
Mochi contest
Findings & Analysis Report

2021-11-23

Table of contents
Overview

About C4

Wardens

Summary

Scope

Severity Criteria

High Risk Findings (13)

[H-01] Vault fails to track debt correctly that leads to bad debt

[H-02] FeePoolV0.sol#distributeMochi() will unexpectedly flush

treasuryShare , causing the protocol fee cannot be properly accounted

for and collected

[H-03] ReferralFeePoolV0.sol#claimRewardAsMochi() Array out of bound

exception

[H-04] registerAsset() can overwrite _assetClass value

[H-05] debts calculation is not accurate

[H-06] Referrer can drain ReferralFeePoolV0

[H-07] Liquidation will never work with non-zero discounts

[H-08] Anyone can extend withdraw wait period by depositing zero

collateral

https://code4rena.com/

[H-09] treasury is vulnerable to sandwich attack

[H-10] Changing NFT contract in the MochiEngine would break the

protocol

[H-11] treasuryShare is Overwritten in FeePoolV0._shareMochi()

[H-12] feePool is vulnerable to sandwich attack.

[H-13] Tokens Can Be Stolen By Frontrunning VestedRewardPool.vest()

and VestedRewardPool.lock()

Medium Risk Findings (15)

[M-01] liquidation factor < collateral factor for Sigma type

[M-02] regerralFeePool is vulnerable to MEV searcher

[M-03] A malicious user can potentially escape liquidation by creating a

dust amount position and trigger the liquidation by themself

[M-04] Unchecked ERC20 transfer calls

[M-05] Chainlink’s latestRoundData might return stale or incorrect

results

[M-06] Debt accrual is path-dependant and inaccurate

[M-07] Changing engine.nft contract breaks vaults

[M-08] UniswapV2/SushiwapLPAdapter update the wrong token

[M-09] UniswapV2TokenAdapter does not support Sushiswap-only assets

[M-10] griefing attack to block withdraws

[M-11] borrow function will borrow max cf when trying to borrow > cf

[M-12] anyone can create a vault by directly calling the factory

[M-13] Improper Validation Of create2 Return Value

[M-14] MochiTreasuryV0.withdrawLock() Is Callable When Locking Has

Been Toggled

[M-15] MochiTreasuryV0.sol Is Unusable In Its Current State

Low Risk Findings (10)

Non-Critical Findings (18)

Gas Optimizations (33)

Disclosures

Code4rena (C4) is an open organization consisting of security researchers, auditors,

developers, and individuals with domain expertise in smart contracts.

A C4 code contest is an event in which community participants, referred to as

Wardens, review, audit, or analyze smart contract logic in exchange for a bounty

provided by sponsoring projects.

During the code contest outlined in this document, C4 conducted an analysis of the

Mochi smart contract system written in Solidity. The code contest took place

between October 21—October 27 2021.

16 Wardens contributed reports to the Mochi code contest:

1. jonah1005

2. leastwood

3. WatchPug (jtp and ming)

4. cmichel

5. gpersoon

6. harleythedog

7. gzeon

8. pauliax

9. defsec

10. ye0lde

11. nikitastupin

12. loop

13. pants

Overview

About C4

Wardens

https://twitter.com/jonah1005w
https://twitter.com/liam_eastwood13
https://github.com/jack-the-pug
https://github.com/mingwatch
https://twitter.com/cmichelio
https://twitter.com/gpersoon
https://twitter.com/gzeon
https://twitter.com/SolidityDev
https://twitter.com/defsec_
https://twitter.com/_ye0lde
http://twitter.com/_nikitastupin
https://twitter.com/loop_225

14. 0x0x0x

15. hyh

This contest was judged by Ghoul.sol.

Final report assembled by CloudEllie and moneylegobatman.

The C4 analysis yielded an aggregated total of 38 unique vulnerabilities and 89 total

findings. All of the issues presented here are linked back to their original finding.

Of these vulnerabilities, 13 received a risk rating in the category of HIGH severity, 15

received a risk rating in the category of MEDIUM severity, and 10 received a risk

rating in the category of LOW severity.

C4 analysis also identified 18 non-critical recommendations and 33 gas

optimizations.

The code under review can be found within the C4 Mochi contest repository, and is

composed of 70 smart contracts written in the Solidity programming language and

includes 3,828 lines of Solidity code.

C4 assesses the severity of disclosed vulnerabilities according to a methodology

based on OWASP standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and low.

High-level considerations for vulnerabilities span the following key areas when

conducting assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Summary

Scope

Severity Criteria

https://twitter.com/Ghoulsol
https://twitter.com/CloudEllie1
https://twitter.com/money_lego
https://github.com/code-423n4/2021-10-mochi
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Gas use

Further information regarding the severity criteria referenced throughout the

submission review process, please refer to the documentation provided on the C4

website.

Submitted by jonah1005, also found by WatchPug

It’s similar to the issue “misuse amount as increasing debt in the vault contract”.

Similar issue in a different place that leads to different exploit patterns and severity.

When users borrow usdm from a vault, the debt increases by the amount * 1.005.

However, when the contract records the total debt it uses _amount instead of

increasingDebt .

MochiVault.sol L242-L249

The contract’s debt is inconsistent with the total sum of all users’ debt. The bias

increases overtime and would break the vault at the end.

High Risk Findings (13)

[H-01] Vault fails to track debt correctly that leads to bad
debt

Impact

 uint256 increasingDebt = (_amount * 1005) / 1000;

details[_id].debtIndex =
 (details[_id].debtIndex * (totalDebt)) /
 (details[_id].debt + _amount);
details[_id].debt = totalDebt;
details[_id].status = Status.Active;
debts += _amount;

https://code423n4.com/
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/vault/MochiVault.sol#L242-L249
https://github.com/code-423n4/2021-10-mochi-findings/issues/72

For simplicity, we assume there’s only one user in the vault. Example:

1. User deposits 1.2 M worth of BTC and borrows 1M USDM.

2. The user’s debt (details[_id].debt) would be 1.005 M as there’s a .5 percent

fee.

3. The contract’s debt is 1M.

4. BTC price decrease by 20 percent

5. The liquidator tries to liquidate the position.

6. The liquidator repays 1.005 M and the contract tries to sub the debt by 1.005 M

7. The transaction is reverted as details[_id].debt -= _usdm; would raise

exception.

inaccurate accounting would lead to serious issues. I consider this a high-risk issue.

This is a web3.py script that a liquidation may fail.

Proof of Concept

deposit_amount = 10**18
big_deposit = deposit_amount * 100000
minter.functions.mint(user, big_deposit).transact()

dai.functions.approve(vault.address, big_deposit + deposit_amount).tra

create two positions
vault.functions.mint(user, zero_address).transact()
vault.functions.mint(user, zero_address).transact()

borrow max amount
vault.functions.increase(0, big_deposit, big_deposit, zero_address, '
vault.functions.increase(1, deposit_amount, deposit_amount, zero_addre

vault_debt = vault.functions.debts().call()

This would clear out all debt in vault.
repay_amount = vault_debt + 10**18
usdm.functions.approve(vault.address, repay_amount).transact()

vault.functions.repay(0, repay_amount).transact()

I believe this is a mistake. Recommend to check the contract to make sure

increasingDebt is used consistently.

