

 1

ORAICHAIN
aiVaultORAI Token
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: November 27, 2020
Visit: Halborn.com

http://halborn.com/

 2

Document Revision History 4

Contacts 4

1 Executive Summary 5

1.1 Introduction 5

1.2 Test Approach and Methodology 5

1.3 SCOPE 6

2 Assessment Summary And Findings Overview 7

3 Findings & Technical Details 8

3.1 FLOATING PRAGMA – Low 9

Description 9

Code Location 9

Recommendation 9

3.2 DIVIDE BEFORE MULTIPLY – Low 9

Description 9

Code Location 9

Recommendation 9

3.3 STRICT EQUALITY – Very Low 10

Description 10

Code Location 10

Recommendation 10

3.4 FOR LOOP OVER DYNAMIC ARRAY – Informational 10

Description 11

Code Location 11

Recommendation 11

3.5 USE OF INLINE ASSEMBLY – Informational 11

Description 11

Code Location 11

Recommendation 12

3.6 NO RETURN VALUE– Informational 12

Description 12

Code Location 12

 3

Recommendation 12

3.7 STATIC ANALYSIS REPORT– Informational 12

Description 12

Results 13

3.7.1 ERC CONFORMAL CHECKER – Informational 13

Description 13

Results 14

3.8 AUTOMATED SECURITY SCAN – Informational 14

Description 14

Results 15

 4

DOCUMENT REVISION HISTORY

CONTACTS

CONTACT COMPANY EMAIL

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Rob Behnke Halborn Rob.Behnke@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 11/27/2020 Gabi Urrutia

0.2 Document Edits 11/30/2020 Gabi Urrutia

1.0 Final Version 12/01/2020 Gabi Urrutia

 5

1.1 INTRODUCTION

The Oraichain engaged Halborn to conduct a security assessment on

their aiVaultORAI Token smart contract beginning on November 24th,

2020 and

ending November 30th, 2020. The security assessment was scoped to the

contract aiVaultORAI.sol and an audit of the security risk and

implications regarding the changes introduced by the development team

at Oraichain prior to its production release shortly following the

assessments deadline.

Overall, the smart contracts code is extremely well documented,

follows a high-quality software development standard, contain many

utilities and automation scripts to support continuous deployment /

testing / integration, and does NOT contain any obvious exploitation

vectors that Halborn was able to leverage within the timeframe of

testing allotted.

Though the outcome of this security audit is satisfactory; due to

time and resource constraints, only testing and verification of

essential properties related to the Token Contract was performed to

achieve objectives and deliverables set in the scope. It is important

to remark the use of the best practices for secure smart contract

development.

Halborn recommends performing further testing to validate extended

safety and correctness in context to the whole set of contracts.

External threats, such as economic attacks, oracle attacks, and

inter-contract functions and calls should be validated for expected

logic and state.

EX
EC
UT
IV

E
SU

MM
AR

Y

 6

1.2 TEST APPROACH & METHODOLOGY
Halborn performed a combination of manual and automated security

testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process,

and implementation; automated testing techniques help enhance

coverage of smart contracts and can quickly identify items that do

not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture, purpose, and use of Governance

Token.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract

logic/connectivity/functions (solgraph)

• Manual Assessment of use and safety for the critical

solidity variables and functions in scope to identify any

arithmetic related vulnerability classes.

• Scanning of solidity files for vulnerabilities, security

hotspots, or bugs. (MythX)

• Static Analysis of security for scoped contract and

imported functions. (Slither)

• Smart Contract analysis and automatic exploitation

(limited-time)

• Symbolic Execution / EVM bytecode security assessment

(limited-time)

1.3 SCOPE

IN-SCOPE:

Code related to the aiVaultORAI smart contract. Specific commit

of contract: commit 849a1ed96bf3699d55d09af9cfe0a0350609a0dd

OUT-OF-SCOPE:

External contracts, External Oracles, other smart contracts in

the repository or imported by aiVaultORAI, economic attacks.

