
29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 1/68

A CONSENSYS DILIGENCE AUDIT REPORT

OmiseGo MoreVP

Date January 2020

Lead Auditor Alexander Wade

Co-auditors Daniel Luca, Martin Ortner

1 Summary
ConsenSys Diligence conducted a security audit of OmiseGo’s plasma
framework contracts. The contracts are their implementation of More Viable
Plasma (MoreVP), which is based on Minimal Viable Plasma (MVP). MoreVP
aims to improve on Plasma’s UX by getting rid of MVP’s con�irmation
signatures in favor of a more involved exit game.

Diligence performed a secondary review of the plasma contracts following
OmiseGo’s implementation of fee transaction types as well as their inclusion
of �ixes from our initial review.

2 Audit Scope
Our review was concerned primarily with the smart contracts in OmiseGo’s
plasma-contracts repository. We began our review at commit

https://github.com/omisego/plasma-contracts
https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 2/68

e13aaf759c979cf6516c1d8de865c9e324bc2db6.

Our subsequent review began at commit
9d79e35811a483277d4cd8b06b1678efc9f33151.

A complete list of Solidity �iles reviewed can be found in the appendix.

3 Key
Observations/Recommendations

The bulk of the code (~80%) is concerned with the MoreVP exit game. Of
this code, large portions of many contracts are irrelevant to the intended
behavior of the system: boilerplate and leftovers from unused
extensibility features.

The inclusion of this code makes it di�icult to understand many
components. Code is spread across a sprawling �ile structure, and
understanding individual features involves hopping between �iles
frequently.

The unused code may have unintended side effects. External calls
and delegatecalls are often made. Memory is frequently allocated
without cause. Functions often have more parameters than they use.
It may be that these affect the function of the contracts in some
subtle way.

Update: Since our initial review, signi�icant refactoring has removed
much of the unused code initially found. In particular, the removal of
unused parameters and features like the output guard handler made
it easier to reason about the code (see 5.12).

Many future features are planned, but not yet implemented. The
extensibility features mentioned above are meant to support new
features when they are released, but, crucially, will never serve a purpose
in the existing system post-deployment. Assuming the system is
deployed and initialized correctly, the extensibility features in the
existing codebase will never be active.

Instead, future features will be added via the registration of new exit
games and vaults. This process involves a quarantine period
whereby users can ensure that new features are understood and

https://github.com/omisego/plasma-contracts/commit/e13aaf759c979cf6516c1d8de865c9e324bc2db6
https://github.com/omisego/plasma-contracts/commit/9d79e35811a483277d4cd8b06b1678efc9f33151

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 3/68

audited before being used. The quarantine period is based on the
minimum exit period, so that users are free to opt-out via exit before
any new features become active.

Some future features are represented in the current system. Of note
is plasma transaction fees, which are represented in the exit state
transition veri�ier contract. This contract checks that the sum of the
denominations of each input is greater than or equal to the sum of
the denominations of each output. Should fees not be implemented,
this representation is incorrect and could lead to invalid transactions
exiting successfully.

Update: Since our initial review, transaction fees have been
implemented and included in the smart contracts as �irst-class
citizens. However, the contracts are still highly complex due to
heavy use of abstractions and a complicated transaction decoding
scheme. The potential to enable future transaction types and
decoding schemes plays a large role in obfuscating the business
logic of the contracts. This obfuscation is magni�ied by the
codebase’s aforementioned sprawling �ile structure and relative lack
of code commenting. Further work should attempt to limit this
sprawl and focus on making implementation details more clear.

Because MoreVP does not use con�irmation signatures, verifying a
transaction’s validity is nearly impossible in the resource-constrained
environment of the EVM. To get around this limitation, MoreVP allows
invalid transactions to be exited. In order to avoid losing funds, users
must be sure that they are running the child chain watcher, and that it is
correctly con�igured to notify them of byzantine scenarios.

As a safeguard to the potential exiting of invalid transactions, users
can perform a mass exit. In this case, the gas cost required to exit
each UTXO is a critically-important bottleneck. Should a mass exit be
too resource-intensive, the network may be clogged up and invalid
transactions may be exited successfully. Future work on this
codebase should make additional steps to ensure that exit game
implementations are as e�icient as possible.

Update: As with any highly-complex system, it is impossible to account
for every possibility before launching. Our review was primarily
concerned with the plasma smart contracts as the critical point of

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 4/68

infrastructure, but left other important components nearly untouched.
Of particular note is the implementation of the child chain watcher (and
its integration with the plasma chain), which serves as a crucial
safeguard for users during production.

Our review uncovered several issues in a highly complex codebase,
and more were uncovered by OmiseGo’s development team during
the engagement. We highly recommend proceeding with caution:
rather than pushing immediately for a full-scale production release, a
testnet, public bug bounty, limited release, or a combination of all of
these would allow OmiseGo to work out the kinks of the system
before it reaches critical mass.

4 Security Specification
This section describes, from a security perspective, the expected behavior
of the system under audit. It is not a substitute for documentation. The
purpose of this section is to identify speci�ic security properties that were
validated by the audit team.

4.1 Actors

The relevant actors are as follows:

Operator: Runs the child chain and submits child chain blocks to the
PlasmaFramework contract.

Maintainer: An address controlled by OmiseGo that has permissions to
enable some extensibility features in the root chain contracts.

Deployer: The address used to deploy the system’s contracts. Following
deployment, the deployer should revoke their permissions in some
Ownable contracts.

User: An EOA that has deposited ERC20 or Ether into PlasmaFramework

vaults. Users hold assets in the child chain.

Watcher: A node that observes properties of the child chain and root
chain contracts and signals if a byzantine scenario is detected.

4.2 Trust Model

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 5/68

In any smart contract system, it’s important to identify what trust is
expected/required between various actors. For this audit, we established the
following trust model:

Deployment and Initialization

Before the plasma chain can start submitting blocks to the root chain
contract, it must be deployed and initialized correctly. That the contracts are
correctly initialized is crucial. The safety of many system components rely on
the revocation of permissions post-initialization, as well as the correct
injection of parameters into each contract constructor.

PlasmaFramework.constructor - minExitPeriod

The minimum exit period should be 1 week

PlasmaFramework.constructor - vault and exit game immunities

PlasmaFramework should be initialized with 2 immunities for vaults,
which should be �illed during initialization by the erc20 and eth
vaults.

PlasmaFramework should be initialized with 1 immunity for exit games,
which should be �illed during initialization by the PaymentExitGame

contract, con�igured with each of the components mentioned
below.

OutputGuardHandlerRegistry and SpendingConditionRegistry

Following deployment, the owner of these contracts should revoke
ownership by transferring permissions to the zero address.

Only one payment output type should be registered in
OutputGuardHandlerRegistry .

Two spending conditions should be registered in
SpendingConditionRegistry , with the same output type registered in
OutputGuardHandlerRegistry , and two different transaction types. These

spending conditions should be separately-deployed instances of
PaymentOutputToPaymentTxCondition.sol .

Update: The OutputGuardHandlerRegistry was removed after refactoring
suggested in 5.12.

PaymentExitGame.constructor (args)

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 6/68

ethVaultId and erc20VaultId should be the deployed EthVault.sol and
ERC20Vault.sol contracts. They should be different addresses. Each

should be initialized with the correct deposit veri�ier contract.

outputGuardHandlerRegistry , spendingConditionVerifier ,
stateTransitionVerifier , and txFinalizationVerifier should be the

deployed OutputGuardHandlerRegistry.sol , SpendingConditionRegistry.sol ,
PaymentTransactionStateTransitionVerifier.sol , and
TxFinalizationVerifier.sol

Update: The OutputGuardHandlerRegistry was removed after refactoring
suggested in 5.12.

User Behavior

The safety of the system relies in large part on vigilant monitoring and
decisive action on the part of the system’s users. Users should be running the
child chain watcher, which monitors the plasma chain and main chain
contracts to alert the user if an exit is needed. In the event of a byzantine
operator or some discovered �law, it is critical that users be able to exit
quickly and correctly.

The watcher should monitor registered exit games and vaults, and alert
users if a new exit game is registered. Users should examine each
registered exit game to ensure it complies with their expectations of the
system.

The watcher should be used by as many users as is feasible.

In the event that an exit is needed, users must be able to coordinate and
exit safely.

5 Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 7/68

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 Merkle.checkMembership allows existence proofs for
the same leaf in multiple locations in the tree Critical ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#533 by including a
check in PosLib that restricts transaction indices to between 0 and
2**16 - 1 inclusive. A subsequent change in omisego/plasma-

contracts#547 ensured the passed-in index satis�ied the recommended
criterion.

Description

checkMembership is used by several contracts to prove that transactions exist in
the child chain. The function uses a leaf , an index , and a proof to construct
a hypothetical root hash. This constructed hash is compared to the passed in
rootHash parameter. If the two are equivalent, the proof is considered valid.

The proof is performed iteratively, and uses a pseudo-index (j) to determine
whether the next proof element represents a “left branch” or “right branch”:

code/plasma_framework/contracts/src/utils/Merkle.sol:L28-L41

https://github.com/omisego/plasma-contracts/pull/533
https://github.com/omisego/plasma-contracts/pull/547

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 8/68

If j is even, the computed hash is placed before the next proof element. If
j is odd, the computed hash is placed after the next proof element. After

each iteration, j is decremented by j = j / 2 .

Because checkMembership makes no requirements on the height of the tree or
the size of the proof relative to the provided index , it is possible to pass in
invalid values for index that prove a leaf’s existence in multiple locations in
the tree.