Submitted by WatchPug

distributeMochi() will call _buyMochi() to convert mochiShare to Mochi token

and call _shareMochi() to send Mochi to vMochi Vault and veCRV Holders. It wont

touch the treasuryShare .

However, in the current implementation, treasuryShare will be reset to 0 . This is

unexpected and will cause the protocol fee can not be properly accounted for and

collected.

FeePoolV0.sol#L79 L95

print('debt left:', vault.functions.debts().call())
All the positions would not be liquidated from now on

dai_price = cssr_factory.functions.getPrice(dai.address).call()
cssr_factory.functions.setPrice(dai.address, dai_price[0] // 10).tran

this would revert
liquidator.functions.triggerLiquidation(dai.address, 1).transact()

Recommended Mitigation Steps

[H-02] FeePoolV0.sol#distributeMochi() will unexpectedly
flush treasuryShare , causing the protocol fee cannot be
properly accounted for and collected

function _shareMochi() internal {
 IMochi mochi = engine.mochi();
 uint256 mochiBalance = mochi.balanceOf(address(this));
 // send Mochi to vMochi Vault
 mochi.transfer(
 address(engine.vMochi()),
 (mochiBalance * vMochiRatio) / 1e18
);
 // send Mochi to veCRV Holders

https://github.com/code-423n4/2021-10-mochi/blob/8458209a52565875d8b2cefcb611c477cefb9253/projects/mochi-core/contracts/feePool/FeePoolV0.sol#L79-L95
https://github.com/code-423n4/2021-10-mochi-findings/issues/114

Anyone can call distributeMochi() and reset treasuryShare to 0 , and then call

updateReserve() to allocate part of the wrongfuly resetted treasuryShare to

mochiShare and call distributeMochi() .

Repeat the steps above and the treasuryShare will be consumed to near zero,

profits the vMochi Vault holders and veCRV Holders. The protocol suffers the loss of

funds.

Change to:

 mochi.transfer(
 crvVoterRewardPool,
 (mochiBalance * (1e18 - vMochiRatio)) / 1e18
);
 // flush mochiShare
 mochiShare = 0;
 treasuryShare = 0;
}

Impact

Recommendation

function _buyMochi() internal {
 IUSDM usdm = engine.usdm();
 address[] memory path = new address[](2);
 path[0] = address(usdm);
 path[1] = address(engine.mochi());
 usdm.approve(address(uniswapRouter), mochiShare);
 uniswapRouter.swapExactTokensForTokens(
 mochiShare,
 1,
 path,
 address(this),
 type(uint256).max
);
 // flush mochiShare
 mochiShare = 0;
}

function _shareMochi() internal {
 IMochi mochi = engine.mochi();

ryuheimat (Mochi) confirmed

Submitted by WatchPug, also found by pauliax

ReferralFeePoolV0.sol#L28 L42

In ReferralFeePoolV0.sol#claimRewardAsMochi() , path is defined as an array of

length 2 while it should be length 3.

 uint256 mochiBalance = mochi.balanceOf(address(this));
 // send Mochi to vMochi Vault
 mochi.transfer(
 address(engine.vMochi()),
 (mochiBalance * vMochiRatio) / 1e18
);
 // send Mochi to veCRV Holders
 mochi.transfer(
 crvVoterRewardPool,
 (mochiBalance * (1e18 - vMochiRatio)) / 1e18
);
}

[H-03] ReferralFeePoolV0.sol#claimRewardAsMochi() Array
out of bound exception

function claimRewardAsMochi() external {
 IUSDM usdm = engine.usdm();
 address[] memory path = new address[](2);
 path[0] = address(usdm);
 path[1] = uniswapRouter.WETH();
 path[2] = address(engine.mochi());
 usdm.approve(address(uniswapRouter), reward[msg.sender]);
 // we are going to ingore the slippages here
 uniswapRouter.swapExactTokensForTokens(
 reward[msg.sender],
 1,
 path,
 address(this),
 type(uint256).max
);

https://github.com/code-423n4/2021-10-mochi-findings/issues/114
https://github.com/code-423n4/2021-10-mochi/blob/8458209a52565875d8b2cefcb611c477cefb9253/projects/mochi-core/contracts/feePool/ReferralFeePoolV0.sol#L28-L42
https://github.com/code-423n4/2021-10-mochi-findings/issues/97

As a result, at L33, an out-of-bound exception will be thrown and revert the

transaction.

claimRewardAsMochi() will not work as expected so that all the referral fees cannot

be claimed but stuck in the contract.

ryuheimat (Mochi) confirmed

Submitted by gpersoon, also found by jonah1005 and leastwood

Everyone can call the function registerAsset() of MochiProfileV0.sol Assuming

the liquidity for the asset is sufficient, registerAsset() will reset the _assetClass of

an already registered asset to AssetClass.Sigma .

When the _assetClass is changed to AssetClass.Sigma then liquidationFactor() ,

riskFactor() , maxCollateralFactor() , liquidationFee() keeperFee()

maxFee() will also return a different value. Then the entire vault will behave

differently. The threshold for liquidation will also be different, possibly leading to a

liquidation that isn’t supposed to happen.

Add the following in function registerAsset() :

ryuheimat (Mochi) confirmed

Submitted by gpersoon

Impact

[H-04] registerAsset() can overwrite _assetClass value

Impact

Recommended Mitigation Steps

require(_assetClass\[_asset] ==0,"Already exists");

[H-05] debts calculation is not accurate

Impact

https://github.com/code-423n4/2021-10-mochi-findings/issues/97
https://github.com/code-423n4/2021-10-mochi-findings/issues/20
https://github.com/code-423n4/2021-10-mochi-findings/issues/20
https://github.com/code-423n4/2021-10-mochi-findings/issues/25

The value of the global variable debts in the contract MochiVault.sol is calculated

in an inconsistent way.

In the function borrow() the variable debts is increased with a value excluding the

fee. However in repay() and liquidate() it is decreased with the same value as

details\[_id].debt is decreased, which is including the fee.

This would mean that debts will end up in a negative value when all debts are

repay-ed. Luckily the function repay() prevents this from happening.

In the meantime the value of debts isn’t accurate. This value is used directly or

indirectly in:

utilizationRatio() , stabilityFee() calculateFeeIndex() of

MochiProfileV0.sol

liveDebtIndex() , accrueDebt() , currentDebt() of MochiVault.sol

This means the entire debt and claimable calculations are slightly off.

vault/MochiVault sol

see issue page for referenced code.

Proof of Concept

function borrow(..)
details\[_id].debt = totalDebt; // includes the fee
debts += _amount; // excludes the fee

function repay(..)
debts -= _amount;\
details\[_id].debt -= _amount;

function liquidate(..)
debts -= _usdm;
details\[_id].debt -= _usdm;

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/vault/MochiVault.sol
https://github.com/code-423n4/2021-10-mochi-findings/issues/25

In function borrow() : replace debts += _amount; with debts += totalDebt

ryuheimat (Mochi) confirmed

Submitted by gzeon

function claimRewardAsMochi in ReferralFeePoolV0.sol did not reduce user

reward balance, allowing referrer to claim the same reward repeatedly and thus

draining the fee pool.

Did not reduce user reward balance at L28-47 in ReferralFeePoolV0.sol

Add the following lines

rewards -= reward[msg.sender]; reward[msg.sender] = 0;

ryuheimat (Mochi) confirmed

Submitted by harleythedog

Right now, there is only one discount profile in the github repo: the

” NoDiscountProfile ” which does not discount the debt at all. This specific discount

profile works correctly, but I claim that any other discount profile will result in

liquidation never working.

Suppose that we instead have a discount profile where discount() returns any

value strictly larger than 0. Now, suppose someone wants to trigger a liquidation on

a position. First, triggerLiquidation will be called (within

DutchAuctionLiquidator.sol). The variable “debt” is initialized as equal to

vault.currentDebt(_nftId) . Notice that currentDebt(_ndfId) (within

[H-06] Referrer can drain ReferralFeePoolV0

Impact

Proof of Concept

Recommended Mitigation Steps

[H-07] Liquidation will never work with non-zero discounts

Impact

https://github.com/code-423n4/2021-10-mochi-findings/issues/25
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/feePool/ReferralFeePoolV0.sol
https://github.com/code-423n4/2021-10-mochi-findings/issues/55
https://github.com/code-423n4/2021-10-mochi-findings/issues/55
https://github.com/code-423n4/2021-10-mochi-findings/issues/66

MochiVault.sol) simply scales the current debt of the position using the

liveDebtIndex() function, but there is no discounting being done within the

function - this will be important.

Back within the triggerLiquidation function, the variable “collateral” is simply

calculated as the total collateral of the position. Then, the function calls

vault.liquidate(_nftId, collateral, debt) , and I claim that this will never work

due to underflow. Indeed, the liquidate function will first update the debt of the

position (due to the updateDebt(_id) modifier). The debt of the position is thus

updated using lines 99-107 in MochiVault.sol . We can see that the details\

[_id].debt is updated in the exact same way as the calculations for

currentDebt(_nftId) , however, there is the extra subtraction of the

discountedDebt on line 107.

Eventually we will reach line 293 in MochiVault.sol . However, since we discounted

the debt in the calculation of details\[_id].debt , but we did not discount the

debt for the passed in parameter _usdm (and thus is strictly larger in value), line 293

will always error due to an underflow. In summary, any discount profile that actually

discounts the debt of the position will result in all liquidations erroring out due to this

underflow. Since no positions will be liquidatable, this represents a major flaw in the

contract as then no collateral can be liquidated so the entire functionality of the

contract is compromised.

Liquidate function in MochiVault.sol

triggerLiquidation function in DutchAuctionLiquidator.sol

Retracing the steps as I have described above, we can see that any call to

triggerLiquidation will result in:

throwing an error since _usdm will be larger than details\[_id].debt .

Proof of Concept

details\[_id].debt -= _usdm;

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/vault/MochiVault.sol#:~:text=function-,liquidate,-
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/liquidator/DutchAuctionLiquidator.sol#:~:text=function-,triggerLiquidation,-address%20_asset%2C%20uint256

An easy fix is to simply change:

details\[_id].debt -= _usdm;

to be:

details\[_id].debt = 0;

as liquidating a position should probably just be equivalent to repaying all of the

debt in the position.

Side Note: If there are no other discount profiles planned to be added other than

” NoDiscountProfile ”, then I would recommend deleting all of the discount logic

entirely, since NoDiscountProfile doesn’t actually do anything.

ryuheimat (Mochi) confirmed

Submitted by harleythedog, also found by WatchPug

In MochiVault.sol , the deposit function allows anyone to deposit collateral into any

position. A malicious user can call this function with amount = 0, which would reset

the amount of time the owner has to wait before they can withdraw their collateral

from their position. This is especially troublesome with longer delays, as a malicious

user would only have to spend a little gas to lock out all other users from being able

to withdraw from their positions, compromising the functionality of the contract

altogether.

the deposit function here

Notice that calling this function with amount = 0 is not disallowed. This overwrites

lastDeposit\[_id] , extending the wait period before a withdraw is allowed.

[H-08] Anyone can extend withdraw wait period by
depositing zero collateral

Impact

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-mochi-findings/issues/66
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/vault/MochiVault.sol#:~:text=function-,deposit,-uint256%20_id%2C%20uint256
https://github.com/code-423n4/2021-10-mochi-findings/issues/69

I would recommend adding:

require(amount > 0, "zero")

at the start of the function, as depositing zero collateral does not seem to be a

necessary use case to support.

It may also be worthwhile to consider only allowing the owner of a position to

deposit collateral.

ryuheimat (Mochi) confirmed

Submitted by jonah1005

There’s a permissionless function veCRVlock in MochiTreasury . Since everyone can

trigger this function, the attacker can launch a sandwich attack with flashloan to

steal the funds. MochiTreasuryV0.sol#L73-L94

Attackers can possibly steal all the funds in the treasury. I consider this is a high-risk

issue.

MochiTreasuryV0.sol#L73-L94

Here’s an exploit pattern

1. Flashloan and buy CRV the uniswap pool

2. Trigger veCRVlock()

3. The treasury buys CRV at a very high price.

4. Sell CRV and pay back the loan.

Recommend to add onlyOwner modifier.

[H-09] treasury is vulnerable to sandwich attack

Impact

Proof of Concept

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-mochi-findings/issues/69
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/treasury/MochiTreasuryV0.sol#L73-L94
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/treasury/MochiTreasuryV0.sol#L73-L94
https://github.com/code-423n4/2021-10-mochi-findings/issues/60

ryuheimat (Mochi) confirmed

Submitted by jonah1005

MochiEngine allows the operator to change the NFT contract in

MochiEngine.sol#L91-L93

All the vaults would point to a different NFT address. As a result, users would not be

access their positions. The entire protocol would be broken.

IMHO, A function that would break the entire protocol shouldn’t exist.

I consider this is a high-risk issue.

MochiEngine.sol#L91-L93

Remove the function.

ryuheimat (Mochi) confirmed

Submitted by leastwood

The FeePoolV0.sol contract accrues fees upon the liquidation of undercollaterised

positions. These fees are split between treasury and vMochi contracts. However,

when distributeMochi() is called to distribute mochi tokens to veCRV holders,

both mochiShare and treasuryShare is flushed from the contract when there are

still usdm tokens in the contract.