EX
EC
UT
IV
E

SU
MM
AR
Y

 7

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW

0 0 0 3

SECURITY ANALYSIS RISK LEVEL

FLOATING PRAGMA Low

DIVIDE BEFORE MULTIPLY Low

STRICT EQUALITY Very Low

FOR LOOP OVER DYNAMIC ARRAY Informational

USE OF INLINE ASSEMBLY Informational

NO RETURN VALUE Informational

STATIC ANALYSIS REPORT Informational

ERC CONFORMAL CHECKER Informational

AUTOMATED SECURITY SCAN Informational

 8

FINDINGS &
TECH DETAILS

 9

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

3.1 FLOATING PRAGMA - LOW

Description

Oraichain contract use the floating pragma ^0.5.16. Contracts

should be deployed with the same compiler version and flags that

they have been tested with thoroughly. Locking the pragma helps to

ensure that contracts do not accidentally get deployed using, for

example, an outdated compiler version that might introduce bugs

that affect the contract system negatively. At the time of this

audit, the current version is already at 0.7 The newer versions

provide features that provide checks and accounting, as well as

prevent insecure use of code.

Code Location

aiVaultORAI.sol Line #5

Recommendation

Consider lock the pragma version known bugs for the compiler

version. When possible, do not use floating pragma in the final

live deployment.

3.2 DIVIDE BEFORE MULTIPLY - LOW
Description:

Solidity integer division might truncate. As a result, performing

multiplication before division might reduce precision. Due to the

sensitivity of precision, and the amount of detail the development

team is putting on the dynamic balancing mechanics involved in

Oraichain, this may be a factor in accuracy of weights/rates. In

this case, the parenthesis seem to be unnecessary.

Code Location:

 10

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

aiVaultORAI.sol Line #562-563

Recommendation:

Consider ordering multiplication before division.

uint256 amount =

_balance.mul(rewardAmount).div(totalSupply()).mul(10**18).

Therefore, it’s possible to move the mul(10**18) to the beginning

of the expression.

3.3 STRICT EQUALITY – VERY LOW

Description:

Use of strict equalities that can be easily manipulated by an

attacker.

Code Locatioin:

aiVaultORAI.sol Line #548

Recommendation:

While these sections of code use it for time, and weight

adjustments, do not use strict equality to determine if an account

has enough Ether or tokens

3.4 FOR LOOP OVER DYNAMIC ARRAY -
INFORMATIONAL
Description:

Calls inside a loop might lead to a denial-of-service attack. The

 11

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

function discovered is a for loop on variable `i` that iterates up

to the addressList variable. If this integer is evaluated at

extremely large numbers, or `i` is reset by external calling

functions, this can cause a DoS. An attack could register a huge

amount of address, causing the problem described above.

Code Location:

aiVaultORAI.sol Line #575-585

Recommendation:

If possible, avoid actions that require looping across the

entire data structure.

3.5 USE OF INLINE ASSEMBLY -
INFORMATIONAL
Description:

Inline assembly is a way to access the Etehreum Virtual Machine at

a low level. This discards several important safety features in

Solidity.

Code Location:

aiVaultORAI.sol Line #332

Recommendation:

When possible, do not use inline assembly because it is a manner to

access to the EVM (Ethereum Virtual Machine) at a low level. An attacker

 12

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

could bypass many important safety features of Solidity.

3.6 NO RETURN VALUE –
INFORMATIONAL

Description:

Defining a return type but the function is not explicitly returning any

value.

Code Location:

aiVaultORAI.sol Line #573-585

Recommendation:

It will fail the execution of external caller if caller is expecting

return value from these methods. To remediate the issue, remove

unnecessary return value type if method is not intended to return any

value.

3.7 STATIC ANALYSIS REPORT –
INFORMATIONAL

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly into

their ABI and binary formats, Slither was run on the Governance Token

contract. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of

 13

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

the contracts' APIs across the entire codebase.

Results:

3.7.1 ERC CONFORMAL CHECKER –
INFORMATIONAL

Description:

Another Slither tool can test ERC Token functions. Thus, slither-check-

erc20 was performed over aiVaultORAI:

 14

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Results:

All tests were successfully passed.

3.8 AUTOMATED SECURITY SCAN –
INFORMATIONAL

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruit on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan on

the testers machine and sent the compiled results to the analyzers to

locate any vulnerabilities. Security Detections are only in scope, and

the analysis was pointed towards issues with aiVaultORAI.

Results

 15

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

aiVaultORAI

MythX detected 0 High findings, 0 Medium, and 0 Low.

 16

THANK YOU FOR CHOOSING

	Recommendation:
	Description:
	Description: Inline assembly is a way to access the Etehreum Virtual Machine at a low level. This discards several important safety features in Solidity.
	Code Location:
	Description:
	Code Location: aiVaultORAI.sol Line #573-585