Examples

By modifying existing tests, we showed that for a tree with 3 leaves, leaf 2
can be proven to exist at indices 2, 6, and 10 using the same proof each time.
The modi�ied test can be found here:
https://gist.github.com/wadeAlexC/01b60099282a026f8dc1ac85d83489fd#�i
le-merkle-test-js-L40-L67

uint256 j = index;
// Note: We're skipping the first 32 bytes of `proof`, which holds the size of
for (uint256 i = 32; i <= proof.length; i += 32) {
 // solhint-disable-next-line no-inline-assembly
 assembly {
 proofElement := mload(add(proof, i))
 }
 if (j % 2 == 0) {
 computedHash = keccak256(abi.encodePacked(NODE_SALT, computedHash, p
 } else {
 computedHash = keccak256(abi.encodePacked(NODE_SALT, proofElement, c
 }
 j = j / 2;
}

https://gist.github.com/wadeAlexC/01b60099282a026f8dc1ac85d83489fd#file-merkle-test-js-L40-L67

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 9/68

it('should accidentally allow different indices to use the same proof', async () => {
 const rootHash = this.merkleTree.root;
 const proof = this.merkleTree.getInclusionProof(leaves[2]);

 const result = await this.merkleContract.checkMembership(
 leaves[2],
 2,
 rootHash,
 proof,
);
 expect(result).to.be.true;

 const nextResult = await this.merkleContract.checkMembership(
 leaves[2],
 6,
 rootHash,
 proof,
);
 expect(nextResult).to.be.true;

 const nextNextResult = await this.merkleContract.checkMembership(
 leaves[2],
 10,
 rootHash,
 proof,
);
 expect(nextNextResult).to.be.true;
});

Conclusion

Exit processing is meant to bypass exits processed more than once. This is
implemented using an “output id” system, where each exited output should
correspond to a unique id that gets �lagged in the ExitGameController contract
as it’s exited. Before an exit is processed, its output id is calculated and
checked against ExitGameController . If the output has already been exited, the
exit being processed is deleted and skipped. Crucially, output id is calculated
differently for standard transactions and deposit transactions: deposit output
ids factor in the transaction index.

By using the behavior described in this issue in conjunction with methods
discussed in issue 5.8 and issue 5.10, we showed that deposit transactions
can be exited twice using indices 0 and 2**16 . Because of the distinct
output id calculation, these exits have different output ids and can be
processed twice, allowing users to exit double their deposited amount.

A modi�ied StandardExit.load.test.js shows that exits are successfully
enqueued with a transaction index of 65536 :

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 10/68

https://gist.github.com/wadeAlexC/4ad459b7510e512bc9556e7c919e0965#�i
le-standardexit-load-test-js-L55

Recommendation

Use the length of the proof to determine the maximum allowed index. The
passed-in index should satisfy the following criterion:
index < 2**(proof.length/32) . Additionally, ensure range checks on transaction

position decoding are su�iciently restrictive (see issue 5.10).

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/546

5.2 Improper initialization of spending condition
abstraction allows “v2 transactions” to exit using
PaymentExitGame Major ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#478 by requiring that
PaymentStartStandardExit and PaymentStartInFlightExit check the exiting

transaction’s transaction type.

Description

PaymentOutputToPaymentTxCondition is an abstraction around the transaction
signature check needed for many components of the exit games. Its only
function, verify , returns true if one transaction (inputTxBytes) is spent by
another transaction (spendingTxBytes):

code/plasma_framework/contracts/src/exits/payment/spendingConditions
/PaymentOutputToPaymentTxCondition.sol:L40-L69

https://gist.github.com/wadeAlexC/4ad459b7510e512bc9556e7c919e0965#file-standardexit-load-test-js-L55
https://github.com/omisego/plasma-contracts/issues/546
https://github.com/omisego/plasma-contracts/pull/478

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 11/68

Veri�ication process

The veri�ication process is relatively straightforward. The contract performs
some basic input validation, checking that the input transaction’s txType

matches supportInputTxType , and that the spending transaction’s txType

matches supportSpendingTxType . These values are set during construction.

Next, verify checks that the spending transaction contains an input that
matches the position of one of the input transaction’s outputs.

Finally, verify performs an EIP-712 hash on the spending transaction, and
ensures it is signed by the owner of the output in question.

Implications of the abstraction

function verify(
 bytes calldata inputTxBytes,
 uint16 outputIndex,
 uint256 inputTxPos,
 bytes calldata spendingTxBytes,
 uint16 inputIndex,
 bytes calldata signature,
 bytes calldata /*optionalArgs*/
)
 external
 view
 returns (bool)
{
 PaymentTransactionModel.Transaction memory inputTx = PaymentTransactionM
 require(inputTx.txType == supportInputTxType, "Input tx is an unsupporte

 PaymentTransactionModel.Transaction memory spendingTx = PaymentTransacti
 require(spendingTx.txType == supportSpendingTxType, "The spending tx is

 UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.build(TxPosLib.TxPos(inpu
 require(
 spendingTx.inputs[inputIndex] == bytes32(utxoPos.value),
 "Spending tx points to the incorrect output UTXO position"
);

 address payable owner = inputTx.outputs[outputIndex].owner();
 require(owner == ECDSA.recover(eip712.hashTx(spendingTx), signature), "T

 return true;
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 12/68

The abstraction used requires several �iles to be visited to fully understand
the function of each line of code: ISpendingCondition , PaymentEIP712Lib ,
UtxoPosLib , TxPosLib , PaymentTransactionModel , PaymentOutputModel , RLPReader , ECDSA ,

and SpendingConditionRegistry . Additionally, the abstraction obfuscates the
underlying spending condition veri�ication primitive where used.

Finally, understanding the abstraction requires an understanding of how
SpendingConditionRegistry is initialized, as well as the nature of its relationship

with PlasmaFramework and ExitGameRegistry . The aforementioned txType values,
supportInputTxType and supportSpendingTxType , are set during construction. Their

use in ExitGameRegistry seems to suggest they are intended to represent
different versions of transaction types, and that separate exit game contracts
are meant to handle different transaction types:

code/plasma_framework/contracts/src/framework/registries/ExitGameReg
istry.sol:L58-L78

Migration and initialization

The migration script seems to corroborate this interpretation:

/**
 * @notice Registers an exit game within the PlasmaFramework. Only the maintai
 * @dev Emits ExitGameRegistered event to notify clients
 * @param _txType The tx type where the exit game wants to register
 * @param _contract Address of the exit game contract
 * @param _protocol The transaction protocol, either 1 for MVP or 2 for MoreVP
 */
function registerExitGame(uint256 _txType, address _contract, uint8 _protoco
 require(_txType != 0, "Should not register with tx type 0");
 require(_contract != address(0), "Should not register with an empty exit
 require(_exitGames[_txType] == address(0), "The tx type is already regis
 require(_exitGameToTxType[_contract] == 0, "The exit game contract is al
 require(Protocol.isValidProtocol(_protocol), "Invalid protocol value");

 _exitGames[_txType] = _contract;
 _exitGameToTxType[_contract] = _txType;
 _protocols[_txType] = _protocol;
 _exitGameQuarantine.quarantine(_contract);

 emit ExitGameRegistered(_txType, _contract, _protocol);
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 13/68

code/plasma_framework/migrations/5_deploy_and_register_payment_exit_
game.js:L109-L124

The migration script shown above deploys two different versions of
PaymentOutputToPaymentTxCondition . The �irst sets supportInputTxType and
supportSpendingTxType to PAYMENT_OUTPUT_TYPE and PAYMENT_TX_TYPE , respectively. The

second sets those same variables to PAYMENT_OUTPUT_TYPE and PAYMENT_V2_TX_TYPE ,
respectively.

The migration script then registers both of these contracts in
SpendingConditionRegistry , and then calls renounceOwnership , freezing the spending

conditions registered permanently:

code/plasma_framework/migrations/5_deploy_and_register_payment_exit_
game.js:L126-L135

// handle spending condition
await deployer.deploy(
 PaymentOutputToPaymentTxCondition,
 plasmaFramework.address,
 PAYMENT_OUTPUT_TYPE,
 PAYMENT_TX_TYPE,
);
const paymentToPaymentCondition = await PaymentOutputToPaymentTxCondition.de

await deployer.deploy(
 PaymentOutputToPaymentTxCondition,
 plasmaFramework.address,
 PAYMENT_OUTPUT_TYPE,
 PAYMENT_V2_TX_TYPE,
);
const paymentToPaymentV2Condition = await PaymentOutputToPaymentTxCondition.

console.log(`Registering paymentToPaymentCondition (${paymentToPaymentCondit
await spendingConditionRegistry.registerSpendingCondition(
 PAYMENT_OUTPUT_TYPE, PAYMENT_TX_TYPE, paymentToPaymentCondition.address,
);

console.log(`Registering paymentToPaymentV2Condition (${paymentToPaymentV2Co
await spendingConditionRegistry.registerSpendingCondition(
 PAYMENT_OUTPUT_TYPE, PAYMENT_V2_TX_TYPE, paymentToPaymentV2Condition.add
);
await spendingConditionRegistry.renounceOwnership();

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 14/68

Finally, the migration script registers a single exit game contract in
PlasmaFramework :

code/plasma_framework/migrations/5_deploy_and_register_payment_exit_
game.js:L137-L143

// register the exit game to framework
await plasmaFramework.registerExitGame(
 PAYMENT_TX_TYPE,
 paymentExitGame.address,
 config.frameworks.protocols.moreVp,
 { from: maintainerAddress },
);

Note that the associated _txType is permanently associated with the
deployed exit game contract:

code/plasma_framework/contracts/src/framework/registries/ExitGameReg
istry.sol:L58-L78

Conclusion

/**
 * @notice Registers an exit game within the PlasmaFramework. Only the maintai
 * @dev Emits ExitGameRegistered event to notify clients
 * @param _txType The tx type where the exit game wants to register
 * @param _contract Address of the exit game contract
 * @param _protocol The transaction protocol, either 1 for MVP or 2 for MoreVP
 */
function registerExitGame(uint256 _txType, address _contract, uint8 _protoco
 require(_txType != 0, "Should not register with tx type 0");
 require(_contract != address(0), "Should not register with an empty exit
 require(_exitGames[_txType] == address(0), "The tx type is already regis
 require(_exitGameToTxType[_contract] == 0, "The exit game contract is al
 require(Protocol.isValidProtocol(_protocol), "Invalid protocol value");

 _exitGames[_txType] = _contract;
 _exitGameToTxType[_contract] = _txType;
 _protocols[_txType] = _protocol;
 _exitGameQuarantine.quarantine(_contract);

 emit ExitGameRegistered(_txType, _contract, _protocol);
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 15/68

Crucially, this association is never used. It is implied heavily that transactions
with some txType must use a certain registered exit game contract. In fact,
this is not true. When using PaymentExitGame , its routers, and their associated
controllers, the txType is invariably inferred from the encoded transaction,
not from the mappings in ExitGameRegistry . If initialized as-is, both
PAYMENT_TX_TYPE and PAYMENT_V2_TX_TYPE transactions may be exited using
PaymentExitGame , provided they exist in the plasma chain.

Recommendation

Remove PaymentOutputToPaymentTxCondition and SpendingConditionRegistry

Implement checks for speci�ic spending conditions directly in exit game
controllers. Emphasize clarity of function: ensure it is clear when called
from the top level that a signature veri�ication check and spending
condition check are being performed.

