
Nexus Mutual
Stacked Risk,

On-chain MCR,
and Swap
Operator

Smart Contract
Audit

ABOUT BLOG AUDIT REPORTS
C O N T A C T

U S
SERVICES 

https://iosiro.com/about
https://iosiro.com/blog
https://iosiro.com/audits
https://iosiro.com/
https://iosiro.com/contact

1. Introduction

iosiro was commissioned by Nexus Mutual to conduct a smart contract audit on their

Stacked Risk, On-chain MCR and Swap Operator features. The audit was performed

between 4 and 11 May 2021, by two auditors, using a total of 10 resource days. A review of

vulnerability remediations and the final merged branch was performed between 18 and 19

May 2021 by a single auditor, using a total of two resource days.

This report is organized into the following sections.

Section 2 - Executive summary: A high-level description of the findings of the audit.

Section 3 - Audit details: A description of the scope and methodology of the audit.

Section 4 - Design specification: An outline of the intended functionality of the

smart contracts.

Section 5 - Detailed findings: Detailed descriptions of the findings of the audit.

The information in this report should be used to better understand the risk exposure of the

smart contracts, and as a guide to improving the security posture of the smart contracts by

remediating issues identified. The results of this audit are only a reflection of the source

code reviewed at the time of the audit and of the source code that was determined to be

in-scope.

The purpose of this audit was to achieve the following:

Identify potential security flaws.

Ensure that the smart contracts functioned according to the documentation

provided.

Assessing the off-chain functionality associated with the contracts, for example, backend

web application code, was out of scope of this audit.

Due to the unregulated nature and ease of transfer of cryptocurrencies, operations that

store or interact with these assets are considered very high risk with regards to cyber

attacks. As such, the highest level of security should be observed when interacting with

these assets. This requires a forward-thinking approach, which takes into account the new

and experimental nature of blockchain technologies. Strategies that should be used to

encourage secure code development include:

Security should be integrated into the development lifecycle and the level of perceived

security should not be limited to a single code audit.

Defensive programming should be employed to account for unforeseen

circumstances.

Current best practices should be followed where possible.

2. Executive summary

This report presents the findings of an audit performed by iosiro on Nexus Mutual's Stacked

Risk, On-chain MCR and Swap Operator features.

Stacked Risk

Two medium-risk issues, two informational issues and a number of design comments were

identified during this audit. The issues found related to access control on sensitive

functionality and development best practices. The medium-risk issues and the majority of

design comments were resolved. The remaining informational issues relate to

development best practices on single-use functionality, and are not considered to pose a

risk.

On-chain MCR

A number of design related and code quality issues were identified during the audit. These

were resolved.

Swap Operator

A single low risk issue was identified, due to missing authorization validation on a pool's

target asset. Suggestions for design improvement were also made, including code

refactoring and gas optimization. All issues and design comments were resolved.

3. Audit details

3.1 Scope
The source code considered in-scope for the assessment is described below. Code from all

other files was considered to be out-of-scope. Out-of-scope code that interacts with in-

scope code was assumed to function as intended and not introduce any functional or

security vulnerabilities.

3.1.1 Smart contracts

Project name: Nexus Mutual Stacked Risk, On-Chain MCR and Swap Operator

Commits: Final audit commit: 60efdf6; Final re-audit commit: d38ab41

Files: Claims.sol, ClaimsReward.sol, Incidents.sol, Quotation.sol, TokenFunctions.sol,

MCR.sol, Pool.sol, SwapOperator.sol

https://github.com/NexusMutual/smart-contracts/tree/60efdf64f2198050f7e6fcec57548d40e4f8598f
https://github.com/NexusMutual/smart-contracts/commit/d38ab4145a2a3d0b9d2de871ce646cf40b3b210a

3.2 Methodology
A variety of techniques, described below, were used to conduct the audit.

3.2.1 Code review

The source code was manually inspected to identify potential security flaws. Code review is

a useful approach for detecting security flaws, discrepancies between the specification and

implementation, design improvements, and high risk areas of the system.

3.2.2 Dynamic analysis

The contracts were compiled, deployed, and tested in a Hardhat test environment, both

manually and through the test suite provided. Manual analysis was used to confirm that

the code was functional and to discover whether any potential security issues identified

could be exploited.

3.2.3 Automated analysis

Tools were used to automatically detect the presence of several types of security

vulnerabilities, including reentrancy, timestamp dependency bugs, and transaction-

ordering dependency bugs. The static analysis results were manually reviewed and any

false positives were removed from the results. Any true positive results were included in this

report.

