// HALBORN

ORAICHAIN
Controller and

Vault

Smart Contract Security Audit

Prepared by: Halborn
ate of Engagement: December 22, 2020
Visit: Halborn.com

http://halborn.com/

Document Revision History
Contacts

1 Executive Summary

1.1 Introduction

1.2 Test Approach and Methodology

1.3 SCOPE
2 Assessment Summary And Findings Overview

3 Findings & Technical Details

3.1 MULTIPLES AND FLOATING - Low
Description

Results

3.2. OUTDATED LIBRARIES - Low
Description

Results

3.3 USE OF TX.ORIGIN - Low
Description

Results

3.4 USE OF INLINE ASSEMBLY - Informational

Description

Results

3.5 POSSIBLE MISUSE OF PUBLIC FUNCTIONS -
Description

Results

3.6 LASTEST ECONOMIC ATTACK ON FARMING PLATFORMS -

Description

Results

3.7 STATIC ANALYSIS REPORT - Informational

Description

Results

3.8 AUTOMATED SECURITY SCAN - Informational

Description

Results

Informational

Informational

10
10
10
11
11

11
11
12
12
13
15
15
15
15
15
15-17
18
18
18-19

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 12/22/2020 Gabi Urrutia
0.2 Document Edits 12/26/2020 Gabi Urrutia
1.0 Final Version 12/31/2020 Gabi Urrutia

CONTACT COMPANY EMAIL

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Rob Behnke Halborn Rob.Behnke@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

1.1 INTRODUCTION

Oraichain engaged Halborn to conduct a security assessment on
their Vault and Controller smart contracts beginning on December
22th, 2020 and ending December 31th, 2020. The security
assessment was scoped to the contracts vault_v2.sol and
controller_v2 and an audit of the security risk and implications
regarding the changes introduced by the development team at
Oraichain prior to its production release shortly following the

assessments deadline.

Both smart contracts do not import any external libraries. Thus,
the contract vault_v2.sol is made up of 19 contracts: Math,
SafeMath, IERC20, Address, SafeERC20, Initializable, Context,
ERC20, ERC20Detailed, IStrategy, IStrategyV2, IController,
IVault, IUpgradeSource, Storage, Governablelnit,
Controllablelnit, VaultStorage and Vault. On the other hand, the
contract controller_v2 is made up of 14 contracts: Address,
SafeMath, IERC20, SafeERC20, IController, IStrategy, IVault,
Storage, Governable, IRewardPool, IFeeRewardForwarder,
IHardRewards, IApiConsumer and Controller. Therefore, the
contract works by itself without importing any external

contracts, increasing its security.

Overall, the smart contracts code does NOT contain any obvious
exploitation vectors that Halborn was able to leverage within the
timeframe of testing allotted. The most significant observations
made in the security assessment is in regard to the use of
multiples and floating pragmas and the use of deprecated
OpenZeppelin libraries. It is important to lock the pragma and
using the lastest versions OpenZeppelin libraries. In addition,
note that pay attention to the latest attacks on farming

platforms last October.

Halborn recommends performing further testing to validate
extended safety and correctness in context to the whole set of

contracts. External threats, such as economic attacks, oracle

EXECUTIVE SUMMARY

attacks, and inter-contract functions and calls should be

validated for expected logic and state.

1.2 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security
testing to balance efficiency, timeliness, practicality, and
accuracy in regard to the scope of the smart contract audit. While
manual testing is recommended to uncover flaws in logic, process,
and implementation; automated testing techniques help enhance
coverage of smart contracts and can quickly identify items that do
not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

Research into architecture, purpose, and use of Vault and

Controller.

e Smart Contract manual code read and walkthrough.

e Graphing out functionality and contract
logic/connectivity/functions (solgraph)

e Manual Assessment of use and safety for the critical
solidity variables and functions in scope to identify any
arithmetic related vulnerability classes.

e Scanning of solidity files for vulnerabilities, security
hotspots, or bugs. (MythX)

e Static Analysis of security for scoped contract and
imported functions. (Slither)

e Smart Contract analysis and automatic exploitation
(limited-time)

e Symbolic Execution / EVM bytecode security assessment

(limited-time)

1.3 SCOPE

IN-SCOPE:
Code related to Vault_v2 and Controller_v2 smart contracts.

Specific commit of contract: commit

€097479e6417bd93e612d6db3dfeledae7e76c43

OUT-OF -SCOPE:

Other smart contracts in the repository and economics attacks.

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM

0 0 0 3
SECURITY ANALYSIS RISK LEVEL
MULTIPLES AND FLOATING 0
OUTDATED LIBRARIES Low
USE OF TX.ORIGIN 0

USE OF INLINE ASSEMBLY

POSSIBLE MISUSE OF PUBLIC FUNCTIONS

THE LASTEST ECONOMIC ATTACK ON FARMING PLATFORM

STATIC ANALYSIS REPORT

AUTOMATED SECURITY SCAN

FINDINGS &
TECH DETAILS

FINDINGS & TECH DETAILS

3.1 MULTIPLES AND FLOATING - LOW

Description:

In both contracts, many different pragmas are used instead of use
only one (. The Solidity Compiler only use the pragma which the
pragmas are not used. On the other hand, Vault and Controller
contracts use floating pragmas %0.5.0. and "“0.5.5. Contracts
should be deployed with the same compiler version and flags that
they have been tested with thoroughly. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs
that affect the contract system negatively. At the time of this
audit, the current version is already at 0.7 The newer versions
provide features that provide checks and accounting, as well as
prevent insecure use of code.