If the inferred relationship between txType and PaymentExitGame is correct,
ensure that each PaymentExitGame router checks for its supported txType .
Alternatively, the check could be made in PaymentExitGame itself.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/472

5.3 RLPReader - Leading zeroes allow multiple valid
encodings and exit / output ids for the same transaction

Major ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#507 with the addition
of checks to ensure primitive decoding functions in RLPReader (toAddress ,
toUint , toBytes32) do not decode lists. A subsequent change in

omisego/plasma-contracts#476 rejects leading zeroes in toUint , and
improves on size requirements for decoded payloads. Note that the
scalar “0” should be encoded as 0x80 .

Description

https://github.com/omisego/plasma-contracts/issues/472
https://github.com/omisego/plasma-contracts/pull/507
https://github.com/omisego/plasma-contracts/pull/476

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 16/68

The current implementation of RLP decoding can take 2 different txBytes and
decode them to the same structure. Speci�ically, the RLPReader.toUint method
can decode 2 different types of bytes to the same number. For example:

0x821234 is decoded to uint(0x1234)

0x83001234 is decoded to uint(0x1234)

0xc101 can decode to uint(1) , even though the tag speci�ies a short list

0x01 can decode to uint(1) , even though the tag speci�ies a single byte

As explanation for this encoding:

0x821234 is broken down into 2 parts:

0x82 - represents 0x80 (the string tag) + 0x02 bytes encoded

0x1234 - are the encoded bytes

The same for 0x83001234 :

0x83 - represents 0x80 (the string tag) + 0x03 bytes encoded

0x001234 - are the encoded bytes

The current implementation casts the encoded bytes into a uint256, so these
different encodings are interpreted by the contracts as the same number:

uint(0x1234) = uint(0x001234)

code/plasma_framework/contracts/src/utils/RLPReader.sol:L112

result := mload(memPtr)

Having different valid encodings for the same data is a problem because the
encodings are used to create hashes that are used as unique ids. This means
that multiple ids can be created for the same data. The data should only have
one possible id.

The encoding is used to create ids in these parts of the code:

Outputid.sol

code/plasma_framework/contracts/src/exits/utils/OutputId.sol:L18

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 17/68

code/plasma_framework/contracts/src/exits/utils/OutputId.sol:L32

return keccak256(abi.encodePacked(_txBytes, _outputIndex));

ExitId.sol

code/plasma_framework/contracts/src/exits/utils/ExitId.sol:L41

bytes32 hashData = keccak256(abi.encodePacked(_txBytes, _utxoPos.value));

code/plasma_framework/contracts/src/exits/utils/ExitId.sol:L54

return uint160((uint256(keccak256(_txBytes)) >> 105).setBit(151));

TxFinalizationVeri�ier.sol

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�ier.sol
:L55

bytes32 leafData = keccak256(data.txBytes);

Other methods that are affected because they rely on the return values of
these methods:

ExitId.sol

getStandardExitId

getInFlightExitId

OutputId.sol

computeDepositOutputId

computeNormalOutputId

PaymentChallengeIFENotCanonical.sol

verifyAndDeterminePositionOfTransactionIncludedInBlock

verifyCompetingTxFinalized

return keccak256(abi.encodePacked(_txBytes, _outputIndex, _utxoPosValue));

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 18/68

PaymentChallengeStandardExit.sol

verifyChallengeTxProtocolFinalized

PaymentStartInFlightExit.sol

verifyInputTransactionIsStandardFinalized

PaymentExitGame.sol

getStandardExitId

getInFlightExitId

PaymentOutputToPaymentTxCondition.sol

verify

Recommendation

Enforce strict-length decoding for txBytes , and specify that uint is decoded
from a 32-byte short string.

Enforcing a 32-byte length for uint means that 0x1234 should always be
encoded as:

0xa0001234

0xa0 represents the tag + the length: 0x80 + 32

001234 is the number
32 bytes long with leading zeroes

Unfortunately, using leading zeroes is against the RLP spec:

https://github.com/ethereum/wiki/wiki/RLP

positive RLP integers must be represented in big endian binary form
with no leading zeroes

This means that libraries interacting with OMG contracts which are going to
correctly and fully implement the spec will generate “incorrect” encodings
for uints; encodings that are not going to be recognized by the OMG
contracts.

Fully correct spec encoding: 0x821234 . Proposed encoding in this solution:
0xa0001234 .

Similarly enforce restrictions where they can be added; this is possible
because of the strict structure format that needs to be encoded.

https://github.com/ethereum/wiki/wiki/RLP

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 19/68

Some other potential solutions are included below. Note that these solutions
are not recommended for reasons included below:

�. Normalize the encoding that gets passed to methods that hash the
transaction for use as an id:

This can be implemented in the methods that call keccak256 on txBytes and
should decode and re-encode the passed txBytes in order to normalize the
passed encoding.

a txBytes is passed

the txBytes are decoded into structure: tmpDecodedStruct = decode(txBytes)

the tmpDecodedStruct is re-encoded in order to normalize it:
normalizedTxBytes = encode(txBytes)

This method is not recommended because it needs a Solidity encoder to be
implemented and a lot of gas will be used to decode and re-encode the initial
txBytes .

�. Correctly and fully implement RLP decoding

This is another solution that adds a lot of code and is prone to errors.

The solution would be to enforce all of the restrictions when decoding and
not accept any encoding that doesn’t fully follow the spec. This for example
means that is should not accept uints with leading zeroes.

This is a problem because it needs a lot of code that is not easy to write in
Solidity (or EVM).

5.4 Recommendation: Remove TxFinalizationModel
and TxFinalizationVerifier . Implement stronger
checks in Merkle Medium

Resolution

This was partially addressed in omisego/plasma-contracts#503, with the
removal of several unneeded branches of logic in TxFinalizationModel

(now renamed to MoreVpFinalization). A subsequent change in

https://github.com/omisego/plasma-contracts/pull/503

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 20/68

omisego/plasma-contracts#533 added a non-zero proof length check in
Merkle . Note that PaymentChallengeIFENotCanonical.respond still calls
Merkle.checkMembership directly, and lacks the typical transaction type

protocol check made in MoreVpFinalization.isStandardFinalized .

Description

TxFinalizationVerifier is an abstraction around the block inclusion check
needed for many of the features of plasma exit games. It uses a struct
de�ined in TxFinalizationModel as inputs to its two functions: isStandardFinalized

and isProtocolFinalized .

isStandardFinalized returns the result of an inclusion proof. Although there are
several branches, only the �irst is used:

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�ier.sol
:L19-L32

isProtocolFinalized is unused:

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�ier.sol
:L34-L47

/**
* @notice Checks whether a transaction is "standard finalized"
* @dev MVP: requires that both inclusion proof and confirm signature is checke
* @dev MoreVp: checks inclusion proof only
*/
function isStandardFinalized(Model.Data memory data) public view returns (bo
 if (data.protocol == Protocol.MORE_VP()) {
 return checkInclusionProof(data);
 } else if (data.protocol == Protocol.MVP()) {
 revert("MVP is not yet supported");
 } else {
 revert("Invalid protocol value");
 }
}

https://github.com/omisego/plasma-contracts/pull/533

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 21/68

The abstraction used introduces branching logic and requires several �iles to
be visited to fully understand the function of each line of code:
ITxFinalizationVerifier , TxFinalizationModel , TxPosLib , Protocol , BlockController ,

and Merkle . Additionally, the abstraction obfuscates the underlying inclusion
proof primitive when used in the exit game contracts. isStandardFinalized is
not clearly an inclusion proof, and isProtocolFinalized simply adds confusion.

Finally, the abstraction may have rami�ications on the safety of Merkle.sol . As
it stands now, Merkle.checkMembership should never be called directly by the exit
game controllers, as it lacks an important check made in
TxFinalizationVerifier.checkInclusionProof :

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�ier.sol
:L49-L59

/**
* @notice Checks whether a transaction is "protocol finalized"
* @dev MVP: must be standard finalized
* @dev MoreVp: allows in-flight tx, so only checks for the existence of the tr
*/
function isProtocolFinalized(Model.Data memory data) public view returns (bo
 if (data.protocol == Protocol.MORE_VP()) {
 return data.txBytes.length > 0;
 } else if (data.protocol == Protocol.MVP()) {
 revert("MVP is not yet supported");
 } else {
 revert("Invalid protocol value");
 }
}

function checkInclusionProof(Model.Data memory data) private view returns (b
 if (data.inclusionProof.length == 0) {
 return false;
 }

 (bytes32 root,) = data.framework.blocks(data.txPos.blockNum());
 bytes32 leafData = keccak256(data.txBytes);
 return Merkle.checkMembership(
 leafData, data.txPos.txIndex(), root, data.inclusionProof
);
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 22/68

By introducing the abstraction of TxFinalizationVerifier , the input validation
performed by Merkle is split across multiple �iles, and the reasonable-
seeming decision of calling Merkle.checkMembership directly becomes unsafe. In
fact, this occurs in one location in the contracts:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L187-L204

Recommendation

�. Remove TxFinalizationVerifier and TxFinalizationModel

�. Implement a proof length check in Merkle.sol

�. Call Merkle.checkMembership directly from exit controller contracts:

PaymentChallengeIFEOutputSpent.verifyInFlightTransactionStandardFinalized :

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L91

PaymentChallengeIFENotCanonical.verifyCompetingTxFinalized :

function verifyAndDeterminePositionOfTransactionIncludedInBlock(
 bytes memory txbytes,
 UtxoPosLib.UtxoPos memory utxoPos,
 bytes32 root,
 bytes memory inclusionProof
)
 private
 pure
 returns(uint256)
{
 bytes32 leaf = keccak256(txbytes);
 require(
 Merkle.checkMembership(leaf, utxoPos.txIndex(), root, inclusionProof
 "Transaction is not included in block of Plasma chain"
);

 return utxoPos.value;
}

require(controller.txFinalizationVerifier.isStandardFinalized(finalizationDa

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 23/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L244

PaymentStartInFlightExit.verifyInputTransactionIsStandardFinalized :

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L307-L308

�. If none of the above recommendations are implemented, ensure that
PaymentChallengeIFENotCanonical uses the abstraction TxFinalizationVerifier so

that a length check is performed on the inclusion proof.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/471

5.5 Merkle - The implementation does not enforce
inclusion of leaf nodes. Medium ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#452 with the addition
of leaf and node salts to the checkMembership function.

Description

A observation with the current Merkle tree implementation is that it may be
possible to validate nodes other than leaves. This is done by providing
checkMembership with a reference to a hash within the tree, rather than a leaf.

code/plasma_framework/contracts/src/utils/Merkle.sol:L9-L42

require(self.txFinalizationVerifier.isStandardFinalized(finalizationData), "

require(exitData.controller.txFinalizationVerifier.isStandardFinalized(final
 "Input transaction is not standard finalized");

https://github.com/omisego/plasma-contracts/issues/471
https://github.com/omisego/plasma-contracts/pull/452

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 24/68

The current implementation will validate the provided “leaf” and return true .
This is a known problem of Merkle trees
https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack.