Static analysis tools commonly used include Slither, Securify, and MythX. Tools such as the

Remix IDE, compilation output, and linters could also be used to identify potential areas of

concern.

3.3 Risk ratings
Each issue identified during the audit has been assigned a risk rating. The rating is

determined based on the criteria outlined below.

High risk - The issue could result in a loss of funds for the contract owner or system

users.

Medium risk - The issue resulted in the code specification being implemented

incorrectly.

Low risk - A best practice or design issue that could affect the security of the contract.

Informational - A lapse in best practice or a suboptimal design pattern that has a

minimal risk of affecting the security of the contract.

Closed - The issue was identified during the audit and has since been addressed to a

satisfactory level to remove the risk that it posed.

4. Design specification

The following section outlines the intended functionality of the system at a high level. The

specification is based on the specification documents provided by Nexus Mutual as well as

the implementation in the codebase. Any perceived points of conflict should be

highlighted with the auditing team to determine the source of the discrepancy.

4.1 Stacked Risk
The Stacked Risk feature (also called Yield Token Cover) introduced a new cover product for

yield tokens. Users are able to buy cover for supported yield tokens (e.g. yDAI) to insure

against the risk of these tokens losing their intended peg with an underlying currency. The

implementation simplified the membership and cover purchasing flow, and introduced an

Incidents contract for handling payouts from incidents. The intended process flows are

detailed below.

Cover process

Users buy Yield Token Cover through the same process as they would buy other cover

products. Each Yield Token Cover product must be purchased with the corresponding

currency (for example, stETH cover is purchased with ETH and yDAI cover is purchased with

DAI).

Claim process

1. When an incident occurs that causes a Yield Token to lose its price peg, the Advisory

Board creates a governance proposal to add the incident.

2. If members vote to approve the proposal, the new incident is added through the

Incidents contract.

3. Users who have active cover at the time of the incident (or whose cover has expired

recently, according to Nexus Mutual's defined claim grace period) will be able to call

Incidents.redeemPayout(...) with the amount of YieldTokens they wish to exchange

for the underlying token.

4. The tokens sent will be exchanged for the underlying tokens (e.g. yDAI for DAI) at the

pre-incident rate defined when the incident was created, adjusted by the contract's

DEDUCTIBLE_RATIO (currently 90%).

For example, a pre-incident rate of 10 DAI to 1 yDAI would yield the payee 9 DAI

for every 1 yDAI sent. The amount exchanged can be less than the full amount

covered.

Only a single claim per incident is permitted.

5. Following the payout, a claim will be created in QuotationData and set to "Claim

Accepted Payout Done", simulating the claim process in other products.

6. An amount of NXM tokens will be burned following payout. This will be the payout

amount divided by the price of NXM in the product's underlying token, multiplied by

the contract's BURN_RATIO (currently 20%).

Additionally:

The Incidents contract burns NXM tokens from Pooled Staking in batches, to save gas.

The Advisory Board can withdraw a specified amount of a specified asset to a

specified destination address, subject to the outcome of a governance vote.

The BURN_RATIO and DEDUCTIBLE_RATIO can be altered through successful

governance proposals and both have a maximum value of 100%.

4.2 On-chain MCR
The mutual fund has to maintain a Minimum Capital Ratio (MCR) of assets in the Pool in

order to be able confidently payout any claims. The MCR is a key component of the pricing

formula for NXM tokens and thus is critical to the overall security of the system.

The MCR was previously calculated off-chain and updated daily. Over time the MCR formula

has been simplified, making it feasible to implement the calculations on-chain. A key

requirement of the MCR is that it should change gradually over time as to prevent large

NXM price fluctuations. The implementation also aims to continually increase the absolute

minimum of the MCR if the Pool has an excess of funds, this is to ensure the value of the

mutual increases over time.

The new MCR update functionality can be triggered by calling either updateMCR() , when

buying or selling NXM, or when a claim is paid out. The synced MCR will only update if at

least one hour has passed since the previous update, with the exception of when a claim is

paid out. The MCR is not explicitly updated when a member buys cover or if cover expires,

as it was confirmed by Nexus Mutual that this is to minimize the gas costs for these

operations.

The MCR floor will increase when ever the MCR ratio (the ether value of the pool compared

to the current MCR) exceeds 130%. The increase is capped to 1% per day (compounded

hourly).

During the update, the instantaneous MCR is calculated and stored to determine the

direction and end value of the reported MCR over time. The desiredMCR is a function of the

total ether value of the assured cover, the current ether value of all assets in the pool and

the gear factor. It can never be less than the mcrFloor .

