
Mars Protocol
Fields of Mars
CosmWasm Smart Contract

Security Audit

Prepared by: Halborn

Date of Engagement: January 17th, 2022 - January 28th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 AUDIT SUMMARY 5

1.2 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 6

1.3 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) CONFIG PARAMETERS VALUE CAN BE CHANGED UNRESTRICTEDLY -

MEDIUM 12

Description 12

Code Location 12

Risk Level 15

Recommendation 15

Remediation plan 15

3.2 (HAL-02) SOME RATES COULD BE SET TO VALUES GREATER THAN 1 - LOW

16

Description 16

Code Location 16

Risk Level 17

Recommendation 17

Remediation plan 17

3.3 (HAL-03) MULTIPLE INSTANCES OF UNCHECKED ARITHMETIC - INFORMA-

TIONAL 18

Description 18

1

Code Location 18

Risk Level 18

Recommendation 18

Remediation plan 19

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 01/17/2022 Michal Bazyli

0.2 Document Updates 01/26/2022 Michal Bazyli

0.3 Draft Version 01/28/2022 Michal Bazyli

0.4 Draft Review 01/31/2022 Gabi Urrutia

1.0 Remediation Plan 02/09/2022 Michal Bazyli

1.1 Remediation Plan Review 02/09/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Michal Bazyli Halborn Michal.Bazyli@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Michal.Bazyli@halborn.com

4

EXECUTIVE OVERVIEW

1.1 AUDIT SUMMARY

Mars Protocol engaged Halborn to conduct a security assessment on CosmWasm

smart contracts beginning on January 17th, 2022 and ending January 28th,

2022.

The security engineers involved on the audit are blockchain and smart-

contract security experts with advanced penetration testing, smart-

contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to achieve the following:

• Ensure that smart contract functions work as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were mostly addressed by Mars team. The main

ones are the following:

• Enforce the use of a valid routine in update_config

• Enforce check of arithmetic operations

External threats, such as financial related attacks, oracle attacks, and

inter-contract functions and calls should be validated for expected logic

and state.

5

EX
EC

UT
IV

E
OV

ER
VI

EW

1.2 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and auto-

mated security testing to balance efficiency, timeliness, practicality,

and accuracy regarding the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow secu-

rity best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual assessment of use and safety for the critical Rust variables

and functions in scope to identify any contracts logic related

vulnerability.

• Fuzz testing (Halborn custom fuzzing tool)

• Checking the test coverage (cargo tarpaulin)

• Scanning of Rust files for vulnerabilities (cargo audit)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 SCOPE

1. CosmWasm Smart Contracts

(a) Repository: fields-of-mars

(b) Commit ID: dc2245ada036d7cfef94a82dd121474d1dd033f2

(c) Contracts in scope:

i. martian-field

Out-of-scope: External libraries and financial related attacks

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/mars-protocol/fields-of-mars
https://github.com/mars-protocol/fields-of-mars/tree/dc2245ada036d7cfef94a82dd121474d1dd033f2

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 1 1

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

(HAL-03)

9

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) CONFIG PARAMETERS VALUE
CAN BE CHANGED UNRESTRICTEDLY

Medium SOLVED - 02/09/2022

(HAL-02) SOME RATES COULD BE SET TO
VALUES GREATER THAN 1

Low SOLVED - 02/09/2022

(HAL-03) MULTIPLE INSTANCES OF
UNCHECKED ARITHMETIC

Informational SOLVED - 02/09/2022

10

EX
EC

UT
IV

E
OV

ER
VI

EW

11

FINDINGS & TECH
DETAILS

3.1 (HAL-01) CONFIG PARAMETERS
VALUE CAN BE CHANGED
UNRESTRICTEDLY - MEDIUM

Description:

instantiate and update_config functions in contracts/martian-

field/src/execute.rs allow contract’s owner to update max_ltv,

bonus_rate and fee_rate fields with a potential unfair amount. This

situation can produce the following consequences:

• A malicious (or compromised) owner can change temporarily max_ltvto

very low rate e.g., : 0.01 and bonus_rate to e.g., : 0 and liquidate

all positions, draining users assets.

• Owner could mistakenly change max_ltv rate to lower than released

one, which could become current positions into “unhealthy” ones and

ready to be liquidated.

• If fee_rate is equal to 1, harvest operations will cause unfair

reward distributions and owner could drain user assets. Furthermore,

if fee_rate is higher than 1 it will cause an overflow.

It is worth noting that likelihood for this to happen is low because

martian-field contract is intended to be owned by governance (Council)

indefinitely, who is the responsible one for this operation.

Code Location:

Listing 1: contracts/martian-field/src/execute.rs (Line 321)

314 pub fn update_config(deps: DepsMut , info: MessageInfo ,

new_config: Config) -> StdResult <Response > {

315 let config = CONFIG.load(deps.storage)?;

316

317 if info.sender != config.governance {

318 return Err(StdError :: generic_err("only governance can

update config"));

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

319 }

320

321 CONFIG.save(deps.storage , &new_config)?;

322

323 Ok(Response :: default ())

324 }

Listing 2: contracts/martian-field/src/execute.rs (Lines 248,285)

232 pub fn liquidate(

233 deps: DepsMut ,

234 env: Env ,

235 info: MessageInfo ,

236 user_addr: Addr ,

237) -> StdResult <Response > {

238 let config = CONFIG.load(deps.storage)?;

239 let state = STATE.load(deps.storage)?;

240 let position = POSITION.load(deps.storage , &user_addr).

unwrap_or_default ();

241

242 // position must be active (LTV is not `None `) and the LTV

must be greater than `max_ltv `

243 let health = compute_health (&deps.querier , &env , &config , &

state , &position)?;

244

245 // if `health.ltv ` is `Some `, it must be greater than `max_ltv

`

246 // if `health.ltv ` is `None `, indicating the position is

already closed , then it is not liquidatable

247 let ltv = health.ltv.ok_or_else (|| StdError :: generic_err("

position is already closed"))?;

248 if ltv <= config.max_ltv {

249 return Err(StdError :: generic_err("position is healthy"));

250 }

251

252 // 1. unbond the user 's liquidity tokens from Astro generator

253 // 2. burn liquidity tokens , withdraw primary + secondary

assets from the pool

254 // 3. swap all primary assets to secondary assets

255 // 4. repay all debts

256 // 5. among all remaining assets , send the amount

corresponding to `bonus_rate ` to the liquidator

257 // 6. refund all assets that 're left to the user

258 //

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

259 // NOTE: in the previous versions , we sell **all** primary

assets , which is not optimal because

260 // this will incur bigger slippage , causing worse liquidation

cascade , and be potentially lucrative

261 // for sandwich attackers

262 //

263 // now , we calculate how much additional secondary asset is

needed to fully pay off debt , and

264 // reverse -simulate how much primary asset needs to be sold

265 //

266 // TODO: add slippage checks to the swap step so that

liquidation cannot be sandwich attacked

267 let callbacks = [

268 CallbackMsg :: Unbond {

269 user_addr: user_addr.clone (),

270 bond_units_to_reduce: position.bond_units ,

271 },

272 CallbackMsg :: WithdrawLiquidity {

273 user_addr: user_addr.clone (),

274 },

275 CallbackMsg :: Cover {

276 user_addr: user_addr.clone (),

277 },

278 CallbackMsg :: Repay {

279 user_addr: user_addr.clone (),

280 repay_amount: health.debt_value ,

281 },

282 CallbackMsg :: Refund {

283 user_addr: user_addr.clone (),

284 recipient_addr: info.sender.clone (),

285 percentage: config.bonus_rate ,

286 },

287 CallbackMsg :: Refund {

288 user_addr: user_addr.clone (),

289 recipient_addr: user_addr.clone (),

290 percentage: Decimal ::one(),

291 },

292];

293

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

Add a validation routine inside instantiate and update_config functions

to ensure that:

• Value of fee_rate is lesser than a maximum threshold hardcoded in

contract.

• Value of max_ltv and bonus_rate is between minimum and maximum values

hardcoded in the contract.

Remediation plan:

SOLVED: The issue was fixed in commit 0f9c959931fcde3ddf5cdb1907c9177f69284e31.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/mars-protocol/fields-of-mars/commit/0f9c959931fcde3ddf5cdb1907c9177f69284e31

3.2 (HAL-02) SOME RATES COULD BE
SET TO VALUES GREATER THAN 1 - LOW

Description:

The instantiate and update_config functions in contracts/martian-

field/src/execute.rs do not restrict that rates fields are lesser than

1.

If they are not correctly set, some operations will always panic and

won’t allow legitimate users to harvest or liquidate; thus generating a

denial of service (DoS). The affected fields are the following:

• max_ltv

• fee_rate

• bonus_rate

Code Location:

Listing 3: contracts/martian-field/src/execute.rs (Line 321)

314 pub fn update_config(deps: DepsMut , info: MessageInfo ,

new_config: Config) -> StdResult <Response > {

315 let config = CONFIG.load(deps.storage)?;

316

317 if info.sender != config.governance {

318 return Err(StdError :: generic_err("only governance can

update config"));

319 }

320

321 CONFIG.save(deps.storage , &new_config)?;

322

323 Ok(Response :: default ())

324 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Add a validation routine inside instantiate and update_config functions

to ensure that aforementioned fields are lesser than 1.

Remediation plan:

SOLVED: The issue was fixed in the following commits:

• 2e82ec4798233f14d32a438b5d0238ac1f11583f

• 816db544f50959de79d09cd03f1bfa15e6ef3c86

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/mars-protocol/fields-of-mars/commit/2e82ec4798233f14d32a438b5d0238ac1f11583f
https://github.com/mars-protocol/fields-of-mars/commit/816db544f50959de79d09cd03f1bfa15e6ef3c86

3.3 (HAL-03) MULTIPLE INSTANCES OF
UNCHECKED ARITHMETIC -
INFORMATIONAL

Description:

While many instances of checked arithmetic were observed, some calcula-

tions omitted these checks. The additional verification performed when

using the checked functions ensures that under/overflow states are caught

and handled appropriately.

While these instances were not found to be directly exploitable, they

should be reviewed to ensure a defence-in-depth approach is achieved.

Code Location:

Listing 4: Resources affected

1 execute_callbacks.rs (#L237 ,390, 391 ,420 ,478 ,536)

2 execute.rs (#L175)

3 health.rs (#L51 ,52 ,53)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider using the checked_add, checked_sub or checked_mul methods in-

stead of addition, subtraction, and multiplication operators respec-

tively, in all instances to handle overflows gracefully.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation plan:

SOLVED: Commit ce52053d3a1897b797656a3e60235bdd52147627 fixed the secu-

rity issue. It is worth noting that there are some arithmetic operations

listed above that do not need checked_* methods because they are multipli-

cations between Uint128 and Decimal, which invoke Uint128::multiply_ratio

under the hood:

Listing 5: Resources with no checked_* methods

1 execute_callbacks.rs (#L390 , 391 ,536)

2 execute.rs (#L175)

3 health.rs (#L51 ,52 ,53)

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/mars-protocol/fields-of-mars/commit/ce52053d3a1897b797656a3e60235bdd52147627

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