[H-10] Changing NFT contract in the MochiEngine would
break the protocol

Impact

Proof of Concept

Recommended Mitigation Steps

[H-11] treasuryShare is Overwritten in
FeePoolV0._shareMochi()

Impact

https://github.com/code-423n4/2021-10-mochi-findings/issues/60
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/MochiEngine.sol#L91-L93
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/MochiEngine.sol#L91-L93
https://github.com/code-423n4/2021-10-mochi-findings/issues/63
https://github.com/code-423n4/2021-10-mochi-findings/issues/63
https://github.com/code-423n4/2021-10-mochi-findings/issues/89

Consider the following scenario:

The FeePoolV0.sol contract contains 100 usdm tokens at an exchange rate of

1:1 with mochi tokens.

updateReserve() is called to set the split of usdm tokens such that

treasuryShare has claim on 20 usdm tokens and mochiShare has claim on the

other 80 tokens.

A veCRV holder seeks to increase their earnings by calling distributeMochi()

before sendToTreasury() has been called.

As a result, 80 usdm tokens are converted to mochi tokens and locked in a

curve rewards pool.

Consequently, mochiShare and treasuryShare is set to 0 (aka flushed).

The same user calls updateReserve() to split the leftover 20 usdm tokens

between treasuryShare and mochiShare .

mochiShare is now set to 16 usdm tokens.

The above process is repeated to distribute mochi tokens to veCRV holders

again and again.

The end result is that veCRV holders have been able to receive all tokens that

were intended to be distributed to the treasury.

FeePoolV0.sol L94

Manual code review

Discussions with the Mochi team.

Consider removing the line in FeePoolV0.sol (mentioned above), where

treasuryShare is flushed.

ryuheimat (Mochi) confirmed

Proof of Concept

Tools Used

Recommended Mitigation Steps

[H-12] feePool is vulnerable to sandwich attack.

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/feePool/FeePoolV0.sol#L94
https://github.com/code-423n4/2021-10-mochi-findings/issues/89
https://github.com/code-423n4/2021-10-mochi-findings/issues/65

Submitted by jonah1005

There’s a permissionless function distributeMochi in FeePoolV0.sol L55-L62.

Since everyone can trigger this function, an attacker can launch a sandwich attack

with flashloan to steal the funds.

The devs have mentioned this concern in the comment. An attacker can steal the

funds with a flash loan attack.

Attackers can steal all the funds in the pool. I consider this is a high-risk issue.

FeePoolV0.sol#L55-L62

Please refer to yDai Incident to check the severity of a harvest function without

slippage control.

Please refer to Mushrooms-finance-theft to check how likely this kind of attack

might happen.

If the dev wants to make this a permissionless control, the contract should calculate

a min return based on TWAP and check the slippage.

ryuheimat (Mochi) disputed:

I think this is same case as https://github.com/code-423n4/2021-10-mochi-

findings/issues/60

ghoul-sol (judge) commented:

The same attack, different part of the code. I’ll keep them both.

Impact

Proof of Concept

Recommended Mitigation Steps

Comments:

[H-13] Tokens Can Be Stolen By Frontrunning
VestedRewardPool.vest() and VestedRewardPool.lock()

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/feePool/FeePoolV0.sol#L55-L62
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/feePool/FeePoolV0.sol#L55-L62
https://peckshield.medium.com/the-ydai-incident-analysis-forced-investment-2b8ac6058eb5
https://medium.com/immunefi/mushrooms-finance-theft-of-yield-bug-fix-postmortem-16bd6961388f
https://github.com/code-423n4/2021-10-mochi-findings/issues/65#issuecomment-953031170
https://github.com/code-423n4/2021-10-mochi-findings/issues/60
https://github.com/code-423n4/2021-10-mochi-findings/issues/65#issuecomment-957027904
https://github.com/code-423n4/2021-10-mochi-findings/issues/92

Submitted by leastwood

The VestedRewardPool.sol contract is a public facing contract aimed at vesting

tokens for a minimum of 90 days before allowing the recipient to withdraw their

mochi . The vest() function does not utilise safeTransferFrom() to ensure that

vested tokens are correctly allocated to the recipient. As a result, it is possible to

frontrun a call to vest() and effectively steal a recipient’s vested tokens. The same

issue applies to the lock() function.

VestedRewardPool.sol#L36 L46

VestedRewardPool.sol#L54 L64

Manual code review Discussions with the Mochi team

Ensure that users understand that this function should not be interacted directly as

this could result in lost mochi tokens. Additionally, it might be worthwhile creating a

single externally facing function which calls safeTransferFrom() , vest() and

lock() in a single transaction.

ryuheimat (Mochi) confirmed

Submitted by cmichel, also found by gzeon

The MochiProfileV0 defines liquidation and collateral factors for different asset

types. For the AssetClass.Sigma type, the liquidation factor is less than the

collateral factor:

Impact

Proof of Concept

Tools Used

Recommended Mitigation Steps

Medium Risk Findings (15)

[M-01] liquidation factor < collateral factor for Sigma type

function liquidationFactor(address _asset)
 public

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/emission/VestedRewardPool.sol#L36-L46
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/emission/VestedRewardPool.sol#L54-L64
https://github.com/code-423n4/2021-10-mochi-findings/issues/92
https://github.com/code-423n4/2021-10-mochi-findings/issues/126

This means that one can take a loan of up to 45% of their collateral but then

immediately gets liquidated as the liquidation factor is only 40%. There should

always be a buffer between these such that taking the max loan does not

immediately lead to liquidations:

A safety buffer is maintained between max CF and LF to protect users against

liquidations due to normal volatility. Docs

The max collateral factor for the Sigma type should be higher than its liquidation

factor.

ryuheimat (Mochi) confirmed

Submitted by jonah1005, also found by cmichel

 view
 override
 returns (float memory)
{
 AssetClass class = assetClass(_asset);
 if (class == AssetClass.Sigma) { // } else if (class == AssetClas
 return float({numerator: 40, denominator: 100});
 }
}

function maxCollateralFactor(address _asset)
 public
 view
 override
 returns (float memory)
{
 AssetClass class = assetClass(_asset);
 if (class == AssetClass.Sigma) {
 return float({numerator: 45, denominator: 100});
 }
}

Recommended Mitigation Steps

[M-02] regerralFeePool is vulnerable to MEV searcher

https://hackmd.io/@az-/mochi-whitepaper#Collateral-Factor-CF
https://github.com/code-423n4/2021-10-mochi-findings/issues/126
https://github.com/code-423n4/2021-10-mochi-findings/issues/62

claimRewardAsMochi in the ReferralFeePoolV0 ignores slippage. This is not a

desirable design. There are a lot of MEV searchers in the current network. Swapping

assets with no slippage control would get rekted. Please refer to

https://github.com/flashbots/pm.

Given the current state of the Ethereum network, users would likely be sandwiched. I

consider this is a high-risk issue.

ReferralFeePoolV0.sol#L28-L48 Please refer to Mushrooms Finance Theft of Yield

Bug Fix Postmortem | by Immunefi | Immunefi | Medium to see a possible attack

pattern.

I recommend adding minReceivedAmount as a parameter.