Code Location:
Vault_v2.sol Line #7

7 pragma solidity "70.5.0;

Line #39 - pragma solidity %0.5.0
Line #198 - pragma solidity %0.5.0
Line #277 - pragma solidity %0.5.5
Line #350 - pragma solidity %0.5.0
Line #427 - pragma solidity >=0.4.24 <0.6.0
Line #492 - pragma solidity %0.5.0
Line #524 - pragma solidity %0.5.0
Line #759 - pragma solidity %0.5.0

Line #807 - pragma solidity 0.5.16
Line #864 - pragma solidity 0.5.16
Line #898 - pragma solidity 0.5.16
Line #938 - pragma solidity 0.5.16
Line #948 - pragma solidity 0.5.16
Line #985 - pragma solidity 0.5.16

Line #1035 - pragma solidity 0.5.16
Line #1231 - pragma solidity 0.5.16

Controller_v2.sol Line #1

FINDINGS & TECH DETAILS

1 pragma solidity 70.5.5;
UnitTest stub | dependencies | uml

library Address {

Line #54 - pragma solidity "0.5.0

Line #213 - pragma solidity %0.5.0
Line #292 - pragma solidity *0.5.0
Line #369 - pragma solidity 0.5.16
Line #403 - pragma solidity 0.5.16
Line #484 - pragma solidity 0.5.16
Line #521 - pragma solidity 0.5.16
Line #587 - pragma solidity 0.5.16

Recommendation:
Consider using only one pragma in each smart contract and lock the
pragma version to avoid vulnerabilities in the following compiler

deployment.

3.2 OUTDATED LIBRARIES - LOW

Description:

OpenZeppelin is a set of testing Smart Contracts libraries to be
reused. Using OpenZeppelin libraries, the risk of smart contracts
is highly reduced. Otherwise, OpenZeppelin usually update the
Smart Contracts templates to add new functionality or fix
vulnerabilities found by the community. The versions of
OpenZeppelin used in Vault_v2 and Controller_v2 are already
deprecated. For instance, ERC20Detailed contract was removed and
merged with ERC20 contract.

The different versions of pragma used in both smart contracts of

OpenZeppelin and current libraries can be seen in the following table:

Controller_v2

Library Used version Current version

Address *0.5.5 >=0.6.2 <0.8.0

SafeMath "0.5.5 >=0.6.0 <0.8.0

TERC20 *0.5.5 >=0.6.0 <0.8.0

SafeERC20 *0.5.5 >=0.6.0 <0.8.0
Vault_v2

FINDINGS & TECH DETAILS

Library Used version Current version
Math "0.5.0 >=0.6.0 <0.8.0
SafeMath “0.5.0 >=0.6.0 <0.8.0
IERC20 “0.5.0 >=0.6.0 <0.8.0
Address *0.5.0 >=0.6.0 <0.8.0
SafeERC20 "0.5.0 >=0.6.0 <0.8.0
Initializable >=0.4.24 <0.6.0 >=0.4.24 <0.8.0
Context *0.5.0 >=0.6.0 <0.8.0
ERC20 *0.5.0 >=0.6.0 <0.8.0
ERC20Detailed *0.5.0 Removed and Merged
with ERC20
Recommendation:

When possible, use the most updated OpenZeppelin libraries to avoid
malfunctions or vulnerabilities already fixed in OpenZeppelin new

versions.

3.3 USE OF TX.ORIGIN - LOW

Description:

"tx.origin" is useful only in very exceptional cases. If it is use
for authentication, then it makes no impact, because any contract
you call can act on your behalf. So it is recommended to Never use

tx.origin for authorization.

Here in defense() function of vault_v2.sol contract which is
callable from external has this require() condition which should

be fix to filter out non required address to call this method.

Code Location:
Vault_v2.sol Line #1270

1268 function defense() private {

1269 require|(

1270 | (msg.sender == tx.origin) ||

1271

1272 IIController(co r()).greyList(msg.sender),
1273 "V:4"

1274 DI:

1275 }

10

FINDINGS & TECH DETAILS

Recommendation:
When possible, do not tx.origin for authentication except for
exceptional cases. Furthermore, tx.origin will be probably deprecated in

the following versions of Solidity.

3.4 USE OF INLINE ASSEMBLY -

Description:
a low level. This discards several important safety features in
Solidity.