Examples

Provide a hash from within the Merkle tree as the leaf argument. The index
has to match the index of that node in regards to its current level in the tree.
The rootHash has to be the correct Merkle tree rootHash . The proof has to skip
the necessary number of levels because the nodes “underneath” the
provided “leaf” will not be processed.

/**
 * @notice Checks that a leaf hash is contained in a root hash
 * @param leaf Leaf hash to verify
 * @param index Position of the leaf hash in the Merkle tree
 * @param rootHash Root of the Merkle tree
 * @param proof A Merkle proof demonstrating membership of the leaf hash
 * @return True, if the leaf hash is in the Merkle tree; otherwise, False
*/
function checkMembership(bytes32 leaf, uint256 index, bytes32 rootHash, byte
 internal
 pure
 returns (bool)
{
 require(proof.length % 32 == 0, "Length of Merkle proof must be a multip

 bytes32 proofElement;
 bytes32 computedHash = leaf;
 uint256 j = index;
 // Note: We're skipping the first 32 bytes of `proof`, which holds the siz
 for (uint256 i = 32; i <= proof.length; i += 32) {
 // solhint-disable-next-line no-inline-assembly
 assembly {
 proofElement := mload(add(proof, i))
 }
 if (j % 2 == 0) {
 computedHash = keccak256(abi.encodePacked(computedHash, proofEle
 } else {
 computedHash = keccak256(abi.encodePacked(proofElement, computed
 }
 j = j / 2;
 }

 return computedHash == rootHash;
}

https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 25/68

Recommendation

A remediation needs a �ixed Merkle tree size as well as the addition of a byte
prepended to each node in the tree. Another way would be to create a
structure for the Merkle node and mark it as leaf or no leaf .

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/425

5.6 Maintainer can bypass exit game quarantine by
registering not-yet-deployed contracts Medium ✓ Addressed

Resolution

This was addressed in commit
7669076be1dff47473ee877dcebef5989d7617ac by adding a check that
registered contracts had nonzero extcodesize .

Description

The plasma framework uses an ExitGameRegistry to allow the maintainer to add
new exit games after deployment. An exit game is any arbitrary contract. In
order to prevent the maintainer from adding malicious exit games that steal
user funds, the framework uses a “quarantine” system whereby newly-
registered exit games have restricted permissions until their quarantine
period has expired. The quarantine period is by default 3 * minExitPeriod , and
is intended to facilitate auditing of the new exit game’s functionality by the
plasma users.

However, by registering an exit game at a contract which has not yet been
deployed, the maintainer can prevent plasma users from auditing the game
until the quarantine period has expired. After the quarantine period has
expired, the maintainer can deploy the malicious exit game and immediately
steal funds.

Explanation

https://github.com/omisego/plasma-contracts/issues/425
https://github.com/omisego/plasma-contracts/pull/469/commits/7669076be1dff47473ee877dcebef5989d7617ac

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 26/68

Exit games are registered in the following function, callable only by the
plasma contract maintainer:

code/plasma_framework/contracts/src/framework/registries/ExitGameReg
istry.sol:L58-L78

Notably, the function does not check the extcodesize of the submitted
contract. As such, the maintainer can submit the address of a contract which
does not yet exist and is not auditable.

After at least 3 * minExitPeriod seconds pass, the submitted contract now has
full permissions as a registered exit game and can pass all checks using the
onlyFromNonQuarantinedExitGame modi�ier:

code/plasma_framework/contracts/src/framework/registries/ExitGameReg
istry.sol:L33-L40

/**
 * @notice Registers an exit game within the PlasmaFramework. Only the maintai
 * @dev Emits ExitGameRegistered event to notify clients
 * @param _txType The tx type where the exit game wants to register
 * @param _contract Address of the exit game contract
 * @param _protocol The transaction protocol, either 1 for MVP or 2 for MoreVP
 */
function registerExitGame(uint256 _txType, address _contract, uint8 _protoco
 require(_txType != 0, "Should not register with tx type 0");
 require(_contract != address(0), "Should not register with an empty exit
 require(_exitGames[_txType] == address(0), "The tx type is already regis
 require(_exitGameToTxType[_contract] == 0, "The exit game contract is al
 require(Protocol.isValidProtocol(_protocol), "Invalid protocol value");

 _exitGames[_txType] = _contract;
 _exitGameToTxType[_contract] = _txType;
 _protocols[_txType] = _protocol;
 _exitGameQuarantine.quarantine(_contract);

 emit ExitGameRegistered(_txType, _contract, _protocol);
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 27/68

Additionally, the submitted contract passes checks made by external
contracts using the isExitGameSafeToUse function:

code/plasma_framework/contracts/src/framework/registries/ExitGameReg
istry.sol:L48-L56

These permissions allow a registered quarantine to:

�. Withdraw any users’ tokens from ERC20Vault :

code/plasma_framework/contracts/src/vaults/Erc20Vault.sol:L52-L55

�. Withdraw any users’ ETH from EthVault :

code/plasma_framework/contracts/src/vaults/EthVault.sol:L46-L54

/**
 * @notice A modifier to verify that the call is from a non-quarantined exit g
 */
modifier onlyFromNonQuarantinedExitGame() {
 require(_exitGameToTxType[msg.sender] != 0, "The call is not from a regi
 require(!_exitGameQuarantine.isQuarantined(msg.sender), "ExitGame is qua
 _;
}

/**
 * @notice Checks whether the contract is safe to use and is not under quarant
 * @dev Exposes information about exit games quarantine
 * @param _contract Address of the exit game contract
 * @return boolean Whether the contract is safe to use and is not under quaran
 */
function isExitGameSafeToUse(address _contract) public view returns (bool) {
 return _exitGameToTxType[_contract] != 0 && !_exitGameQuarantine.isQuara
}

function withdraw(address payable receiver, address token, uint256 amount) e
 IERC20(token).safeTransfer(receiver, amount);
 emit Erc20Withdrawn(receiver, token, amount);
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 28/68

�. Activate and deactivate the ExitGameController reentrancy mutex:

code/plasma_framework/contracts/src/framework/ExitGameController.sol
:L63-L66

code/plasma_framework/contracts/src/framework/ExitGameController.sol
:L72-L75

�. enqueue arbitrary exits:

code/plasma_framework/contracts/src/framework/ExitGameController.sol
:L115-L138

function withdraw(address payable receiver, uint256 amount) external onlyFro
 // we do not want to block exit queue if transfer is unucessful
 // solhint-disable-next-line avoid-call-value
 (bool success,) = receiver.call.value(amount)("");
 if (success) {
 emit EthWithdrawn(receiver, amount);
 } else {
 emit WithdrawFailed(receiver, amount);
 }

function activateNonReentrant() external onlyFromNonQuarantinedExitGame() {
 require(!mutex, "Reentrant call");
 mutex = true;
}

function deactivateNonReentrant() external onlyFromNonQuarantinedExitGame()
 require(mutex, "Not locked");
 mutex = false;
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 29/68

�. Flag outputs as “spent”:

code/plasma_framework/contracts/src/framework/ExitGameController.sol
:L210-L213

Recommendation

registerExitGame should check that extcodesize of the submitted contract is
non-zero.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/410

5.7 EthVault - Unused state variable Minor ✓ Addressed

function enqueue(
 uint256 vaultId,
 address token,
 uint64 exitableAt,
 TxPosLib.TxPos calldata txPos,
 uint160 exitId,
 IExitProcessor exitProcessor
)
 external
 onlyFromNonQuarantinedExitGame
 returns (uint256)
{
 bytes32 key = exitQueueKey(vaultId, token);
 require(hasExitQueue(key), "The queue for the (vaultId, token) pair is n
 PriorityQueue queue = exitsQueues[key];

 uint256 priority = ExitPriority.computePriority(exitableAt, txPos, exitI

 queue.insert(priority);
 delegations[priority] = exitProcessor;

 emit ExitQueued(exitId, priority);
 return priority;
}

function flagOutputSpent(bytes32 _outputId) external onlyFromNonQuarantinedE
 require(_outputId != bytes32(""), "Should not flag with empty outputId")
 isOutputSpent[_outputId] = true;
}

https://github.com/omisego/plasma-contracts/issues/410

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 30/68

Resolution

This was addressed in commit
ea36f5ff46ab72ec5c281fa0a3dffe3bcc83178b.

Description

The state variable withdrawEntryCounter is not used in the code.

code/plasma_framework/contracts/src/vaults/EthVault.sol:L8

uint256 private withdrawEntryCounter = 0;

Recommendation

Remove it from the contract.

5.8 Recommendation: Add a tree height limit check to
Merkle.sol Minor

Description

Each plasma block has a maximum of 2 ** 16 transactions, which
corresponds to a maximum Merkle tree height of 16. The Merkle library
currently checks that the proof is comprised of 32-byte segments, but
neglects to check the maximum height:

code/plasma_framework/contracts/src/utils/Merkle.sol:L17-L23

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/467

function checkMembership(bytes32 leaf, uint256 index, bytes32 rootHash, byte
 internal
 pure
 returns (bool)
{
 require(proof.length % 32 == 0, "Length of Merkle proof must be a multip

https://github.com/omisego/plasma-contracts/commit/ea36f5ff46ab72ec5c281fa0a3dffe3bcc83178b
https://github.com/omisego/plasma-contracts/issues/467

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 31/68

5.9 Recommendation: remove IsDeposit and add a
similar getter to BlockController Minor ✓ Addressed

Resolution

This was addressed in commit
0fee13f7f084983139eb47636ff785ebea8a1c36 by removing the
IsDeposit contract and replicating its functionality in BlockController.sol .

Description

The IsDeposit library is used to check whether a block number is a deposit or
not. The logic is simple - if blockNum % childBlockInterval is nonzero, the block
number is a deposit.