Also, the front-end should calculate the min amount with the current price.

ryuheimat (Mochi) confirmed

Submitted by WatchPug, also found by jonah1005

Impact

Proof of Concept

Recommended Mitigation Steps

function claimRewardAsMochi(uint256 _minReceivedAmount) external {
 // original logic here
 require(engine.mochi().balanceOf(address(this)) > _minReceivedAmo
 engine.mochi().transfer(
 msg.sender,
 engine.mochi().balanceOf(address(this))
);
}

[M-03] A malicious user can potentially escape liquidation by
creating a dust amount position and trigger the liquidation by
themself

https://github.com/flashbots/pm
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/feePool/ReferralFeePoolV0.sol#L28-L48
https://medium.com/immunefi/mushrooms-finance-theft-of-yield-bug-fix-postmortem-16bd6961388f
https://github.com/code-423n4/2021-10-mochi-findings/issues/62
https://github.com/code-423n4/2021-10-mochi-findings/issues/127

In the current implementation, a liquidated position can be used for depositing and

borrowing again.

However, if there is a liquidation auction ongoing, even if the position is now

liquidatable , the call of triggerLiquidation() will still fail.

The liquidator must settleLiquidation first.

If the current auction is not profitable for the liquidator, say the value of the collateral

can not even cover the gas cost, the liquidator may be tricked and not liquidate the

new loan at all.

Considering if the liquidator bot is not as small to handle this situation (take the

profit of the new liquidation and the gas cost loss of the current auction into

consideration), a malicious user can create a dust amount position trigger the

liquidation by themself.

Since the collateral of this position is so small that it can not even cover the gas cost,

liquidators will most certainly ignore this auction.

The malicious user will then deposit borrow the actual loan.

When this loan becomes liquidatable , liquidators may:

1. confuse the current dust auction with the liquidatable position;

2. unable to proceed with such a complex liquidation.

As a result, the malicious user can potentially escape liquidation.

Consider making liquidated positions unable to be used (for depositing and

borrowing) again.

ryuheimat (Mochi) confirmed

Recommendation

[M-04] Unchecked ERC20 transfer calls

https://github.com/code-423n4/2021-10-mochi-findings/issues/127
https://github.com/code-423n4/2021-10-mochi-findings/issues/75

Submitted by loop, also found by cmichel, defsec, gzeon, leastwood, nikitastupin,

pants, and WatchPug

ERC20 transfer and transferFrom calls normally return true on a succesful

transfer. In DutchAuctionLiquidator the call asset.transfer(msg.sender,

_collateral); is made. asset refers to whichever ERC20 asset is used for the vault

of that auction. If asset is an ERC20 token which does not comply with the EIP-20

standard it might return false on a failed transaction rather than revert. In this case

it would count as a valid transaction even though it is not. If a vault would be making

use of USDT the transfer call would always revert as USDT returns void on

transfers.

There are a few more transfer(From) calls which are unchecked, these are however

all on a predetermined asset (mochi, usdM and crv) and unlikely to cause problems.

See issue page for referenced code.

Slither

In other contracts the functions cheapTransfer and cheapTransferFrom are used

which are part of the mochifi cheapERC20 library. These functions do check for a

return value and could be used rather than transfer and transferFrom .

ryuheimat (Mochi) confirmed:

transferFrom and transfer functions are used for mochi and usdm tokens which

are standard EIP-20 tokens.

Submitted by nikitastupin, also found by cmichel, defsec, leastwood, and WatchPug

Proof of Concept

Tools Used

Recommended Mitigation Steps

Comments:

[M-05] Chainlink’s latestRoundData might return stale or
incorrect results

https://github.com/code-423n4/reports/blob/mochi/mochi/2021-10-mochi-findings-DRAFT.md
https://github.com/code-423n4/2021-10-mochi-findings/issues/75#issuecomment-952083361
https://github.com/code-423n4/2021-10-mochi-findings/issues/87

ChainlinkAdapter.sol L49

The ChainlinkAdapter calls out to a Chainlink oracle receiving the

latestRoundData() . If there is a problem with Chainlink starting a new round and

finding consensus on the new value for the oracle (e.g. Chainlink nodes abandon the

oracle, chain congestion, vulnerability/attacks on the chainlink system) consumers of

this contract may continue using outdated stale or incorrect data (if oracles are

unable to submit no new round is started).

Recommend adding the following checks:

https://consensys.net/diligence/audits/2021/09/fei-protocol-v2-phase-

1/#chainlinkoraclewrapper-latestrounddata-might-return-stale-results

https://github.com/code-423n4/2021-05-fairside-findings/issues/70

ryuheimat (Mochi) confirmed

Submitted by cmichel

The total debt in MochiVault.accrueDebt increases by the current debt times the

debt index growth. This is correct but the total debt is then reduced again by the

calling user’s discounted debt, meaning, the total debt depends on which specific

user performs the debt accrual.

This should not be the case.

Proof of Concept

Recommended Mitigation Steps

 (roundId, rawPrice, , updateTime, answeredInRound) = AggregatorV
 require(rawPrice > 0, "Chainlink price <= 0");
 require(updateTime != 0, "Incomplete round");
 require(answeredInRound >= roundId, "Stale price");

References

[M-06] Debt accrual is path-dependant and inaccurate

https://github.com/code-423n4/2021-10-mochi/blob/8458209a52565875d8b2cefcb611c477cefb9253/projects/mochi-cssr/contracts/adapter/ChainlinkAdapter.sol#L49
https://consensys.net/diligence/audits/2021/09/fei-protocol-v2-phase-1/#chainlinkoraclewrapper-latestrounddata-might-return-stale-results
https://github.com/code-423n4/2021-05-fairside-findings/issues/70
https://github.com/code-423n4/2021-10-mochi-findings/issues/87
https://github.com/code-423n4/2021-10-mochi-findings/issues/129

Assume we have a total debt of 2000 , two users A and B, where A has a debt of

1000, and B has a debt of 100. The (previous) debtIndex = 1.0 and accruing it now

would increase it to 1.1 .

There’s a difference if user A or B first does the accrual.

User A calls accrueDebt : increased = 2000 * 1.1/1.0 - 2000 = 200 . Thus debts

is first set to 2200 . The user’s increasedDebt = 1000 * 1.1 / 1.0 - 1000 = 100

and assume a discount of 10% , thus discountedDebt = 100 * 10% = 10 . Then

debts = 2200 - 10 = 2190 .

The next accrual will work with a total debt of 2190 .

User B calls accrueDebt : increased = 2000 * 1.1/1.0 - 2000 = 200 . Thus debts

is first set to 2200 . The user’s increasedDebt = 100 * 1.1 / 1.0 - 100 = 10 and

assume a discount of 10% , thus discountedDebt = 10 * 10% = 1 . Then debts =

2200 - 1 = 2199 .

The next accrual will work with a total debt of 2199 , leading to more debt overall.

The total debt of a system depends on who performs the accruals which should

ideally not be the case. The discrepancy compounds and can grow quite large if a

whale always does the accrual compared to someone with almost no debt or no

discount.