Code Location:
Vault_v2.sol Line #307

307 assembly] {codehash := extcodehash(account)}

308 return (codehash != accountHash && codehash != 0x0);
309 1
Vault_v2.sol Line #481

481 assembly {cs := extcodesize

482 {address) }

483 return cs == 0;

484 1

Vault_v2.sol Line #1009

1009 assembly {
1810 sstore(slot, newStorage)

1011 }

Vault_v2.sol Line #1023

1623 assembly {
1824 strt := sload(slot)

1825 It
Vault_v2.sol Line #1199

1199 assembly {
1260 sstore(slot, value)

Vault_v2.sol Line #1214

1214 assembly {

1215 stri := sload(slot)
1216 }

1217 Ii

Vault_v2.sol Line #1221

11

FINDINGS & TECH DETAILS

function getUint256(bytes32 slot1) private view returns {uint256 stri) {

;;:L assembly {
12 stri := sload{slot)
1223 }

Controller_v2.sol Line #11

assembly {codehash := extcodehash({account)}
12 return (codehash != accountHash &% codehash != @x0);

Recommendation:
When possible, do not use inline assembly because it is a manner to
access to the EVM (Ethereum Virtual Machine) at a low level. An attacker

could bypass many important safety features of Solidity.

3.5 POSSIBLE MISUSE OF PUBLIC
FUNCTIONS - INFORMATIONAL

Description:

In public functions, array arguments are immediately copied array to
memory, while external functions can read directly from calldata.
Reading calldata is cheaper than memory allocation. Public functions
need to write the arguments to memory because public functions may be
memory. Thus, function expects its arguments being in memory when the
compiler generates the code for an internal function. In Vault and
Controlles contracts, many functions are never directly called by

another function in the same contract.

Code Location:
Controller_v2.sol Line #514

514 function isController(address accountr) public view returns (bool) {

i

Controller_v2.sol Line #505

505 function ;ettnntroller{address _controllert) public onlyGovernance {
6 require(controllert != address(@), "new controller shouldn't be empty"});
- _controllert;

12

FINDINGS & TECH DETAILS

Controller_v2.sol Line #500

5008
501
502
503

function SEEGOVErNance (address governancet) public onlyGovernance {
require(governancer != address(®), "new governance shouldn't be empty");
= _governancer;

}

ééhtroller_v2.sol Line #538

538
539
540
541

Vault_

1014
1015
1016
1017
lol8

Vault_

774
775
776

Vault_

658
659
660
661

Vault_

969
970
971
972

Vault_

1435
1436
1437
1438

Vault_

621
622
623
624
625

Vault_

function setStorage(address storet) public onlyGovernance {
require(_storer != address(@), "new Storage shouldn't be empty");
e = Storage(_storei);

v2.sol Line #1014

function setStorage(address storetr) public {
require(Storage(_storage()).isGovernance(msg.sender), "Gvn:2");
require(storer != address(@), "Gvn:3");
_setStorage(_storet);

v2.so0l Line #774

A

function name{)_public view returns (string memory) {
return ;

v2.sol Line #658

function decreaseAllowance(address spendert, uint256 subtractedValuet) public returns (bool) {
_approve(; | r(), spendert, ; allowances[; msgSenderi()][spendert].sub(subtractedvaluer, "ERC20:2"));
return true;

v2.sol Line #969

function setController(address controllert) public onlyGovernance {

_require{ controllert != address(@), "new controller shouldn't be empty");

= controllerrs;

v2.sol Line #1435

function depositFor(uint256 amount:, address holderi) public {
defense();
_deposit(amountt, msg.sender, holderr);

v2.s0l Line #621

function transferFrom(address sender:, address recipientr, uint256 amount:) public returns (bool) {
_transfer(sendert, recipient:, amount:);
_approve(sendert, msgSender(), iallowancei[sendert][i
return true;

r()]1.sub(amount:, "ERC20:1"));

v2.so0l Line #639

13

FINDINGS & TECH DETAILS

639 function increaseAllowance(address spendert, uint256 addedValuetr) public returns (bool) {
6540 _approve(; msgSenderi(}, spenderi, | allowances[: msgSender()][spenderi].add(addedvaluei));
641 return true;

2

Vault_v2.sol Line #1390

1390 function rebalance() public {
1391 onlyController0rGovernance();
1392 withdrawaAll() ;

1393 invest();

1394 1

Vault_v2.sol Line #604

604 function approve(address spendert, uint256 amount:) public returns (bool) {
605 (), spender:, amountt);

606

607 }

Vault_v2.sol Line #585

585 function transfer({address recipients, uint256 amount:) public returns (bool) {
586 _transfer(; | (), recipient:, amounti);

587 return true;

588 }

Vault_v2.sol Line #782

S ——

function symbol() public view returns (string memory})

e B B |
20 00 00
[P N]

Vault_v2.sol Line #964

964 funcfion ;etGovernance(address _governancetr) public onlyGovernance {
965 require(governance: != address(@), "new governance shouldn't be empty");
966 : * = _governancer;
967 }
Recommendation:

Consider as much as possible declaring external variables instead of
public variables. As for best practices, you should use external if you
expect that the function will only ever be called externally and use
public if you need to call the function internally. In that case, both
functions are not called by another function in the same contract, so

marking both function as external can save gas.

14

FINDINGS & TECH DETAILS

3.6 THE LASTEST ECONOMIC ATTACK
ON FARMING PLATFORMS -

Description:
Impermanent Loss, arbitrage and slippage are market effects which
affect the assets inside pools. The assets, such as USDT and USDC,

inside the vaults are located into shared pools.