The result returned by getMCR() continuously slides towards the desiredMCR at a rate of

up to 5% per day (compounded hourly), but never exceeds a total change exceeding 1% of

its last synced value.

The MCR smart contract was regarded as a new during the audit, as the changes required

replaced most of the existing code.

4.3 Swap Operator
The previous SwapAgent smart contract was replaced with the new SwapOperator contract,

which allows for more dynamic trading strategies. The contract allows the SwapController

to exchange assets for ether or vice-versa, given that the asset's balance is outside the

limits voted on by the members.

The swap logic (swapETHForAsset and swapAssetForETH) was removed from the Pool

contract and added to the SwapOperator . To maintain the existing functionality, functions

to transfer assets between the Pool and the SwapOperator were added. All assets are

returned to the Pool at the end of the swap. The implementation does however introduce

an intermediate transfer that could result in significant gas fees. An invoker pattern should

be investigated if the gas fees are deemed to be exorbitant.

The contract also introduced a new function (swapETHForStETH) to allow the

SwapController to deposit ether in the Lido smart contract and receive stEth in return.

No functionality to redeem or burn the stEth was implemented, as the functionality is

intended to only become available when Ethereum 2.0 goes live.

The implications of locking a portion of the mutual's assets on the MCR were assumed to

be part of the design. If a large portion of the Pool's funds were to be staked, the contract

may be unable to payout claims even if an MCR ratio greater than 100% is maintained. This

would be due to a lack of liquidity in the stETH/ETH Uniswap pair or the burn functionality

not being available yet.

5. Detailed findings

The following section details the findings of the audit.

5.1 High risk
No high-risk issues were present at the conclusion of the review.

5.2 Medium risk
No medium-risk issues were present at the conclusion of the review.

5.3 Low risk
No low-risk issues were present at the conclusion of the review.

5.4 Informational

5.4.1 Use of transfer function

Quotation.sol#L355

Description

https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/cover/Quotation.sol#L355

The Quotation.freeUpHeldCovers() functions made use of the transfer() function to

send ether. While transfer() is commonly used to prevent reentrancy attacks due to its

2300 gas limit, it relies on the receiving contract having a fallback function below this limit.

As demonstrated in EIP-1884, which changed the gas cost of the SLOAD operation, gas

costs can change. This could lead to a case where a contract has its fallback function

increased above the 2300 limit, resulting in it becoming incompatible with the system.

More information can be found in Consensys On Avoiding transfer() .

Recommendation

It is recommended that the call() function be used to send ether instead of

transfer(...) . Alternatively, the sendValue(...) function from the OpenZeppelin

Address library could be used.

Update

As the freeUpHeldCovers() function will only be invoked once, this issue does not present

a risk.

5.4.2 Fallback implementations could revert
freeUpHeldCovers

Quotation.sol#L386

Description

The freeUpHeldCovers() function loops through the first 106 covers and checks whether

the member should be refunded. This is to recover any funds that might be locked in the

contract after the removal of various KYC functions.

Since there is no on-chain validation that the userAddress is an Externally Owned Account

(EOA) and since members can migrate their addresses, it is possible that the userAddress

might be a smart contract that is no longer payable or that explicitly reverts when calling

its fallback function. This will revert the entire transaction and prevent successful execution

of the freeUpHeldCovers function.

Recommendation

Quotation.freeUpHeldCovers() should be changed to a batch function which takes an

array of coverIDs . This would allow more selective execution of the function and avoid

https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol#L53
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/cover/Quotation.sol#L355

unintended consequences of attempting to pay to contract addresses.

Update

All addresses affected by the single invocation of freeUpHeldCovers() were determined to

be externally owned accounts. Fork tests on this function ran without issue.

5.4.3 Design comments

Actions to improve the functionality and readability of the codebase are outlined below.

Defense in depth

The Incidents.redeemPayout(...) function can be used to redeem payouts against other

cover products, provided the contractAddress for that product matches its productID .

Discussions with Nexus Mutual revealed that there were off-chain processes to prevent this

from happening; however, on-chain protection against this issue would provide a further

layer of protection. It is recommended that a check is added to redeemPayout(...) to

ensure that the provided coverId is a supported product type.

Update

The scenario in which this would pose a risk is considered highly improbable, and

introducing on-chain defense is not considered a worthwhile trade-off against issues such

a code addition may introduce.