Don’t use the discounts or track the weighted average discount across all users that

is subtracted from the increased total debt each time, i.e., reduce it by the discount

of all users (instead of current caller only) when accruing to correctly track the debt.

ryuheimat (Mochi) confirmed

POC

User A accrues first

User B accruess first

Impact

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-mochi-findings/issues/129
https://github.com/code-423n4/2021-10-mochi-findings/issues/130

Submitted by cmichel

Governance can change the engine.nft address which is used by vaults to

represent collateralized debt positions (CDP). When minting a vault using

MochiVault.mint the address returned ID will be used and overwrite the state of an

existing debt position and set its status to Idle .

Changing the NFT address will allow overwriting existing CDPs.

Disallow setting a new NFT address. or ensure that the new NFT’s IDs start at the old

NFT’s IDs.

ryuheimat (Mochi) confirmed

Submitted by cmichel

The UniswapV2LPAdapter/SushiswapV2LPAdapter.update function retrieves the

underlying from the LP token pair (_asset) but then calls router.update(_asset,

_proof) which is the LP token itself again. This will end up with the router calling

this function again recursively.

This function fails as there’s an infinite recursion and eventually runs out of gas.

The idea was most likely to update the underlying price which is used in

_getPrice as uint256 eAvg = cssr.getExchangeRatio(_underlying, weth); .

Call router.update(underlying, _proof) instead. Note that the _proof does not

necessarily update the underlying <> WETH pair, it could be any underlying <>

keyAsset pair.

[M-07] Changing engine.nft contract breaks vaults

Impact

Recommended Mitigation Steps

[M-08] UniswapV2/SushiwapLPAdapter update the wrong
token

Impact

Recommendation

https://github.com/code-423n4/2021-10-mochi-findings/issues/130
https://github.com/code-423n4/2021-10-mochi-findings/issues/130
https://github.com/code-423n4/2021-10-mochi-findings/issues/134

ryuheimat (Mochi) confirmed

Submitted by cmichel

The UniswapV2TokenAdapter.supports function calls its aboveLiquidity function

which returns the UniswapV2 liquidity if the pair exists. If this is below

minimumLiquidity , the supports function will return false .

However, it could be that the Sushiswap pair has lots of liquidity and could be used.

Suppose the UniswapV2TokenAdapter wants to be used as an adapter for a

Sushiswap pool. An attacker creates a UniswapV2 pool for the same pair and does

not provide liquidity. The Router.setPriceSource calls

UniswapV2TokenAdapter.supports and returns false as the Uniswap liquidity is too

low, without checking the Sushiswap liquidity.

[M-09] UniswapV2TokenAdapter does not support Sushiswap-
only assets

try uniswapCSSR.getLiquidity(_asset, _pairedWith) returns (
 uint256 liq
) {
 float memory price = cssrRouter.getPrice(_pairedWith);
 // @audit this returns early. if it's false it should check sushi
 return convertToValue(liq, price) >= minimumLiquidity;
} catch {
 try sushiCSSR.getLiquidity(_asset, _pairedWith) returns (
 uint256 liq
) {
 float memory price = cssrRouter.getPrice(_pairedWith);
 return convertToValue(liq, price) >= minimumLiquidity;
 } catch {
 return false;
 }
}

Impact

Recommendation

https://github.com/code-423n4/2021-10-mochi-findings/issues/134
https://github.com/code-423n4/2021-10-mochi-findings/issues/135

In aboveLiquidity , if the UniswapV2 liquidity is less than the minimum liquidity,

instead of returning, compare the Sushiswap liquidity against this threshold.

ryuheimat (Mochi) confirmed

Submitted by gpersoon

Every time you deposit some assets in the vault (via deposit() of MochiVault.sol)

then “lastDeposit[_id]” is set to block.timestamp . The modifier wait() checks this

value and makes sure you cannot withdraw for ” delay() ” blocks. The default value

for delay() is 3 minutes.

Knowing this delay you can do a griefing attack: On chains with low gas fees: every

3 minutes deposit a tiny amount for a specific NFT-id (which has a large amount of

assets). On chains with high gas fees: monitor the mempool for a withdraw()

transaction and frontrun it with a deposit()

This way the owner of the NFT-id can never withdraw the funds.

MochiVault.sol#L47 L54

vault/MochiVault.sol L171

profile/MochiProfileV0.sol L33

Create a mechanism where you only block the withdraw of recently deposited funds

ryuheimat (Mochi) confirmed:

Will update deposit function to allow only NFT owner to deposit

Submitted by gzeon

[M-10] griefing attack to block withdraws

Impact

Proof of Concept

Recommended Mitigation Steps

[M-11] borrow function will borrow max cf when trying to
borrow > cf

https://github.com/code-423n4/2021-10-mochi-findings/issues/135
https://github.com/code-423n4/2021-10-mochi/blob/806ebf2a364c01ff54d546b07d1bdb0e928f42c6/projects/mochi-core/contracts/vault/MochiVault.sol#L47-L54
https://github.com/code-423n4/2021-10-mochi/blob/806ebf2a364c01ff54d546b07d1bdb0e928f42c6/projects/mochi-core/contracts/vault/MochiVault.sol#L171
https://github.com/code-423n4/2021-10-mochi/blob/806ebf2a364c01ff54d546b07d1bdb0e928f42c6/projects/mochi-core/contracts/profile/MochiProfileV0.sol#L33
https://github.com/code-423n4/2021-10-mochi-findings/issues/21#issuecomment-952886314
https://github.com/code-423n4/2021-10-mochi-findings/issues/21
https://github.com/code-423n4/2021-10-mochi-findings/issues/45

Borrow function in MochiVault will borrow to max cf when trying to borrow > cf

instead of revert with “>cf” as specified in the supplied test. The difference in

behavior may cause user to borrow at dangerous collateral level, and receive less

than the amount requested.

MochiVault sol

Revert if details\[_id].debt + _amount > maxMinted with “>cf”

ryuheimat (Mochi) conirmed

Submitted by jonah1005

In MochiVaultFactory.sol#L26-L37, there’s no permission control in the

vaultFactory . Anyone can create a vault. The transaction would be reverted when

the government tries to deploy such an asset.

As the protocol checks whether the vault is a valid vault by comparing the contract’s

address with the computed address, the protocol would recognize the random vault

as a valid one.

I consider this is a medium-risk issue.

Here’s a web3.py script to trigger the bug.

Impact

Proof of Concept

Recommended Mitigation Steps

[M-12] anyone can create a vault by directly calling the
factory

Impact

Proof of Concept

vault_factory.functions.deployVault(usdt.address).transact()
this tx would be reverted
profile.functions.registerAssetByGov([usdt.address], [3]).transact()

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/vault/MochiVault.sol
https://github.com/code-423n4/2021-10-mochi-findings/issues/45
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/vault/MochiVaultFactory.sol#L26-L37
https://github.com/code-423n4/2021-10-mochi-findings/issues/80

Recommend to add a check.

ryuheimat (Mochi) confirmed

Submitted by leastwood

The BeaconProxyDeployer.deploy() function is used to deploy lightweight proxy

contracts that act as each asset’s vault. The function does not revert properly if there

is a failed contract deployment or revert from the create2 opcode as it does not

properly check the returned address for bytecode. The create2 opcode returns the

expected address which will never be the zero address (as is what is currently

checked).