On October 26, an attacker stole funds from the USDT and USDC
vaults of Harvest Finance. The attacker repeatedly exploited an
arbitrage and impermanent loss that influences the value of

individual assets inside the pool.

The value of asset invested are calculated in real -time. This
value is used by the vaults to calculate the number of shares to
be issued to the user depositing the funds. In addition, the value
of the assets was used by the attacker when funds are removed from
the vaults and it calculates how much payout the user will be

receive.

Reference: https://medium. com/harvest-finance/harvest-flashloan-

economic-attack-post-mortem-3cf999d65217

3.7 STATIC ANALYSIS REPORT -
INFORMATIONAL

Description:

Halborn used automated testing techniques to enhance coverage of certain
areas of the scoped contract. Among the tools used was Slither, a
Solidity static analysis framework. After Halborn verified all the
contracts in the repository and was able to compile them correctly into
their ABI and binary formats, Slither was run on Controller and Vault
contracts. This tool can statically verify mathematical relationships
between Solidity variables to detect invalid or inconsistent usage of

the contracts' APIs across the entire codebase.

Results:

15

Vault_v2

zilon@eltitourruts-virtual-machine:~/Desktop/yai-protocol-feat-orai-bridge$ slither contracts/vaults/vault_v2.sol
Compilation warnings/errors on contracts/vaults/vault_v2.sol:
contracts/vaults/vault_v2.so0l:994:5: Warning: Function state mutability can be restricted to view
function onlyGovernance() internal {
A (Relevant source part starts here and spans across multiple lines).
contracts/vaults/vault_v2.s501:1648:5: Warning: Function state mutability can be restricted to view
function onlyControllerOrGovernance() public {
A (Relevant source part starts here and spans across multiple lines).
contracts/vaults/vault_v2.sol:1263:5: Warning: Function state mutability can be restricted to view
function whenStrategyDefined() private {
~ (Relevant source part starts here and spans across multiple lines).
contracts/vaults/vault_v2.s01:1268:5: Warning: Function state mutability can be restricted to view
function defense() private {
~ (Relevant source part starts here and spans across multiple lines).

INFO:Detectors:

gap (contracts/vaults/vault shadows:
Initializable. gap (contracts/vaults/vault_v2.
ERC20Detailed.___ gap (contracts/vaults/vault_v2.s

Initializable._____ gap (contract
gap (contracts/vaults/
ap (c
rytic/slithe i/Detector -Documentation

VaultStora

Reference: tate-variable
INFO: Dete:tors
Vault.getPricePerFullshare() (contracts/vaults/vault_v2.sol#1331-1335) uses a dangerous strict equality:
- totalsupply() == @ (contracts/vaults/vault_v2.sol#1332-1334)
Vault.underlyingBalanceWithInvestmentForHolder(address) (contracts/vaults/vault_v2.sol#1339-1344) uses a dangerous strict equality:
- totalsSupply() © (contracts/vaults/vault_v2.sol#1340)
Vault.withdraw(uint256) (contracts/vaults/vault_v2.s0l#1446-1492) uses a dangerous strict equality:
- numberOfShares == totalSupply (contracts/vaults/vault_v2.sol#1460)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities

INFO:Detectors:

lcontrollableInit. initlalize(address), storage (contracts/vaults/vault_v2.sol#1044) shadows

- Governablelnit. storage() (contracts/vaults/vault v2.sol#1020-1026) (function)

Vault.inttializevault(address,address,utlnt256,ulnt256). storage (contracts/vaults/vault_v2.s0l#1244) shadows:

- GovernableInit, storage() (contracts/vaults/vault_v2.sol¥1020-1026) (function)

Vault.withdraw(uint256). totalSupply (contracts/vaults/vault_v2.sol#1449) shadows:
ERC20.totalSupply() (contracts/vaults/vault_v2.s50l#566-568) (function)

- IERC20.totalSupply() (contracts/vaults/vault_v2.solw208) (function)

Reference: https://g\thub,con/crytic/siither/wiki/Detector-Docunentationslocal-vartable-shadowing

INFO:Detectors:

Vault.doHardwork() (contracts/vaults/vault_v2.sol#1286-1311) uses timestamp for comparisons

Dangerous comparisons

- futurestrategy() != address(0) Ak futureStrategy() = strategy() A& strategyUpdateTime() <= block.tinestamp (contracts/vaults/vault v2.sol¥1289)

Reference: https://glthub.con/crytic/slither /wiki/Detector -Docunentationsblock- tinestanp

INFO:Detectors:

lAddress.tsContract(address) (contracts/vaults/vault_v2.s0l8300-309) uses assembly

INLINE ASM (contracts/vaults/vault_v2.sol#307)

ln\l\a\l}nhlc isConstructor() (contracts/vaults/vault_v2.sol#474-484) uses assembly

INLINE ASM (contracts/vaults/vault_v2.sol#4s1-482)

lGovernablerntt. _setStorage(address) (contracts/vaults/vault_v2.sol#1006-1012) uses assembly

INLINE ASM (contracts/vaults/vault_v2.sol#1069-1011)

(GovernableInit. storage() (contracts/vaults/vault_v2.sol#1020-1026) uses assembly