Refactoring suggestions

Portions of the code can be refactored to improve readability and consistency, as indicated

below.

1. SwapOperator#L267: The swapETHForStETH function stakes ether by directly

depositing into the Lido smart contract. No exchange is used and it is still possible to

use swapETHForAsset to obtain stEth using an exchange. The function name should

reflect its implementation, a suitable name would be similar to stakeETHforStETH .

5.5 Closed

5.5.1 Incorrect modifier for addIncident (medium risk)

Incidents.sol#L119

https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L267
https://lido.fi/
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L119

Description

At the start of the audit the addIncident made use of the onlyAdvisoryBoard modifier

opposed to the onlyGovernance modifier. This would have allowed any member of the

Advisory Board to add a product, take out cover and then perform a payout.

Recommendation

Change the addIncident modifier to onlyGovernance as per the design specification.

Update

This issue was independently identified by Nexus Mutual and resolved during the audit in

commit 978f153 .

5.5.2 Unrestricted initializer (medium risk)

Incidents.sol#L82

Description

The initialize(...) function of the Incidents contract was callable by any address. This

may allow an attacker to front run the contract's initialization immediately following its

deployment and set an arbitrary burn rate.

Recommendation

Discussions with Nexus Mutual indicated that the contract's initial burn rate could be hard-

coded. This would remove the need for the initialize(...) function, allowing it to be

removed from the contract code.

Should initialization be required for this or other contracts in future, the initialize(...)

function should be protected by a modifier that restricts initialization to a trusted address

or addresses.

Updated

In 7141a96, the initialize function was altered to have no parameters and set BURN_RATE

to a hard-coded value of 20.

5.5.3 No explicit check to ensure asset is valid (low risk)

https://github.com/NexusMutual/smart-contracts/pull/83/commits/978f1530369d6aba2e177ebc99dbd103a0ee7603
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L82
https://github.com/NexusMutual/smart-contracts/commit/7141a966837e0da7b3024bd6e8e7190b6bc611b0

SwapOperator.sol#L80, SwapOperator.sol#L111

Description

The SwapOperator.sol smart contract did not validate that assets were pool assets.

Instead, the code assumed the asset address was valid and proceeded with the default

values returned from the mapping.

Fortunately, the max and min validations at the end of the swap functions reverted for an

asset not part of the pool. This impacts the maintainability of the codebase, as future

developments might overlook the extended implications of changing the min and max

validations.

Recommendation

The functions should validate that the asset address is in the Pool.assets array before

attempting to retrieve the asset's details. Adding unit tests to specifically test this scenario

would also help prevent any future code changes from introducing a flaw related to this

issue.

Update

In a0174ef, checks were added to ensure that the asset was valid by ensuring that the

asset's minAmount and maxAmount were not both equal to 0.

5.5.4 Design comments (informational)

Actions to improve the functionality and readability of the codebase are outlined below.

Refactoring suggestions

Portions of the code can be refactored to improve readability and consistency, as indicated

below.

1. Incidents.sol#L173,#L278: decimalPrecision is defined and used in multiple places

and could be converted to a contract-level constant.

2. Incidents.sol#L216: The parameter iterations could be renamed to maxIterations

to match its equivalent in the PooledStaking contract.

3. SwapOperator.sol#L67, #L141 #L98, #L201: The SwapOperator.sol smart contract

defined two pairs of external and internal functions with identical names. This can

cause confusion when calling the function internally or when reviewing the code. It is

https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L80
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L111
https://github.com/NexusMutual/smart-contracts/commit/a0174ef663bbbf98a41ad1eaa0c2937335ffd60c
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L173
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L278
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L216
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L67
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L141
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L98
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L201

best practice to append an underscore to internal functions to prevent any ambiguity.

Furthermore, having identical function names can result in some tools omitting or

merging results when analyzing the source code.

4. MCR.sol#L35-L37 Some of the threshold values in the smart contracts are proportional

and not absolute. To improve code readability, the state variable names should clearly

distinguish between absolute and percentage based values. The following variables

should be renamed:

maxMCRIncrement -> maxMCRIncrementPercentage

maxMCRFloorIncrement -> maxMCRFloorIncrementPercentage

mcrFloorIncrementThreshold -> mcrFloorIncrementThresholdRatio

5. MCR.sol#L154, #L169, #L209, #L213, #L217: Calculations using ratios and percentages

were designed to have 4 decimal precision, by multiplying and dividing by 10 000. To

improve the readability of the code the decimal precision should be defined as a

constant and used throughout the contract.