By including this check in BlockController instead, the contract can perform
an existence check as well. The function in BlockController would return the
same result as the IsDeposit library, but would additionally revert if the block
in question does not exist:

function isDeposit(uint _blockNum) public view returns (bool) {
 require(blocks[_blockNum].timestamp != 0, "Block does not exist");
 return _blockNum % childBlockInterval != 0;
}

Note that this check is made at the cost of an external call. If the check needs
to be made multiple times in a transaction, the result should be cached.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/466

5.10 Recommendation: Merge TxPosLib into
UtxoPosLib and implement a decode function with

range checks. Minor

Resolution

https://github.com/omisego/plasma-contracts/pull/516/commits/0fee13f7f084983139eb47636ff785ebea8a1c36
https://github.com/omisego/plasma-contracts/issues/466

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 32/68

This was partially addressed in omisego/plasma-contracts#515 with the
merging of TxPosLib and UtxoPosLib into PosLib . A subsequent change in
omisego/plasma-contracts#533 implemented stricter range checks for
block number and transaction index. Note that the maximum output
index in PosLib is still 9999, well above the currently-supported
maximum of “3”. Additionally, PosLib.encode lacks an explicit range check
on txIndex and PosLib.decode lacks an explicit range check on outputIndex .

Description

TxPosLib and UtxoPosLib serve very similar functions. They both provide utility
functions to access the block number and tx index of a packed utxo position
variable. UtxoPosLib , additionally, provides a function to retrieve the output
index of a packed utxo position variable.

What they both lack, though, is sanity checks on the values packed inside a
utxo position variable. By implementing a function
UtxoPosLib.decode(uint _utxoPos) returns (UtxoPos) , each exit controller contract

can ensure that the values it is using make logical sense. The decode function
should check that:

txIndex is between 0 and 2**16

outputIndex is between 0 and 3

Currently, neither of these restrictions is explicitly enforced. As for blockNum ,
the best check is that it exists in the PlasmaFramework contract with a nonzero
root. Since UtxoPosLib is a pure library, that check is better performed
elsewhere (See issue 5.9).

Once implemented, all contracts should avoid casting values directly to the
UtxoPos struct, in favor of using the decode function. Merging the two �iles will

help with this.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/465

5.11 Recommendation: Implement additional existence and
range checks on inputs and storage reads Minor

https://github.com/omisego/plasma-contracts/pull/515
https://github.com/omisego/plasma-contracts/pull/533
https://github.com/omisego/plasma-contracts/issues/465

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 33/68

Resolution

This was partially addressed in omisego/plasma-contracts#524 and
omisego/plasma-contracts#483. Not all recommended checks were
included.

Description

Many input validation and storage read checks are made implicitly, rather
than explicitly. The following compilation notes each line of code in the exit
controller contracts where an additional check should be added.

Examples

1. PaymentChallengeIFEInputSpent :

Check that inFlightTx has a nonzero input at the provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L96

Check that each transaction is nonzero and is correctly formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L98-L101

Check that resulting outputId is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L123

require(ife.isInputPiggybacked(args.inFlightTxInputIndex), "The indexed inpu

require(
 keccak256(args.inFlightTx) != keccak256(args.challengingTx),
 "The challenging transaction is the same as the in-flight transaction"
);

https://github.com/omisego/plasma-contracts/pull/524
https://github.com/omisego/plasma-contracts/pull/483

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 34/68

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L125

See issue 5.9

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L126

Check that inputTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L127-L128

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L149

See issue 5.10

bytes32 ifeInputOutputId = data.ife.inputs[data.args.inFlightTxInputIndex].o

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(data.args.inputUtxoPo

bytes32 challengingTxInputOutputId = data.controller.isDeposit.test(utxoPos.

? OutputId.computeDepositOutputId(data.args.inputTx, utxoPos.outputIndex(),
: OutputId.computeNormalOutputId(data.args.inputTx, utxoPos.outputIndex());

WireTransaction.Output memory output = WireTransaction.getOutput(data.args.c

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 35/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L156

Check that challengingTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEInputSpent.sol:L163

data.args.challengingTxInputIndex,

2. PaymentChallengeIFENotCanonical :

Check that each transaction is nonzero and is correctly formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L98-L101

require(
 keccak256(args.inFlightTx) != keccak256(args.competingTx),
 "The competitor transaction is the same as transaction in-flight"
);

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L104

See issue 5.9

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L107

if (self.isDeposit.test(inputUtxoPos.blockNum())) {

UtxoPosLib.UtxoPos memory inputUtxoPos = UtxoPosLib.UtxoPos(data.args.inputU

UtxoPosLib.UtxoPos memory inputUtxoPos = UtxoPosLib.UtxoPos(args.inputUtxoPo

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 36/68

Check that inputTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L108-L110

Check that inFlightTx has a nonzero input at the provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L112-L113

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L115

Check that competingTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L126

args.competingTxInputIndex,

Check that resulting position is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L133

 outputId = OutputId.computeDepositOutputId(args.inputTx, inputUtxoPos.ou
} else {
 outputId = OutputId.computeNormalOutputId(args.inputTx, inputUtxoPos.out

require(outputId == ife.inputs[args.inFlightTxInputIndex].outputId,
 "Provided inputs data does not point to the same outputId from the i

WireTransaction.Output memory output = WireTransaction.getOutput(args.inputT

uint256 competitorPosition = verifyCompetingTxFinalized(self, args, output);

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 37/68

Check that inFlightTxPos is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L171-L173

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L175

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(inFlightTxPos);

Check that block root is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L176

(bytes32 root,) = self.framework.blocks(utxoPos.blockNum());

Check that inFlightTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L178

inFlightTx, utxoPos, root, inFlightTxInclusionProof

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L218

require(
 ife.oldestCompetitorPosition > inFlightTxPos,
 "In-flight transaction must be younger than competitors to respond to no

UtxoPosLib.UtxoPos memory competingTxUtxoPos = UtxoPosLib.UtxoPos(args.compe

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 38/68

3. PaymentChallengeIFEOutputSpent :

Check that inFlightTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L54

uint160 exitId = ExitId.getInFlightExitId(args.inFlightTx);

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L58

Check that inFlightTx has a nonzero output at the provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L60-L63

require(
 ife.isOutputPiggybacked(outputIndex),
 "Output is not piggybacked"
);

Check that bond size is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L70

uint256 piggybackBondSize = ife.outputs[outputIndex].piggybackBondSize;

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L83

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.outputUtxoPos);

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 39/68

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L101

Check that challengingTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L102

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L103

Check that challengingTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFEOutputSpent.sol:L116

args.challengingTxInputIndex,

4. PaymentChallengeStandardExit :

See issue 5.10

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.outputUtxoPos);

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.outputUtxoPos);

uint256 challengingTxType = WireTransaction.getTransactionType(args.challeng

WireTransaction.Output memory output = WireTransaction.getOutput(args.challe

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 40/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L110

Check that exitingTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L112

.decode(data.args.exitingTx)

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L111-L113

PaymentOutputModel.Output memory output = PaymentTransactionModel
 .decode(data.args.exitingTx)
 .outputs[utxoPos.outputIndex()];

Check that challengeTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L128

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L134

txPos: TxPosLib.TxPos(data.args.challengeTxPos),

See issue 5.9

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(data.exitData.utxoPos

uint256 challengeTxType = WireTransaction.getTransactionType(data.args.chall

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 41/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L157

bytes32 outputId = data.controller.isDeposit.test(utxoPos.blockNum())

Check that challengeTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeStandardExit.sol:L166

args.inputIndex,

5. PaymentPiggybackInFlightExit :

Check that inFlightTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L93

uint160 exitId = ExitId.getInFlightExitId(args.inFlightTx);

Check that inFlightTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L99

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L108

Check that inFlightTx is nonzero and is well-formed:

require(!exit.isInputPiggybacked(args.inputIndex), "Indexed input already pi

enqueue(self, withdrawData.token, UtxoPosLib.UtxoPos(exit.position), exitId)

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 42/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L130

uint160 exitId = ExitId.getInFlightExitId(args.inFlightTx);

Check that inFlightTx has a nonzero output at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L136

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L147

6. PaymentStartInFlightExit :

Check that inFlightTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L146

exitData.exitId = ExitId.getInFlightExitId(args.inFlightTx);

Check that the length of inputTxs is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L150

exitData.inputTxs = args.inputTxs;

See issue 5.10

require(!exit.isOutputPiggybacked(args.outputIndex), "Indexed output already

enqueue(self, withdrawData.token, UtxoPosLib.UtxoPos(exit.position), exitId)

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 43/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L167

utxosPos[i] = UtxoPosLib.UtxoPos(inputUtxosPos[i]);

See issue 5.9

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L180

bool isDepositTx = controller.isDeposit.test(utxoPos[i].blockNum());

Check that each inputTxs is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L181-L183

Check that each output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L200

Check that inFlightTx has nonzero inputs for all i :

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L327-L328

exitData.inFlightTxRaw,
i,

Check that each output is nonzero:

outputIds[i] = isDepositTx
 ? OutputId.computeDepositOutputId(inputTxs[i], utxoPos[i].outputIndex(),
 : OutputId.computeNormalOutputId(inputTxs[i], utxoPos[i].outputIndex());

WireTransaction.Output memory output = WireTransaction.getOutput(inputTxs[i]

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 44/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L407

PaymentOutputModel.Output memory output = exitData.inFlightTx.outputs[i];

7. PaymentStartStandardExit :

See issue 5.10

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartStandardExit.sol:L119

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.utxoPos);

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartStandardExit.sol:L121

Check that timestamp is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartStandardExit.sol:L124

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/463

5.12 Recommendation: Remove optional arguments and
clean unused code Minor ✓ Addressed

Resolution

PaymentOutputModel.Output memory output = outputTx.outputs[utxoPos.outputInd

(, uint256 blockTimestamp) = controller.framework.blocks(utxoPos.blockNum())

https://github.com/omisego/plasma-contracts/issues/463

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 45/68

This was addressed in omisego/plasma-contracts#496 and
omisego/plasma-contracts#503 with the removal of the output guard
handler pattern, the simpli�ication of the tx �inalization check via
MoreVpFinalization , and the removal of various unused function

parameters and struct �ields.

Description

Several locations in the codebase feature unused arguments, functions,
return values, and more. There are two primary reasons to remove these
artifacts from the codebase:

�. Mass exits are the primary safeguard against a byzantine operator. The
biggest bottleneck of a mass exit is transaction throughput, so plasma
rootchain implementations should strive to be as e�icient as possible.
Many unused features require external calls, memory allocation,
unneeded calculation, and more.

�. The contracts are set up to be extensible by way of the addition of new
exit games to the system. “Optional” or unimplemented features in
current exit games should be removed for simplicity’s sake, as they
currently make up a large portion of the codebase.

Examples

Output guard handlers

These offer very little utility in the current contracts. The main
contract, PaymentOutputGuardHandler , has three functions:

isValid enforces that some “preimage” value passed in via
calldata has a length of zero. This could be removed along with
the unused “preimage” parameter.

getExitTarget converts a bytes20 to address payable (with the help
of AddressPayable.sol). This could be removed in favor of using
AddressPayable directly where needed.

getConfirmSigAddress simply returns an empty address. This should
be removed wherever used - empty �ields should be a rare

https://github.com/omisego/plasma-contracts/pull/496
https://github.com/omisego/plasma-contracts/pull/503

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 46/68

exception or an error, rather than being injected as unused
values into critical functions.

The minimal utility offered comes at the price of using an external
call to the OutputGuardHandlerRegistry , as well as an external call for
each of the functions mentioned above. Overall, the existence of
output guard handlers adds thousands of gas to the exit process.

Referenced contracts: IOutputGuardHandler , OutputGuardModel ,
PaymentOutputGuardHandler , OutputGuardHandlerRegistry

Payment router arguments

Several �ields in the exit router structs are marked “optional,” and are
not used in the contracts. While this is not particularly impactful, it
does clutter and confuse the contracts. Many “optional” �ields are
referenced and passed into functions which do not use them. Of
note is the crucially-important signature veri�ication function,
PaymentOutputToPaymentTxCondition.verify , where
StartExitData.inputSpendingConditionOptionalArgs resolves to an unnamed

parameter:

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartInFlightExit.sol:L323-L332

bool isSpentByInFlightTx = condition.verify(
 exitData.inputTxs[i],
 exitData.inputUtxosPos[i].outputIndex(),
 exitData.inputUtxosPos[i].txPos().value,
 exitData.inFlightTxRaw,
 i,
 exitData.inFlightTxWitnesses[i],
 exitData.inputSpendingConditionOptionalArgs[i]
);
require(isSpentByInFlightTx, "Spending condition failed");

code/plasma_framework/contracts/src/exits/payment/spendingConditions
/PaymentOutputToPaymentTxCondition.sol:L40-L47

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 47/68

function verify(
 bytes calldata inputTxBytes,
 uint16 outputIndex,
 uint256 inputTxPos,
 bytes calldata spendingTxBytes,
 uint16 inputIndex,
 bytes calldata signature,
 bytes calldata /*optionalArgs*/

The additional �ields clutter the namespace of each struct, confusing the
purpose of the other �ields. For example,
PaymentInFlightExitRouterArgs.StartExitArgs features two �ields, inputTxsConfirmSigs

and inFlightTxsWitnesses , the former of which is marked “optional”. In fact, the
inFlightTxsWitnesses �ield ends up containing the signatures passed to the

spending condition veri�ier and ECDSA library:

code/plasma_framework/contracts/src/exits/payment/routers/PaymentInFl
ightExitRouterArgs.sol:L4-L24

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/457

/**
* @notice Wraps arguments for startInFlightExit.
* @param inFlightTx RLP encoded in-flight transaction.
* @param inputTxs Transactions that created the inputs to the in-flight transa
* @param inputUtxosPos Utxos that represent in-flight transaction inputs. In t
* @param outputGuardPreimagesForInputs (Optional) Output guard pre-images for
* @param inputTxsInclusionProofs Merkle proofs that show the input-creating tr
* @param inputTxsConfirmSigs (Optional) Confirm signatures for the input txs.
* @param inFlightTxWitnesses Witnesses for in-flight transaction. In the same
* @param inputSpendingConditionOptionalArgs (Optional) Additional args for the
*/
struct StartExitArgs {
 bytes inFlightTx;
 bytes[] inputTxs;
 uint256[] inputUtxosPos;
 bytes[] outputGuardPreimagesForInputs;
 bytes[] inputTxsInclusionProofs;
 bytes[] inputTxsConfirmSigs;
 bytes[] inFlightTxWitnesses;
 bytes[] inputSpendingConditionOptionalArgs;
}

https://github.com/omisego/plasma-contracts/issues/457

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 48/68

5.13 Recommendation: Remove WireTransaction and
PaymentOutputModel . Fold functionality into an

extended PaymentTransactionModel Minor

Description

RLP decoding is performed on transaction bytes in each of WireTransaction ,
PaymentOutputModel , and PaymentTransactionModel . The latter is the primary

decoding function for transactions, while the former two contracts deal with
outputs speci�ically.

Both WireTransaction and PaymentOutputModel make use of RLPReader to decode
transaction objects, and both implement very similar features. Rather than
having a codebase with two separate de�initions for struct Output ,
PaymentTransactionModel should be extended to implement all required

functionality.

Examples

PaymentTransactionModel should include three distinct decoding functions:
decodeDepositTx decodes a deposit transaction, which has no inputs

and exactly 1 output.

decodeSpendTx decodes a spend transaction, which has exactly 4
inputs and 4 outputs.

decodeOutput decodes an output, which is a long list with 4 �ields (
uint , address , address , uint)

A mock implementation including decodeSpendTx and decodeOutput is shown
here:
https://gist.github.com/wadeAlexC/7820c0cd82fd5fdc11a0ad58a84165ae

OmiseGo may want to consider enforcing restrictions on the ordering of
empty and nonempty �ields here as well.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/456

5.14 ECDSA error value is not handled Minor ✓ Addressed

https://gist.github.com/wadeAlexC/7820c0cd82fd5fdc11a0ad58a84165ae
https://github.com/omisego/plasma-contracts/issues/456

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 49/68

Resolution

This was addressed in commit
32288ccff5b867a7477b4eaf3beb0587a4684d7a by adding a check that
the returned value is nonzero.

Description

The OpenZeppelin ECDSA library returns address(0x00) for many cases with
malformed signatures:

contracts/cryptography/ECDSA.sol:L57-L63

The PaymentOutputToPaymentTxCondition contract does not explicitly handle this
case:

code/plasma_framework/contracts/src/exits/payment/spendingConditions
/PaymentOutputToPaymentTxCondition.sol:L65-L68

Recommendation

Adding a check to handle this case will make it easier to reason about the
code.

if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F466
 return address(0);
}

if (v != 27 && v != 28) {
 return address(0);
}

address payable owner = inputTx.outputs[outputIndex].owner();
require(owner == ECDSA.recover(eip712.hashTx(spendingTx), signature), "Tx in

return true;

https://github.com/omisego/plasma-contracts/pull/459/commits/32288ccff5b867a7477b4eaf3beb0587a4684d7a

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 50/68

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/454

5.15 No existence checks on framework block and
timestamp reads Minor ✓ Addressed

Resolution

This was addressed in commit
c5e5a460a2082b809a2c45b2d6a69b738b34937a by adding checks
that block root and timestamp reads return nonzero values.

Description

The exit game libraries make several queries to the main PlasmaFramework

contract where plasma block hashes and timestamps are stored. In multiple
locations, the return values of these queries are not checked for existence.

Examples

�. PaymentStartStandardExit.setupStartStandardExitData :

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
StartStandardExit.sol:L124

�. PaymentChallengeIFENotCanonical.respond :

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
ChallengeIFENotCanonical.sol:L176

(bytes32 root,) = self.framework.blocks(utxoPos.blockNum());

�. PaymentPiggybackInFlightExit.enqueue :

(, uint256 blockTimestamp) = controller.framework.blocks(utxoPos.blockNum())

https://github.com/omisego/plasma-contracts/issues/454
https://github.com/omisego/plasma-contracts/commit/c5e5a460a2082b809a2c45b2d6a69b738b34937a

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 51/68

code/plasma_framework/contracts/src/exits/payment/controllers/Payment
PiggybackInFlightExit.sol:L167

�. TxFinalizationVerifier.checkInclusionProof :

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�ier.sol
:L54

(bytes32 root,) = data.framework.blocks(data.txPos.blockNum());

Recommendation

Although none of these examples seem exploitable, adding existence checks
makes it easier to reason about the code. Each query to PlasmaFramework.blocks

should be followed with a check that the returned value is nonzero.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/463

5.16 BondSize - effectiveUpdateTime should be uint64 Minor

Description

In BondSize, the mechanism to update the size of the bond has a grace
period after which the new bond size becomes active.

When updating the bond size, the time is casted as a uint64 and saved in a
uint128 variable.

code/plasma_framework/contracts/src/exits/utils/BondSize.sol:L24

uint128 effectiveUpdateTime;

code/plasma_framework/contracts/src/exits/utils/BondSize.sol:L11

uint64 constant public WAITING_PERIOD = 2 days;

(, uint256 blockTimestamp) = controller.framework.blocks(utxoPos.blockNum())

https://github.com/omisego/plasma-contracts/issues/463

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 52/68

code/plasma_framework/contracts/src/exits/utils/BondSize.sol:L57

self.effectiveUpdateTime = uint64(now) + WAITING_PERIOD;

There’s no need to use a uint128 to save the time if it never will take up that
much space.

Recommendation

Change the type of the effectiveUpdateTime to uint64 .

- uint128 effectiveUpdateTime;
+ uint64 effectiveUpdateTime;

5.17 PaymentExitGame contains several redundant
plasmaFramework declarations Minor

Description

PaymentExitGame inherits from both PaymentInFlightExitRouter and
PaymentStandardExitRouter . All three contracts declare and initialize their own
PlasmaFramework variable. This pattern can be misleading, and may lead to

subtle issues in future versions of the code.

Examples

�. PaymentExitGame declaration:

code/plasma_framework/contracts/src/exits/payment/PaymentExitGame.s
ol:L18

PlasmaFramework private plasmaFramework;

�. PaymentInFlightExitRouter declaration:

code/plasma_framework/contracts/src/exits/payment/routers/PaymentInFl
ightExitRouter.sol:L53

PlasmaFramework private framework;

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 53/68

�. PaymentStandardExitRouter declaration:

code/plasma_framework/contracts/src/exits/payment/routers/PaymentSta
ndardExitRouter.sol:L45

PlasmaFramework private framework;

Each variable is initialized in the corresponding �ile’s constructor.

Recommendation

Introduce an inherited contract common to PaymentStandardExitRouter and
PaymentInFlightExitRouter with the PlasmaFramework variable. Make the variable

internal so it is visible to inheriting contracts.

5.18 BlockController - inaccurate description of
childBlockInterval for submitDepositBlock Minor

Description

The Vault calls submitDepositBlock when a user deposits funds into the plasma
chain. Each deposit transaction creates one deposit block on the plasma
chain. The number of deposit blocks between two child blocks is limited by
the childBlockInterval . For example, a childBlockInterval of 1 would not allow
any deposit blocks, a childBlockInterval of 2 would allow one deposit block
after each child block [child][optional: deposit][child][optional: deposit] .

code/plasma_framework/contracts/src/framework/BlockController.sol:L96
-L114

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 54/68

However, the comment at line 98 mentions the following:

[..] it’s possible to have at most ‘childBlockInterval’ deposit blocks
between two child chain blocks [..]