INUINE ASM (contracts/vaults/vault_v2,sol#1023-1025)

v.ultslorlqe setAddress(bytesi2,address) (contracts/vaults/vault_v2.sol#1190-1195) uses assenbly

- INLINE ASM (contracts/vaults/vault_v2.sol#1192-1194)

VaultStorage.setUlnt256(bytes32,ulnt256) (contracts/vaults/vault_v2.50l#1197-1202) uses assenbly

- INLINE ASM (contracts/vaults/vault_v2,sol#1199-1201)

VaultsStorage.getaddress(bytes32) (contracts/vaults/vault_v2.sol#1212-1217) uses assembly

= INLINE ASM (contracts/vaults/vault_v2.sol#1214-1216)

Vaultstorage.getutnt256(bytes32) (contracts/vaults/vault_v2.50l#1219-1224) uses assembly

- INLINE ASM (contracts/vaults/vault_v2.sols1221-1223)

Reference: https://github,con/crytic/siither/wiki/Detector -Docunentationmassenbly-usage

IHFO:Detectors:
pifferent versions of Solidity is used in :
- version used: ['@.5.16', '>=0.4.24<8.6.0°, 'A0.5.8°, '78.5.16", 'M0.5.5
- *8.5.16 (contracts/vaults/vault_v2.sol#7)
- ~8.5.0 (contracts/vaults/vault_v2.sol#39)
- *8.5.8 (contracts/vaults/vault_vZ.sol#198)
- ~9.5.5 (contracts/vaults/vault_v2.sol®z77)
- *8.5.8 (contracts/vaults/vault_v2.sol#35e)
.4.24<0.6.8 (contracts/vaults/vault_vz.solmazy)
(eentracts/vaults/vault_v2.sol#492)
(contracts/vaults/vault_vz.sol#s24)
{contracts/vaults/vault_v2.sol#759)
.16 (contracts/vaults/vault_v2.sol#807)
16 (contracts/vaults/vault_vz.solsssd)
16 (contracts/vaults/vault_v2.sol#898)
16 (contracts/vaults/vault_v2.s0l#938)
16 (contracts/vaults/vault_vz.sol#948)
16 (contracts/vaults/vault_v2.sol#985)
16 (contracts/vaults/vault_v2.s0l#1835)
16 (contractsjvaults/vault _v2.sol#1231)
S — https:/fgithub.com/crytic/slither fwiki/Detector -Documentation#different-pragna-directives-are-used
THFO:Detectors:
Pragna version®0.5.8 (contracts/vaults/vault_v2.sol#39) allows old versions
Pragna version*8.5.8 (contracts/vaults/vault_v2.sol#198) allows old versions
Pragna version®0.5.5 (contracts/vaults/vault_v2.sol#277) is known to contain severe issues (https:/fsolidity.readthedocs.io/en/latest/bugs.html)
Pragna version*0.5.8 (contracts/vaults/vault_v2.scl#358) allows old versions
Pragna version==0.4,24<0.6.0 (contracts/vaults/vault_vZ.sol®427) allows old versions
Pragna version*0.5.6 (contracts/vaults/vault_v2.scl#392) allows old versions
Pragna version~@.5.e (contracts/vaults/vault_v2.sol®s24) allows old versions
Pragna version*0.5.0 (contracts/vaults/vault_v2.sol#759) allows old versions
Reference: https://github.com/crytic/slither/wiki/Detector-pocumentationsincorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.sendvalue(address,uint256) (contracts/vaults/vault_v2.sol#339-345):
- (success) = recipient.call.value(amount)() (contracts/vaults/vault_v2.sols3a3)
Low level call in SafeERC26.callOptionalReturn(IERC26,bytes) (contracts/vaults/vault v2.sol#4e3-422)
- (success,returndata) = address(token).call(data) (contracts/vaults/vault_va.solsa1s)
Reference: https://glthub.com/crytic/slither/wikl/Detector-Documentaticn#lon-Level-calls

.5,
- ~8.5.
.5,

EX- 2

INFO:Detectors:

[variable Inttializable. gap (contracts/vaults/vault_v2,501#487) is not in nixedCase
variable erc2e. gap (contracts/vaults/vault_v2.501#754) is not in mixedCase
Variable ERC20Detalled.______gap (contracts/vaults/vault_v2.sol#862) is mot in nixedCase

Parameter Storage.setGovernance(address)._governance (contracts/vaults/vault_v2.sol#964) is not in mixedCase

Parameter Storage.setController(address).

controller (contracts/vaults/vault_v2.s01#969) is not in mixedCase

Parameter GovernableInit.initialize(address).
Parameter GovernableInit.setStorage(address)

_store (contracts/vaults/vault_v2.s50l#1602) 1s not in mixedCase
_store (contracts/vaults/vault_v2.sol#1014) is not in mixedCase