6. MCR.sol#L94, #L143, #L147, #L151, #L175, #L199, #L205 : Use of now In Solidity version

0.7.0, the now keyword was deprecated. Developers are encouraged to use

block.timestamp instead to ensure forward compatibility.

Update

1. This will remain as-is. In future, a similar pattern may be used for currencies with

different numbers of decimal places.

2. Fixed in 59cef2d.

3. Fixed in b5be56b.

4. A comment explaining that these functions are expressed in basis points was added in

7103df9, while the variable names remained unchanged.

5. This constant was added in 7103df9.

6. Fixed in 7103df9.

Gas optimizations

SwapOperator.sol#L150: The swap functions make use of the pool.getAssetDetails()

function to obtain information about the asset being traded, however, it discards the

balance returned. The internal function then explicitly queries the balance again, after the

assets from the pool have been transferred to the SwapOperator . This second balance

https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L35
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L154
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L169
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L209
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L213
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L217
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L94
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L143
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L147
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L151
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L175
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L199
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/MCR.sol#L205
https://solidity.readthedocs.io/en/v0.7.0/070-breaking-changes.html
https://github.com/NexusMutual/smart-contracts/commit/59cef2d697f76e843a573f91695b0e88d4b75b44
https://github.com/NexusMutual/smart-contracts/commit/b5be56b31a2107c79603170681807edc0b73073c
https://github.com/NexusMutual/smart-contracts/commit/7103df997e0bf742c9dfcf7c8788af7734fe50c1
https://github.com/NexusMutual/smart-contracts/commit/7103df997e0bf742c9dfcf7c8788af7734fe50c1
https://github.com/NexusMutual/smart-contracts/commit/7103df997e0bf742c9dfcf7c8788af7734fe50c1
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L150

query is unnecessary, as it would be functionally identical to first transfer the assets

(SwapOperator.sol#L84), and then query (#L72) the asset details and reuse the balance

(#L150). This will require adding the balance to the AssetData struct, but since it is only

used in memory it should still result in gas cost savings.

Update

In b3ced4a, the getAssetDetails() function was altered to no longer return balance .

Fix spelling, grammar and naming convention errors

Spelling and grammar mistakes and contraventions of Solidity naming conventions were

identified in the codebase. Fixing these mistakes can help improve the end-user

experience by providing clear information on errors encountered, and improve the

maintainability and auditability of the codebase.

1. Incidents.sol#L266: "depeged" -> "depegged"

Update

1. Fixed in ebd9e6f.

Improve comment accuracy

The following actions could be taken to improve the accuracy of code comments:

1. Incidents.sol#L163-164: The require statement messages are incorrect and should be

negated, i.e.

"Incidents: Cover start date is before the incident" -> "Incidents: Cover start date is

after the incident"

"Incidents: Cover end date is after the incident" -> "Incidents: Cover end date is

before the incident"

2. Incidents.sol#L182: The comment on the payout amount calculation does not match

the calculation it describes and should be changed to:

// coveredTokenAmount * coverAmount / maxAmount

Update

1. Fixed in ebd9e6f.

2. Fixed in ebd9e6f.

https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L84
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L82
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/capital/SwapOperator.sol#L150
https://github.com/NexusMutual/smart-contracts/pull/88/commit/b3ced4ade6097fb63e9f1e46a0183a8ab4dcecc9
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L266
https://github.com/NexusMutual/smart-contracts/commit/ebd9e6fd88a96225351cac2da6c1580149b3fea4
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L163
https://github.com/NexusMutual/smart-contracts/blob/60efdf64f2198050f7e6fcec57548d40e4f8598f/contracts/modules/claims/Incidents.sol#L182
https://github.com/NexusMutual/smart-contracts/commit/ebd9e6fd88a96225351cac2da6c1580149b3fea4
https://github.com/NexusMutual/smart-contracts/commit/ebd9e6fd88a96225351cac2da6c1580149b3fea4

Request a service

S TA R T N OW →

ABOUT

CONTACT US

SMART CONTRACT AUDITING

PENETRATION TESTING

AUDIT REPORTS

PRIVACY POLICY

TERMS OF SERVICE

© iosiro 2021

Secure your system.

https://www.jotform.com/200551789870463
https://twitter.com/iosiro_security
https://iosiro.com/about
https://iosiro.com/contact
https://iosiro.com/services/smart-contract-auditing
https://iosiro.com/services/penetration-testing
https://iosiro.com/audits
https://iosiro.com/privacy-policy
https://iosiro.com/terms-of-service