This comment is inaccurate, as a childBlockInterval of 1 would not allow
deposits at all (Note how nextDeposit is always >=1).

Remediation

The comment should read: [..] it’s possible to have at most ‘childBlockInterval
-1’ deposit blocks between two child chain blocks [..]. Make sure to properly
validate inputs for these values when deploying the contract to avoid obvious
miscon�iguration.

5.19 PlasmaFramework - Can omit inheritance of
VaultRegistry Minor

Description

The contract PlasmaFramework inherits VaultRegistry even though it does not use
any of the methods directly. Also BlockController inherits VaultRegistry

effectively adding all of the needed functionality in there.

/**
 * @notice Submits a block for deposit
 * @dev Block number adds 1 per submission; it's possible to have at most 'chi
 * @param _blockRoot Merkle root of the Plasma block
 * @return The deposit block number
 */
function submitDepositBlock(bytes32 _blockRoot) public onlyFromNonQuarantine
 require(isChildChainActivated == true, "Child chain has not been activat
 require(nextDeposit < childBlockInterval, "Exceeded limit of deposits pe

 uint256 blknum = nextDepositBlock();
 blocks[blknum] = BlockModel.Block({
 root : _blockRoot,
 timestamp : block.timestamp
 });

 nextDeposit++;
 return blknum;
}

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 55/68

Remediation

PlasmaFramework does not need to inherit VaultRegistry , thus the import and the
inheritance can be removed from PlasmaFramework.sol .

All tests still pass after removing the inheritance.

5.20 BlockController - maintainer should be the only entity
to set new authority Minor ✓ Addressed

Resolution

This was addressed in commit
25c2560e3b2e40ce9a10c40da97c3f79afc2c641 with the removal of the
setAuthority function.

Description

code/plasma_framework/contracts/src/framework/BlockController.sol:L69
-L72

 import "./BlockController.sol";
 import "./ExitGameController.sol";
-import "./registries/VaultRegistry.sol";
 import "./registries/ExitGameRegistry.sol";

-contract PlasmaFramework is VaultRegistry, ExitGameRegistry, ExitGameContro
+contract PlasmaFramework is ExitGameRegistry, ExitGameController, BlockCont
 uint256 public constant CHILD_BLOCK_INTERVAL = 1000;

 /**

function setAuthority(address newAuthority) external onlyFrom(authority) {
 require(newAuthority != address(0), "Authority address cannot be zero");
 authority = newAuthority;
}

https://github.com/omisego/plasma-contracts/pull/434/commits/25c2560e3b2e40ce9a10c40da97c3f79afc2c641

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 56/68

deployer initially sets the account that is allowed to submit new blocks as
authority . authority can then set a new authority at will. In a system that is

set-up and maintained by a maintainer role (multi-sig) that can upgrade
certain parts of the system it is unexpected for another role to be able to
pass along its permissions. The security speci�ication notes that the authority

role is only used to submit blocks:

Authority: EOA used exclusively to submit plasma block hashes to
the root chain. The child chain assumes at deployment that the
authority account has nonce zero and no transactions have been
sent from it.

However, no transactions might not be possible as authority is the only one
to activateChildChain . Once activated, the child chain cannot be de-activated
but the authority can change.

elixir-omg#managing-the-operator-address notes the following for operator

aka authority :

As a consequence, the operator address must never send any other
transactions, if it intends to continue submitting blocks.
(Workarounds to this limitation are available, if there’s such
requirement.)

Additionally, setAuthority should emit an event to allow participants to react
to this change in the system and have an audit trial.

Remediation

Remove the setAuthority function, or clarify its intended purpose and add an
event so it can be detected by users.

Corresponding issue in plasma-contracts repo:
https://github.com/omisego/plasma-contracts/issues/403

Appendix 1 - Scope
Our initial review covered the following �iles:

File Name SHA-1 Hash

https://github.com/omisego/plasma-contracts/blob/422f77adabbcca0061cbf73df2ac12b73ed054f8/security/spec.md
https://github.com/omisego/elixir-omg#managing-the-operator-address
https://github.com/omisego/plasma-contracts/issues/403

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 57/68

File Name SHA-1 Hash

exits/interfaces/IOutputGuardHandler.sol
441f1302e9c56aa5c7df359
afe5c5e8e1d3bbad4

exits/interfaces/ISpendingCondition.sol
00c615d91f4b56359743571
00168e51�bd080533

exits/interfaces/IStateTransitionVeri�ier.sol
a8a402a118795d95e33aa53
c91f20b1f554ce406

exits/interfaces/ITxFinalizationVeri�ier.sol
47d1025d9d7198c57854e14
2742d9078568b292f

exits/models/OutputGuardModel.sol
46ef116b93bb41515edac71
d4a3ce09d73a86fce

exits/models/TxFinalizationModel.sol
8a5bbd3e8022e36ca1d0d7
1abf704ccc5af53923

exits/payment/controllers/PaymentChallen
geIFEInputSpent.sol

277cac44c58fccb1cfe1fa61a
f97a6d8cc1a5c33

exits/payment/controllers/PaymentChallen
geIFENotCanonical.sol

cddc8ba53ccf996e303e2c
716fd9ce3f145adf98

exits/payment/controllers/PaymentChallen
geIFEOutputSpent.sol

a5ce1510088b85e25b321a8
0552f131471314f85

exits/payment/controllers/PaymentChallen
geStandardExit.sol

a5a319545934dc7732237d
60af37408535921289

exits/payment/controllers/PaymentPiggyb
ackInFlightExit.sol

8eb01f55de028e67304e27
de1a04�b2757f68f72

exits/payment/controllers/PaymentProcess
InFlightExit.sol

6ba4a78b47995986d8005
53e20da5145fce3b8ed

exits/payment/controllers/PaymentProcess
StandardExit.sol

20e5f5d30b378714c5c1391
5adec4965426ee2e4

exits/payment/controllers/PaymentStartInF
lightExit.sol

c6c5424ee37c61d47e5001
83ecc3c095489d41b8

exits/payment/controllers/PaymentStartSt
andardExit.sol

4ebe19769862712c37e722f
7b96e1f6ea8f3723b

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 58/68

File Name SHA-1 Hash

exits/payment/outputGuardHandlers/Paym
entOutputGuardHandler.sol

564e9ea7a3�b4084a08caf
58c68895657ee05d48

exits/payment/PaymentExitDataModel.sol
d1e69011622fe645b18a81e
30e2575338d93ddfe

exits/payment/PaymentExitGame.sol
f0b6b93c0a89e1519478de
bec19e6411edfa6b97

exits/payment/PaymentInFlightExitModelU
tils.sol

33d3e5c065be8f27c4fccc
df0f43c1a95ec8e203

exits/payment/PaymentTransactionStateTr
ansitionVeri�ier.sol

e5cf8acf73b6ad40b7fac03
ec2b1162e1303dbad

exits/payment/routers/PaymentInFlightExit
RouterArgs.sol

c11e874a9e06�b269eccd2d
3881d64801e2b5de4

exits/payment/routers/PaymentInFlightExit
Router.sol

970fa3e62f1a564c9a20�be
deec96bf0eed4c958

exits/payment/routers/PaymentStandardEx
itRouterArgs.sol

bf16c27381f8c9b918ac38c
8db94a604be9cdbe1

exits/payment/routers/PaymentStandardEx
itRouter.sol

42806bdfedae952aef7d1c5
2ad54ba0e0a37bb7d

exits/payment/spendingConditions/Payme
ntOutputToPaymentTxCondition.sol

03e91d87e21ca409c70b9c
2aaeb16b5813b0f19d

exits/registries/OutputGuardHandlerRegist
ry.sol

309a123160bbef2e55695e1
4913c9502a3ce10ef

exits/registries/SpendingConditionRegistry
.sol

3c3d474f0a9fcdbdeabc7e1
11a07b22ad53d1011

exits/utils/BondSize.sol
5b0d0d28374d870efd92cb
590831581360b7ad34

exits/utils/ExitableTimestamp.sol
43c6aac2�b2cb7943c137b
dd204fd372aff6cd6

exits/utils/ExitId.sol
7afda23a55bc863e4da74a3
0677b7bb29d73�b8b

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 59/68

File Name SHA-1 Hash

exits/utils/OutputId.sol
92f09840ae6a9b83428a7d
7ee544085ab57a8dc0

exits/utils/TxFinalizationVeri�ier.sol
fe3ed4518d03e013c0b1cd
60a0ffa4dee6ca51b3

framework/BlockController.sol
6739cfe1a0ee455175f36e9
d39c33ea8a6795122

framework/ExitGameController.sol
80368067a681381803c05d
11613c8c7efe7e4533

framework/interfaces/IExitProcessor.sol
e4c1d8af9e266f94aff26612
856f17db67f57e15

framework/models/BlockModel.sol
b8189e31fa460f0a50252cc
661613c21ab95a9c5

framework/PlasmaFramework.sol
ab2f4972d01ca506487aef6
3a0d540ed1c8056eb

framework/Protocol.sol
19a3df96f1038bd77527368
aa28dab6c5d6bd8f3

framework/registries/ExitGameRegistry.sol
0f005�bde0fc38a7091d401
3f0d044e008d36f57

framework/registries/VaultRegistry.sol
b67f8e7bc05518f85a7e325
ffe517094e30bf045

framework/utils/ExitPriority.sol
18b26af2160f3bde5153e28
a90326861bb2765f5

framework/utils/PriorityQueue.sol
122b3e2f81de23f7c90c071
b763cdc84df10f682

framework/utils/Quarantine.sol
eb3c6ca62779e1b60f9a56
05d8df2cf7e�bf5494

transactions/eip712Libs/PaymentEip712Lib.
sol

484d1dc077895d634e9097
3e2416d6061b57b4e5

transactions/outputs/PaymentOutputMode
l.sol

2cd78f5327a45904a0ea37
dccb085f155fc56713

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 60/68

File Name SHA-1 Hash

transactions/PaymentTransactionModel.sol
2901a612cba37e2295f79ad
b00787c164c79ac01