FINDINGS & TECH DETAILS

Parameter Controllablelnit.initialize(address). storage (contracts/vaults/vault_v2.sol#1644) is not in mixedCase
Parameter VaultStorage.initialize(address,utlnt256,ulnt256,ulnt256). underlying (contracts/vaults/vault_v2.sol#1095) is not in mixedCase
Parameter VaultStorage.inttialize(address,ulnt256,uint256,ulnt256). tolnvestNunerator (contracts/vaults/vault_v2,501#1096) is not in mixedCase
Parameter vaultStorage.initialize(address,uint256,uint256,uint256). tolnvestDenominator (contracts/vaults/vault_v2.sol#1697) is not in mixedCase
Parameter VaultStorage.initlalize(address,ulnt256,ulnt256,ulnt256). underlyingunit (contracts/vaults/vault_v2.sol#1898) s not in mixedCase
Function VaultStorage._sharePricecheckpotnt() (contracts/vaults/vault_v2.sol#1138-1146) is not in mixedCase

Function VaultStorage._allowsharePriceDecrease() (contracts/vaults/vault_v2.sol#1146-1148) is not in mixedCase

Parameter VaultStorage. selaonlein(bytes!? bool)._value (contracts/vaults/vault_v2.sol#1284) is not in mixedCase

variable vaultstorage. p (contracts/vaults/vault_v2.sol#1226) is not in mixedCase

Parameter Vault.(n‘Ila\\zzvault(address,address,u\n(lSG,ulntsz)._storage (contracts/vaults/vault_v2.501#1244) is not in mixedCase

Parameter Vault.initializevault(address,address,uint256,uint256). underlying (contracts/vaults/vault_v2.so0l%1245) is not in mixedCase
Parameter Vault.initlaltzevault(address,address,ulnt256,ulnt256). tolnvestNunerator (contracts/vaults/vault_v2.s0l#1246) is not in mixedCase
Parameter Vault.initializevault(address,address,uint256,uint256). tolnvestDenoninator (contracts/vaults/vault_v2.s01#1247) is not in mixedCase
Parameter Vault.announcestrategyUpdate(address,ulnt256). strategy (contracts/vaults/vault_v2.sol#1348) is not in mixedCase

Parameter Vault.setStrategy(address). strategy (contracts/vaults/vault_v2.s0l#1367) is not in nixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentationgconfornity-to-solidity-naming-conventions

INFO:Detectors:

Vaultstorage. gap (contracts/vaults/vault_v2.501#1226) ts never used in Vault (contracts/vaults/vault_v2.sol#1234-1509)

Reference: https://github.com/crytic/slither /wiki/Detector-Documentation#unused-state-variables

INFO:Detectors:

ERC20Detatled. decimals (contracts/vaults/vault_v2.sol8769) should be constant

ERC20Detailed._name (contracts/vaults/vault_v2.sol#767) should be constant

ERC20Detatled. synbol (contracts/vaults/vault v2.sol#768) should be constant

[Reference: https://github.com/crytic/slither /wiki/Detector-Documentation#state-varlables- that-could-be-declared-constant

FINDINGS & TECH DETAILS

[nFO: Detectors:
transfer(address,utnt256) should be declared external:
ERC20. transter (address, uint256) (contracts/vaults/vault_v2.sol#sas-568)
a\lauin:e(addfess address) should be declared externa
0. allowance(address, address) (contracts/vaultsfvault_v2.solase3-505)
appruue(-dnress uint256) should be declared external:
ERC20. approve{sddress, ulnt2se) (contracts/vaults/vault_v2.sol#sed-607)
[transferfron(address,address uint256) should be declared externa
0. transferf ron(address, address, uint256) ((nnlratt!luaults[vﬂul[v2.501#621-625)
lincreasenl Loance(address, ulnt358) should be declared sxte
- ERC20.increaseAllowance(address,uint256) ((wntra(tsfveu\ts/vault_vz‘59\80]91512)
decreaseAllowance(address,uint256) should be declared external:
€20.decreasedllowance(address,uint256) (contracts/vaults/vault_v2.501#658-661)
nane() should be declared external:
zeDetatled.name() (CONTracts/vaults /vault_v2.sola774-776.
synbol() “shoutd be declared external:
- ERC26Detatled.symbol() (contracts/vaults/vault_v2.sol#782-784)
dectnals() should be declared external:
ERC26Detatled.decinals() (contracts/vaults/vault_v2.sol#758-868)
setcovernance{aﬂdress) should be declared external:
Storage. setGovernance(address) (cnntract;[va«\[stuaui(v2.5017964-967)
set(untrnller{address) should be declared exte
rage.setController (address) (:untrictsfvau\ts/Uault_u!.su\#ge? 972)
lsEan(rul\er(address) should be declared external
storage.iscontroller(address) (contracts/vaults/vault_v2.5ol#978-980)
setstorage{address) should be declared external
Governablelnit.setStorage(address) (contracts/vaults/vault_vZ.sol#1014-1018)
governance() should be declared external:
- GovernableInit.governance() (contracts/vaults/vault v2.sol#1028-1038)
doHardWork() should be declared external:
- Vault.doHardwWork() (contracts/vaults/vault_v2.sol#1286-1311)
rehalan:eLJ should be declared external
wlt.rebalance() (contracts/vaults/vault_v2.sol#1390-1394)
depns(trur(ulnlzsﬁ address) should be declared external
Vault.depositFor (ulnt2S6,address) (contracts/vaults/vault_v2.sol#1415-1438)
Reference: https://github.con/crytic/slither wiki/Detector -Dacunentation®public-function-that-could-be-declared-external
[INFO:S1{ther reontracts jvaults fuault_v2.sel analyzed (18 contracts with a6 detectars), 72 result(s) feund

