

 1

ORAICHAIN
Orai Oracle

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: December 14, 2020
Visit: Halborn.com

http://halborn.com/

 2

Document Revision History 3

Contacts 3

1 Executive Summary 4

1.1 Introduction 4

1.2 Test Approach and Methodology 5

1.3 SCOPE 5

2 Assessment Summary And Findings Overview 6

3 Findings & Technical Details 7

3.1 USE OF INLINE ASSEMBLY – Informational 8

Description 8

Code Location 8

Recommendation 8

3.2. POSSIBLE MISUSE OF PUBLIC FUNCTIONS – Informational 8

Description 8

Code Location 9

Recommendation 9

3.3 STATIC ANALYSIS REPORT– Informational 9

Description 9

Results 10

3.4 AUTOMATED SECURITY SCAN – Informational

Description 10

Results 10

 3

DOCUMENT REVISION HISTORY

CONTACTS

CONTACT COMPANY EMAIL

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Rob Behnke Halborn Rob.Behnke@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 12/14/2020 Gabi Urrutia

0.2 Document Edits 12/17/2020 Gabi Urrutia

1.0 Final Version 12/21/2020 Gabi Urrutia

 4

1.1 INTRODUCTION
Oraichain engaged Halborn to conduct a security assessment on

their Oracle smart contract beginning on December 14th, 2020 and

ending December 21th, 2020. The security assessment was scoped to

the contract orai-oracle.sol and an audit of the security risk

and implications regarding the changes introduced by the

development team at Oraichain prior to its production release

shortly following the assessments deadline.

The Oracle smart contract does not import any external libraries

but, the contract orai-oracle.sol is made up of 7 contracts:

OraiTokenReceiver, OracleRequestInterface, OracleInterface,

OraiTokenInterface, Ownable, SafeMath and Oracle. Therefore, the

contract works by itself without importing any external

contracts, increasing its security.

Overall, the smart contracts code is extremely well documented,

follows a high-quality software development standard, contain

many utilities and automation scripts to support continuous

deployment / testing / integration, and does NOT contain any

obvious exploitation vectors that Halborn was able to leverage

within the timeframe of testing allotted.

Though the outcome of this security audit is satisfactory; due to

time and resource constraints, only testing and verification of

essential properties related to the Oracle Contract was performed

to achieve objectives and deliverables set in the scope. It is

important to remark the use of the best practices for secure

smart contract development.

Halborn recommends performing further testing to validate

extended safety and correctness in context to the whole set of

contracts. External threats, such as economic attacks, oracle

attacks, and inter-contract functions and calls should be

validated for expected logic and state.

EX
EC
UT
IV

E
SU

MM
AR

Y

 5

1.2 TEST APPROACH & METHODOLOGY
Halborn performed a combination of manual and automated security

testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process,

and implementation; automated testing techniques help enhance

coverage of smart contracts and can quickly identify items that do

not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture, purpose, and use of Oracle.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract

logic/connectivity/functions (solgraph)

• Manual Assessment of use and safety for the critical

solidity variables and functions in scope to identify any

arithmetic related vulnerability classes.

• Scanning of solidity files for vulnerabilities, security

hotspots, or bugs. (MythX)

• Static Analysis of security for scoped contract and

imported functions. (Slither)

• Smart Contract analysis and automatic exploitation

(limited-time)

• Symbolic Execution / EVM bytecode security assessment

(limited-time)

1.3 SCOPE

IN-SCOPE:

Code related to the Oracle smart contract. Specific commit of

contract: commit a96f559dce4f5ce9673ebb31ca710db499d38453

OUT-OF-SCOPE:

Other smart contracts in the repository and economics attacks.

EX
EC
UT
IV
E

SU
MM
AR
Y

 6

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW

0 0 0 0

SECURITY ANALYSIS RISK LEVEL

USE OF INLINE ASSEMBLY Informational

POSSIBLE MISUSE OF PUBLIC FUNCTIONS Informational

STATIC ANALYSIS REPORT Informational

AUTOMATED SECURITY SCAN Informational

 7

FINDINGS &
TECH DETAILS

 8

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

3.1 USE OF INLINE ASSEMBLY -
INFORMATIONAL
Description:

Inline assembly is a way to access the Etehreum Virtual Machine at

a low level. This discards several important safety features in

Solidity.

Code Location:

Orai-oracle.sol Line #19-22

Recommendation:

When possible, do not use inline assembly because it is a manner to

access to the EVM (Ethereum Virtual Machine) at a low level. An attacker

could bypass many important safety features of Solidity.

3.2 POSSIBLE MISUSE OF PUBLIC
FUNCTIONS – INFORMATIONAL

Description:

In public functions, array arguments are immediately copied array to

memory, while external functions can read directly from calldata.

Reading calldata is cheaper than memory allocation. Public functions

need to write the arguments to memory because public functions may be

called internally. Internal calls are passed internally by pointers to

memory. Thus, function expects its arguments being in memory when the

compiler generates the code for an internal function. In orai-oracle

contract, onTokenTransfer and transferOwnership functions are never

directly called by another function in the same contract.

Code Location:

orai-oracle.sol Line #10-25

 9

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

orai-oracle.sol Line #135-137

Recommendation:

Consider as much as possible declaring external variables instead of

public variables. As for best practices, you should use external if you

expect that the function will only ever be called externally and use

public if you need to call the function internally. In that case, both

functions are not called by another function in the same contract, so

marking both function as external can save gas.

3.3 STATIC ANALYSIS REPORT –
INFORMATIONAL

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly into

their ABI and binary formats, Slither was run on the Oracle contract.

This tool can statically verify mathematical relationships between

Solidity variables to detect invalid or inconsistent usage of the

contracts' APIs across the entire codebase.

Results:

 10

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

3.4 AUTOMATED SECURITY SCAN –
INFORMATIONAL

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruit on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan on

the testers machine and sent the compiled results to the analyzers to

locate any vulnerabilities. Security Detections are only in scope, and

the analysis was pointed towards issues with orai-oracle.

Results

aiVaultORAI

MythX detected 0 High findings, 2 Medium, and 0 Low.

 11

THANK YOU FOR CHOOSING

	Description: Inline assembly is a way to access the Etehreum Virtual Machine at a low level. This discards several important safety features in Solidity.
	Code Location:
	Description:

