed on commit 9beba1158f8b3e7f06a237c7d35fc89fb1ba3e6b

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/mars-protocol/cw-asset/commit/9beba1158f8b3e7f06a237c7d35fc89fb1ba3e6b

13

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in scope.

To better assist the developers maintaining this code, the auditors are

including the output with the dependencies tree, and this is included

in the cargo audit output to better know the dependencies affected by

unmaintained and vulnerable crates.

No security issues were flagged, just the following warning:

- sha2 0.9.8 is yanked

Listing 3: Dependency tree

1 sha2 0.9.8

2 |- k256 0.9.6

3 | |-- cosmwasm -crypto 0.16.2

4 | |-- cosmwasm -std 0.16.2

5 | |-- terra -cosmwasm 2.2.0

6 | | |-- astroport 0.3.1

7 | | |-- cw -asset 0.3.4

8 | |-- cw20 0.9.1

9 | |-- cw20 0.8.1

10 | |-- cw0 0.9.1

11 | |-- cw0 0.8.1

12 | |-- cw -storage -plus 0.8.1

13 | | |-- astroport 0.3.1

14 | |-- cw -asset 0.3.4

15 | |-- astroport 0.3.1

16 |-- ed25519 -zebra 2.2.0

17 |-- cosmwasm -crypto 0.16.2

14

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description