Results:

Controller_v2

INFO:Detectors:
Reentrancy in Controller.requestfutureStrategy(address,address) (contracts/controller/controller_v2.so0l#742-755):
External calls:
- 1ApiConsumer(_requestConsumer).r data, this. r ime.selector ,address(this)) (contracts/controller/controller_v2.sol#748-752)
State vartables written after the call(s):
- isRequestFutureVault[_vault] = true (contracts/controller/controller_v2.sol#753)
Reference: https://github.com/crytic/slither /wiki/Detector-Documentationgreentrancy-vulnerabilities-1
INFO:Detectors:
[Controller.requestFuturestrategy(address,address) (contracts/controller/controller
restrategyAndTine.selector,address(this)) (contracts/controller/controller_v2.sol#74
Reference: https://github.com/crytic/slither/wiki/Detector-Documentationsunused-return
INFO:Detectors:
Reentrancy in Controller.addFuturestrategyAndTine(bytes) (contracts/controller/controller_v2.sol#731-740):
External calls
- Ivault(_vault).announcestrategyUpdate(_strategy,time) (contracts/controller/controller_v2.sol#737)
State variables written after the call(s):
- isRequestFutureVault[_vault] = false (contracts/controller/controller_v2.sol#738)
Reentrancy n Controller.cancelRequestFutureStragety(address) (contracts/controller/controller_v2.sol#757-762):
External calls:
- IVault(_vault).finalizestrategyUpdate() (contracts/controller/controller_v2.sol#760)
state variables written after the call(s):
- {sRequestFuturevault[_vault] = false (contracts/controller/controller_v2.sol#761)
Reference: https://github.com/crytic/slither/wiki/Detector-Docunentationsreentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in Controller.doHardWork(address) (contracts/controller/controller_v2.sol#775-789):
External calls:
- Ivault(_vault).doHardWork() (contracts/controller/controller_v2.sol#777)
- hardRewards.rewardMe(nsg.sender,_vault) (contracts/controller/controller_v2.s0l#780)
Event enitted after the call(s):
- SharePricechangeLog(_vault,Ivault(_vault).strategy(),oldSharePrice,Ivault(_vault).getPricePerFullShare(),block.timestamp) (contracts/controller/controller_v2.sol8782-788)
Reference: https://github.com/crytic/slither /wiki/Detector-Docunentationgreentrancy-vulnerabilities-3
INFO:Detectors:
laddress.isContract(address) (contracts/controller/controller_v2.sol#24-33) uses assembly
- INLINE ASM (contracts/controller/controller_v2.sols31)
Reference: https://github.com/crytic/slither /wiki/Detector-Documentationsassenbly-usage

2.501#742-755) 1gnores return value by IApiConsumer(_requestConsuner).requestbata(data,this.addFuty
752)

INFO:Detectors:
pifferent versions of Solidity s used tn :
- version used: ['6.5.16', '*8.5.0']
8.5.16 (contracts/controller/controller_v2.sol#1)
- #0.5.0 (contracts/controller/controller_v2.sol#74)
- %9.5.0 (contracts/controller/controller_v2.sol#233)
- %9.5.0 (contracts/controller/controller_v2.sol#312)
- 8.5.16 (contracts/controller/controller_v2.sol389)
- 6.5.16 (contracts/controller/controller_v2.sol#423)
- ©.5.16 (contracts/controller/controller_v2.s0l8454)
- 6.5.16 (contracts/controller/controller_v2.sol#504)
- ©.5.16 (contracts/controller/controller_v2.sol®541)
- 6.5.16 (contracts/controller/controller_v2.s0l#607)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
INFO:Detectors:
Pragma version*0.5.0 (contracts/controller/controller_v2.sol#74) allows old verstons
Pragma version"0.5.0 (contracts/controller/controller_v2.sol#233) allows old versions
Pragma version*8.5.0 (contracts/controller/controller_v2.sol#312) allows old versions
Reference: https://github.com/crytic/slither /wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.sendvalue(address,uint256) (contracts/controller/controller_v2.sol#63-69):
- (success) = reciptent.call.value(amount)() (contracts/controller/controller_v2.sol#67)
Low level call in SafeERC26.callOptionalReturn(IERC20,bytes) (contracts/controller/controller_v2.sol#365-384):
- (success,returndata) = address(token).call(data) (contracts/controller/controller_v2.sol#377)

Reference: https://github.com/crytic/slither /wiki/Detector-Documentation#low-level-calls

INFO:Detectors:
Parameter Storage.setGovernance(address)._governance (contracts/controller/controller_v2.s0l#526) s not in mixedCase
Parameter Storage.setController(address). controller (contracts/controller/controller_v2.50l#525) is not in mixedCase
Parameter Governable.setStorage(address). store (contracts/controller/controller_v2.s0l#558) is not in mixedCase
Parameter Controller.setOracleAddress(address). address (contracts/controller/controller_v2.50l#695) {s not in mixedCase
Parameter Controller.addHardWorker(address). worker (contracts/controller/controller_v2.5ol#699) is not in mixedCase
Parameter Controller.removeHardworker(address). worker (contracts/controller/controller_v2.sol#764) is not in mixedCase
Parameter Controller.hasVault(address). vault (contracts/controller/controller_vz.sol#709) is not in mixedCase
Parameter Controller.addToGreylList(address)._target (contracts/controller/controller_v2.sol#714) is not in mixedCase
Parameter Controller.removeFromGreyList(address). target (contracts/controller/controller_v2.sol#718) is not in mixedCase
Parameter Controller.setFeeRewardForwarder(address)._feeRewardForwarder (contracts/controller/controller_v2.sol#722) is not in mixedCase
Parameter Controller.requestFutureStrategy(address,address)._vault (contracts/controller/controller_v2.s0l#742) is not in mixedCase
Parameter Controller.requestFuturestrategy(address,address). requestConsumer (contracts/controller/controller_v2.sol#742) is not in mixedCase
Parameter Controller.cancelRequestFutureStragety(address). vault (contracts/controller/controller_v2.50l#757) is not in mixedCase
Parameter Controller.addVaultAndStrategy(address,address). vault (contracts/controller/controller_v2.50l#764) is not in mixedCase
Parameter Controller.addvaultandStrategy(address,address). strategy (contracts/controller/controller_v2.sol#764) is not in mixedCase
Parameter Controller.doHardWork(address). vault (contracts/controller/controller_v2.s50l#775) is not in mixedCase
Parameter Controller.rebalance(address). vault (contracts/controller/controller_v2.sol#791) is not in nixedCase
Parameter Controller.setHardRewards(address)._hardRewards (contracts/controller/controller_v2.sol#795) is not in mixedCase
Parameter Controller.salvage(address,uint256). token (contracts/controller/controller_v2.sol#868) is not in mixedCase
Parameter Controller.salvage(address,uint256). anount (contracts/controller/controller_v2.s0l#860) is not in mixedCase
Constant Controller.profitsharingNumerator (contracts/controller/controller_v2.sol#665) is not in UPPER_CASE_WITH_UNDERSCORES
Constant Controller.profitsharingDenominator (contracts/controller/controller_v2.sol#666) is not in UPPER_CASE_WITH_UNDERSCORES
Reference: https://github.com/crytic/slither/wiki/Detector -Docunentationsconforntity- to-solidity-nantng-conventions
INFO:Detectors:
setGovernance(address) should be declared external:

- Storage.setGovernance(address) (contracts/controller/controller_v2,sol#526-523)
s;tcnntrol\er(address) should be declared external:

- Storage.setController(address) (contracts/controller/controller_v2.sol#525-528)
isController(address) should be declared external:

- Storage.isController(address) (contracts/controller/controller_v2.sol#534-536)
setStorage(address) should be declared external:

- Governable.setStorage(address) (contracts/controller/controller_v2.sol#558-561)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external
INFO:Slither:contracts/controller/controller_v2.sol analyzed (14 contracts with 46 detectors), 38 result(s) found

17

FINDINGS & TECH DETAILS

3.8 AUTOMATED SECURITY SCAN -
INFORMATIONAL

Description:

Halborn used automated security scanners to assist with detection of
well-known security issues, and to identify low-hanging fruit on the
targets for this engagement. Among the tools used was MythX, a security
analysis service for Ethereum smart contracts. MythX performed a scan on
the testers machine and sent the compiled results to the analyzers to
locate any vulnerabilities. Security Detections are only in scope, and

the analysis was pointed towards issues with vault and controller.

Results
Vault_v?2
MythX detected 0 findings, 17 Medium, and 19

Controller_v2

MythX detected 0 findings, 0 Medium, and 0

18

FINDINGS & TECH DETAILS

Main Source File

DETECTED VULNERABILITIES

(HIGH MEDIUM

Contracts/Controller/Controller_v2.5

19

THANK YOU FOR CHOOSING

// HALBORN

20

	Code Location:
	Description: OpenZeppelin is a set of testing Smart Contracts libraries to be reused. Using OpenZeppelin libraries, the risk of smart contracts is highly reduced. Otherwise, OpenZeppelin usually update the Smart Contracts templates to add new functio...
	Description: "tx.origin" is useful only in very exceptional cases. If it is use for authentication, then it makes no impact, because any contract you call can act on your behalf. So it is recommended to Never use tx.origin for authorization.
	Here in defense() function of vault_v2.sol contract which is callable from external has this require() condition which should be fix to filter out non required address to call this method.
	Code Location:
	Description: a low level. This discards several important safety features in Solidity.
	Code Location:
	Description:
	Description: Impermanent Loss, arbitrage and slippage are market effects which affect the assets inside pools. The assets, such as USDT and USDC, inside the vaults are located into shared pools.
	On October 26, an attacker stole funds from the USDT and USDC vaults of Harvest Finance. The attacker repeatedly exploited an arbitrage and impermanent loss that influences the value of individual assets inside the pool.
	The value of asset invested are calculated in real -time. This value is used by the vaults to calculate the number of shares to be issued to the user depositing the funds. In addition, the value of the assets was used by the attacker when funds are re...