BeaconProxyDeployer.sol L31

Manual code review

Discussions with the Mochi team

Discussions with library dev

The recommended mitigation was to update iszero(result) to

iszero(extcodesize(result)) in the line mentioned above. This change has

already been made in the corresponding library which can be found here, however,

this needs to also be reflected in Mochi’s contracts.

ryuheimat (Mochi) confirmed

Recommended Mitigation Steps

require(msg.sender == engine, "!engine");

[M-13] Improper Validation Of create2 Return Value

Impact

Proof of Concept

Tools Used

Recommended Mitigation Steps

https://github.com/code-423n4/2021-10-mochi-findings/issues/80
https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-library/contracts/BeaconProxyDeployer.sol#L31
https://github.com/Nipol/bean-contracts/pull/13
https://github.com/code-423n4/2021-10-mochi-findings/issues/155
https://github.com/code-423n4/2021-10-mochi-findings/issues/155
https://github.com/code-423n4/2021-10-mochi-findings/issues/161

Submitted by leastwood

withdrawLock() does not prevent users from calling this function when locking has

been toggled. As a result, withdraws may be made unexpectedly.

MochiTreasuryV0.sol#L40 L42

Manual code review

Consider adding require(lockCrv, "!lock"); to withdrawLock() to ensure this

function is not called unexpectedly. Alternatively if this is intended behaviour, it

should be rather checked that the lock has not been toggled, otherwise users could

maliciously relock tokens.

ryuheimat (Mochi) confirmed

Submitted by leastwood

MochiTreasuryV0.sol interacts with Curve’s voting escrow contract to lock tokens

for 90 days, where it can be later withdrawn by the governance role. However,

VotingEscrow.vy does not allow contracts to call the following functions;

create_lock() , increase_amount() and increase_unlock_time() . For these

functions, msg.sender must be an EOA account or an approved smart wallet. As a

result, any attempt to lock tokens will fail in MochiTreasuryV0.sol .

VotingEscrow.vy L418

[M-14] MochiTreasuryV0.withdrawLock() Is Callable When
Locking Has Been Toggled

Impact

Proof of Concept

Tools Used

Recommended Mitigation Steps

[M-15] MochiTreasuryV0.sol Is Unusable In Its Current State

Impact

Proof of Concept

https://github.com/code-423n4/2021-10-mochi/blob/main/projects/mochi-core/contracts/treasury/MochiTreasuryV0.sol#L40-L42
https://github.com/code-423n4/2021-10-mochi-findings/issues/161
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy#L418
https://github.com/code-423n4/2021-10-mochi-findings/issues/161
https://github.com/code-423n4/2021-10-mochi-findings/issues/168

VotingEscrow.vy L438

VotingEscrow.vy L455

Manual code review

Discussions with the Mochi team

Consider updating this contract to potentially use another escrow service that

enables msg.sender to be a contract. Alternatively, this escrow functionality can be

replaced with an internal contract which holds usdm tokens instead, removing the

need to convert half of the tokens to Curve tokens. Holding Curve tokens for a

minimum of 90 days may overly expose the Mochi treasury to Curve token price

fluctuations.

ryuheimat (Mochi) confirmed

[L-01] MochiVault.flashFee() May Truncate Result Submitted by leastwood

[L-02] FeePoolV0.sol Lack of input validation Submitted by WatchPug, also

found by cmichel and pauliax

[L-03] Minor precision loss Submitted by WatchPug

[L-04] Key currencies can be double counted Submitted by cmichel

[L-05] Mochi fees can be accidentally burned Submitted by cmichel

[L-06] Flashloan fee griefing attack for existing approvals Submitted by

cmichel

[L-07] Unsafe int256 casts in accrueDebt Submitted by cmichel

[L-08] Unchecked low level call Submitted by loop, also found by cmichel

[L-09] UniswapV2CSSR assumes data was observed when block state was

inserted Submitted by cmichel

[L-10] FRONT-RUNNABLE INITIALIZERS Submitted by defsec, also found by

pants

Tools Used

Recommended Mitigation Steps

Low Risk Findings (10)

https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy#L438
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy#L455
https://github.com/code-423n4/2021-10-mochi-findings/issues/168
https://github.com/code-423n4/2021-10-mochi-findings/issues/171
https://github.com/code-423n4/2021-10-mochi-findings/issues/106
https://github.com/code-423n4/2021-10-mochi-findings/issues/105
https://github.com/code-423n4/2021-10-mochi-findings/issues/122
https://github.com/code-423n4/2021-10-mochi-findings/issues/123
https://github.com/code-423n4/2021-10-mochi-findings/issues/124
https://github.com/code-423n4/2021-10-mochi-findings/issues/128
https://github.com/code-423n4/2021-10-mochi-findings/issues/76
https://github.com/code-423n4/2021-10-mochi-findings/issues/136
https://github.com/code-423n4/2021-10-mochi-findings/issues/37

[N-01] Missing events for governor only functions that change critical

parameters Submitted by defsec, also found by hyh, leastwood, nikitastupin,

pants, and WatchPug

[N-02] borrow function will underflow when total debt > creditCap Submitted

by gzeon

[N-03] Vault status is not set to Liquidated after liquidation Submitted by

gzeon, also found by cmichel, gpersoon, harleythedog, and WatchPug

[N-04] MochiTreasuryV0.sol Implements receive() Function With No

Withdraw Mechanism Submitted by leastwood

[N-05] MochiTreasuryV0.claimOperationCost() Writes State Variable After An

External Call Is Made Submitted by leastwood

[N-06] Mochi Protocol Is Lacking Extensive Test Coverage Submitted by

leastwood

[N-07] flashLoan() is Lacking Protections Against Reentrancy Submitted by

leastwood

[N-08] Lack of input validation of arrays Submitted by gzeon, also found by

WatchPug

[N-09] Typos Submitted by WatchPug

[N-10] ERC20 approve method missing return value check Submitted by

defsec

[N-11] Not all functions of DutchAuctionLiquidator.sol check the auction

state Submitted by gpersoon

[N-12] Missing zero-address checks Submitted by loop, also found by pants

[N-13] flashFee lack of precision Submitted by pants

[N-14] Unable to deposit to liquidated vault as specified Submitted by gzeon

[N-15] Misspelling: Collaterized should be Collateralized Submitted by

harleythedog

[N-16] Unlocked pragma version Submitted by loop

[N-17] Comment typos Submitted by ye0lde

[N-18] Open TODOs/questions Submitted by ye0lde

Non-Critical Findings (18)

https://github.com/code-423n4/2021-10-mochi-findings/issues/32
https://github.com/code-423n4/2021-10-mochi-findings/issues/56
https://github.com/code-423n4/2021-10-mochi-findings/issues/51
https://github.com/code-423n4/2021-10-mochi-findings/issues/162
https://github.com/code-423n4/2021-10-mochi-findings/issues/163
https://github.com/code-423n4/2021-10-mochi-findings/issues/167
https://github.com/code-423n4/2021-10-mochi-findings/issues/170
https://github.com/code-423n4/2021-10-mochi-findings/issues/31
https://github.com/code-423n4/2021-10-mochi-findings/issues/113
https://github.com/code-423n4/2021-10-mochi-findings/issues/36
https://github.com/code-423n4/2021-10-mochi-findings/issues/26
https://github.com/code-423n4/2021-10-mochi-findings/issues/86
https://github.com/code-423n4/2021-10-mochi-findings/issues/2
https://github.com/code-423n4/2021-10-mochi-findings/issues/50
https://github.com/code-423n4/2021-10-mochi-findings/issues/70
https://github.com/code-423n4/2021-10-mochi-findings/issues/74
https://github.com/code-423n4/2021-10-mochi-findings/issues/138
https://github.com/code-423n4/2021-10-mochi-findings/issues/139