transactions/WireTransaction.sol
95919930e6213c59fedbe9
0c8394b1779447093f

utils/AddressPayable.sol
�be6d6c78e748af64d79dc
0e7fab47b874ed2106

utils/Bits.sol
ecdb86c5001d0e2ed20d0
b8eac4054784aa089bd

utils/FailFastReentrancyGuard.sol
af48169f43473420bcc8cf5
80ca20a2cb3a578ab

utils/IsDeposit.sol
d6968ebd0091e14eae212c
78a6a084cdc2d0ac05

utils/Merkle.sol
876dad4�b2edea698b0b35
bb89bd28b6001586cb

utils/OnlyFromAddress.sol
7c2992b12e7689af72dfc2b
80cce51e898b5b0cf

utils/OnlyWithValue.sol
85bf439b5889f96c1500be
9b18abba706a8d47d0

utils/RLPReader.sol
3fd2f65a4bdc0fcbf709219f
751ff427ac6cdc29

utils/SafeEthTransfer.sol
056e0166a2e4ef2c312fee0
43002fcbc1b864d40

utils/TxPosLib.sol
e3338d37bdd83f8a52c8a1
4cfd6615afd7316dfa

utils/UtxoPosLib.sol
bf056fd54e5a8ad1a893872
521231db2d5798c30

vaults/Erc20Vault.sol
0b71916cd9cef140ba64bb
6c8741bf9657888a7a

vaults/EthVault.sol
3502005fc370199f9ebff04
7994e7ed46b81c766

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 61/68

File Name SHA-1 Hash

vaults/Vault.sol
9cf94dbbd859c78f00ad7c
7b5bf985bc72d239ad

vaults/veri�iers/Erc20DepositVeri�ier.sol
deba9753470bc71d9f966b
c1ea2330ab13a1d3c1

vaults/veri�iers/EthDepositVeri�ier.sol
5e53ed549695ed63a5b6df
a509ca9a434e78ea89

vaults/veri�iers/IErc20DepositVeri�ier.sol
bd9cc22d1669f8792f5db54
f6b542b52110b33b5

vaults/veri�iers/IEthDepositVeri�ier.sol
943c3ebddf7f85ca96cead
511c901d7c6cd0d389

vaults/ZeroHashesProvider.sol
6564cf101c4b92a48252eb7
2228dc39b5c4a7001

Our subsequent review covered the following �iles:

File Name SHA-1 Hash

contracts/src/exits/fee/FeeClaimOutputToPay
mentTxCondition.sol

6c6e87c23621c899146fa
a1045cea71d2058414c

contracts/src/exits/fee/FeeExitGame.sol
17ee784ddc824ac7788c
e9409603a675015160b
7

contracts/src/exits/interfaces/ISpendingCond
ition.sol

3a992b445b51687585b
817a62e5780fc1c445b86

contracts/src/exits/interfaces/IStateTransition
Veri�ier.sol

a8a402a118795d95e33a
a53c91f20b1f554ce406

contracts/src/exits/payment/controllers/Paym
entChallengeIFEInputSpent.sol

ceeb25e56df0d002e9d
76f57987598188e4edb9
8

contracts/src/exits/payment/controllers/Paym
entChallengeIFENotCanonical.sol

33a9cf2dc64142e91d39
c8b6d738fc6a9756f53d

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 62/68

File Name SHA-1 Hash

contracts/src/exits/payment/controllers/Paym
entChallengeIFEOutputSpent.sol

74a43642d77f7ea05c4d
9cb60a534cf28891efaf

contracts/src/exits/payment/controllers/Paym
entChallengeStandardExit.sol

e801d5e961b697c1da80
3d91�bd51a2532c7befa

contracts/src/exits/payment/controllers/Paym
entDeleteInFlightExit.sol

102bb520996cd2cfffe37
babc138575889a9b688

contracts/src/exits/payment/controllers/Paym
entPiggybackInFlightExit.sol

fe7646dc08c4172d7d6c
18bdf089183771f04c73

contracts/src/exits/payment/controllers/Paym
entProcessInFlightExit.sol

8cac4f0b829815894a34
a236464386844cd72128

contracts/src/exits/payment/controllers/Paym
entProcessStandardExit.sol

1c57835408e369551040
41300c6b95995c4c009
4

contracts/src/exits/payment/controllers/Paym
entStartInFlightExit.sol

3124a5439e0440b97ad
dd919d0ee6b851347d23
3

contracts/src/exits/payment/controllers/Paym
entStartStandardExit.sol

19b4a93863ade4ea708e
94c26a3f4b6767ea92e3

contracts/src/exits/payment/PaymentExitData
Model.sol

d1e69011622fe645b18a8
1e30e2575338d93ddfe

contracts/src/exits/payment/PaymentExitGam
eArgs.sol

77979dd30879f7a001f5
d2f8388bda9486588c4
3

contracts/src/exits/payment/PaymentExitGam
e.sol

935e41a337124d05059b
26a3133e86333dbf5f32

contracts/src/exits/payment/PaymentInFlight
ExitModelUtils.sol

eb238a0ef049ce265b37
3bbe2348f9ebbafc5314

contracts/src/exits/payment/PaymentTransac
tionStateTransitionVeri�ier.sol

64f7b82870e51def9b2e
6a2b553b6c6186af7b49

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 63/68

File Name SHA-1 Hash

contracts/src/exits/payment/routers/PaymentI
nFlightExitRouterArgs.sol

14080e7f1b932250afed6
77a82eeb76414183dbc

contracts/src/exits/payment/routers/PaymentI
nFlightExitRouter.sol

213cb1237b2fd9320643
ad41cb81ca3c51a253f6

contracts/src/exits/payment/routers/Payment
StandardExitRouterArgs.sol

eb2a335bd64a97042874
6fa763a7b37148e4f2b1

contracts/src/exits/payment/routers/Payment
StandardExitRouter.sol

ea31c0c9e2960c8f252f
34363d91de06ca2c9df2

contracts/src/exits/payment/spendingConditi
ons/PaymentOutputToPaymentTxCondition.s
ol

e4bec76e75686848db8
c46a4eab43fe429c5597
f

contracts/src/exits/registries/SpendingCondit
ionRegistry.sol

b9fcef9d134923bb3fea1
69372bcc0adc1b1521b

contracts/src/exits/utils/BondSize.sol
5b0d0d28374d870efd9
2cb590831581360b7ad3
4

contracts/src/exits/utils/ExitableTimestamp.s
ol

43c6aac2�b2cb7943c13
7bdd204fd372aff6cd6

contracts/src/exits/utils/ExitId.sol
80bf7dbe85bb6d51ed0
0�b4be23e537fa766520
1

contracts/src/exits/utils/MoreVpFinalization.s
ol

f2577010ce10c8d3ab00
b76c19a43f3583c60146

contracts/src/exits/utils/OutputId.sol
92f09840ae6a9b83428
a7d7ee544085ab57a8dc
0

contracts/src/framework/BlockController.sol
5193d41198ad88cd43b6
e02042bf69f696fae8bb

contracts/src/framework/ExitGameController.
sol

ceed446da607979a05f1
4e5b7f66732fc7b04389

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 64/68

File Name SHA-1 Hash

contracts/src/framework/interfaces/IExitProc
essor.sol

e4c1d8af9e266f94aff26
612856f17db67f57e15

contracts/src/framework/models/BlockModel.
sol

b8189e31fa460f0a5025
2cc661613c21ab95a9c5

contracts/src/framework/PlasmaFramework.s
ol

ab2f4972d01ca506487a
ef63a0d540ed1c8056e
b

contracts/src/framework/Protocol.sol
19a3df96f1038bd775273
68aa28dab6c5d6bd8f3

contracts/src/framework/registries/ExitGame
Registry.sol

83b44f5585d1bc06c0a
831427e9d346c3d491eb
2

contracts/src/framework/registries/VaultRegi
stry.sol

060a00ae68379d8d5b1
df911be2d20b59186781c

contracts/src/framework/utils/ExitPriority.sol
d68eb9318ec173ad53f81
c70bbacd2b9a1512374

contracts/src/framework/utils/PriorityQueue.s
ol

122b3e2f81de23f7c90c0
71b763cdc84df10f682

contracts/src/framework/utils/Quarantine.sol
eb3c6ca62779e1b60f9a
5605d8df2cf7e�bf5494

contracts/src/transactions/eip712Libs/Paymen
tEip712Lib.sol

89577a1e57abb536457a
092af6ac594682ac8847

contracts/src/transactions/FungibleTokenOut
putModel.sol

313f786f2195e3d073cac
18b7c5c144fac81�b41

contracts/src/transactions/GenericTransactio
n.sol

48e9a029d694886789b
99b971e45ce702671573f

contracts/src/transactions/PaymentTransacti
onModel.sol

f626be3e19644b629145
6ca88c53f097dab20796

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 65/68

File Name SHA-1 Hash

contracts/src/utils/Bits.sol
ecdb86c5001d0e2ed20
d0b8eac4054784aa089
bd

contracts/src/utils/FailFastReentrancyGuard.s
ol

8cc0480664b28411bc6a
12937fadde7fc92587eb

contracts/src/utils/Merkle.sol
72caf415187c760845305
3fdc0452230b10e25ec

contracts/src/utils/OnlyFromAddress.sol
7c2992b12e7689af72dfc
2b80cce51e898b5b0cf

contracts/src/utils/OnlyWithValue.sol
85bf439b5889f96c1500
be9b18abba706a8d47d
0

contracts/src/utils/PosLib.sol
47fdc91e0f62b96f26d22
50bdead60e7f0fd4cc3

contracts/src/utils/RLPReader.sol
9092f00fd3d7e831f6a87
1e419096adedecdaa07

contracts/src/utils/SafeEthTransfer.sol
056e0166a2e4ef2c312fe
e043002fcbc1b864d40

contracts/src/vaults/Erc20Vault.sol
59265fa1f3351de29eed9
ec68a943c63839ce720

contracts/src/vaults/EthVault.sol
7bf9052bd152abd8a3b0
f1�b021a9c5e01a3f5f3

contracts/src/vaults/Vault.sol
7a55aa4cc4910b33b08
e6c37584c3d5aeab205
c4

contracts/src/vaults/veri�iers/Erc20DepositVe
ri�ier.sol

3c80f895e8cfd0b74654
a81b8429e566f46ca55b

contracts/src/vaults/veri�iers/EthDepositVeri�i
er.sol

42394a1a52334fabba92
d7c58d6de77ade3d8c8
3

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 66/68

File Name SHA-1 Hash

contracts/src/vaults/veri�iers/IErc20DepositVe
ri�ier.sol

bd9cc22d1669f8792f5d
b54f6b542b52110b33b5

contracts/src/vaults/veri�iers/IEthDepositVeri�i
er.sol

943c3ebddf7f85ca96ce
ad511c901d7c6cd0d389

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens

29.03.2021 OmiseGo MoreVP | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/01/omisego-morevp/ 67/68

are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys
and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/diligence/contact/