[G-01] debts <= _amount Submitted by pauliax

[G-02] Unchecked math Submitted by pauliax

[G-03] Gas optimizations (code simplification, memory variables addition or

removal) Submitted by hyh, also found by 0x0x0x

[G-04] Cached length of arrays to avoid loading them repeadetly Submitted

by 0x0x0x, also found by WatchPug

[G-05] Initialization of pair can be done later to save gas Submitted by

WatchPug

[G-06] VestedRewardPool.sol#checkClaimable() Add

vesting[recipient].ends > 0 to the condition can save gas Submitted by

WatchPug

[G-07] DutchAuctionLiquidator.sol#triggerLiquidation() Adding

precondition check can save gas Submitted by WatchPug

[G-08] Variable liquidated in MochiVault is never used Submitted by loop,

also found by defsec, gzeon, harleythedog, and WatchPug

[G-09] Avoid unnecessary storage read can save gas Submitted by WatchPug

[G-10] Simplify sqrt() can save gas Submitted by WatchPug

[G-11] Declaring unnecessary immutable variables as constant can save gas

Submitted by WatchPug

[G-12] MochiVault.sol Remove redundant check can save gas Submitted by

WatchPug

[G-13] Save Gas With The Unchecked Keyword (MochiVault.sol) Submitted by

ye0lde, also found by WatchPug

[G-14] multiple inter-contract references in the same function Submitted by

jonah1005, also found by WatchPug

[G-15] Replace engine.nft().ownerOf(_id) with msg.sender in withdraw

function Submitted by harleythedog, also found by WatchPug

[G-16] Upgrade pragma to at least 0.8.4 Submitted by defsec

[G-17] Gas Optimization on the Public Function Submitted by defsec

Gas Optimizations (33)

https://github.com/code-423n4/2021-10-mochi-findings/issues/159
https://github.com/code-423n4/2021-10-mochi-findings/issues/156
https://github.com/code-423n4/2021-10-mochi-findings/issues/164
https://github.com/code-423n4/2021-10-mochi-findings/issues/64
https://github.com/code-423n4/2021-10-mochi-findings/issues/100
https://github.com/code-423n4/2021-10-mochi-findings/issues/102
https://github.com/code-423n4/2021-10-mochi-findings/issues/104
https://github.com/code-423n4/2021-10-mochi-findings/issues/88
https://github.com/code-423n4/2021-10-mochi-findings/issues/112
https://github.com/code-423n4/2021-10-mochi-findings/issues/115
https://github.com/code-423n4/2021-10-mochi-findings/issues/117
https://github.com/code-423n4/2021-10-mochi-findings/issues/119
https://github.com/code-423n4/2021-10-mochi-findings/issues/82
https://github.com/code-423n4/2021-10-mochi-findings/issues/67
https://github.com/code-423n4/2021-10-mochi-findings/issues/47
https://github.com/code-423n4/2021-10-mochi-findings/issues/34
https://github.com/code-423n4/2021-10-mochi-findings/issues/38

[G-18] Gas optimization: Placement of require statements in MochiVault.sol

Submitted by gzeon, also found by harleythedog

[G-19] Gas optimization: Caching variables Submitted by gzeon, also found by

pauliax and ye0lde

[G-20] Gas optimization: Struct layout Submitted by gzeon

[G-21] Gas optimization: Struct layout in DutchAuctionLiquidator.sol

Submitted by gzeon

[G-22] Unused storage variable in UsdmMinter.sol Submitted by harleythedog

[G-23] Unnecessary require in settleLiquidation Submitted by harleythedog

[G-24] Calling sushiCSSR.getLiquidity two times leads to increased gas cost

without benefits Submitted by nikitastupin

[G-25] Improve precision and gas costs in_shareMochi Submitted by pauliax

[G-26] Cache the results of duplicate external calls Submitted by pauliax

[G-27] Pack structs tightly Submitted by pauliax

[G-28] Useless imports Submitted by pauliax

[G-29] Duplicate math operations Submitted by pauliax

[G-30] Duplicate check of supported token on flash loan Submitted by pauliax

[G-31] Long Revert Strings Submitted by ye0lde

[G-32] Reduce State Variable Use in VestedRewardPool.sol Submitted by

ye0lde

[G-33] Remove extra calls in updateReserve (FeePoolV0.sol) Submitted by

ye0lde

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart

contracts. Security researchers are rewarded at an increasing rate for finding higher-

risk issues. Contest submissions are judged by a knowledgeable security researcher

and solidity developer and disclosed to sponsoring developers. C4 does not

conduct formal verification regarding the provided code but instead provides final

verification.

Disclosures

https://github.com/code-423n4/2021-10-mochi-findings/issues/27
https://github.com/code-423n4/2021-10-mochi-findings/issues/28
https://github.com/code-423n4/2021-10-mochi-findings/issues/30
https://github.com/code-423n4/2021-10-mochi-findings/issues/54
https://github.com/code-423n4/2021-10-mochi-findings/issues/42
https://github.com/code-423n4/2021-10-mochi-findings/issues/71
https://github.com/code-423n4/2021-10-mochi-findings/issues/83
https://github.com/code-423n4/2021-10-mochi-findings/issues/150
https://github.com/code-423n4/2021-10-mochi-findings/issues/152
https://github.com/code-423n4/2021-10-mochi-findings/issues/153
https://github.com/code-423n4/2021-10-mochi-findings/issues/154
https://github.com/code-423n4/2021-10-mochi-findings/issues/158
https://github.com/code-423n4/2021-10-mochi-findings/issues/160
https://github.com/code-423n4/2021-10-mochi-findings/issues/41
https://github.com/code-423n4/2021-10-mochi-findings/issues/43
https://github.com/code-423n4/2021-10-mochi-findings/issues/79

C4 does not provide any guarantee or warranty regarding the security of this

project. All smart contract software should be used at the sole risk and responsibility

of users.

Top

An open organization | Twitter | Discord | GitHub | Medium | Newsletter | Media kit |

code4rena.eth

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://medium.com/code4rena
https://code4rena.com/newsletter-signup
https://github.com/code-423n4/media-kit
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

