

 1

ORAICHAIN
Controller and

Vault
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: December 22, 2020
Visit: Halborn.com

http://halborn.com/

 2

Document Revision History 3

Contacts 3

1 Executive Summary 4

1.1 Introduction 4

1.2 Test Approach and Methodology 5

1.3 SCOPE 5

2 Assessment Summary And Findings Overview 6

3 Findings & Technical Details 7

3.1 MULTIPLES AND FLOATING – Low 8

Description 8

Results 9

3.2. OUTDATED LIBRARIES – Low 9

Description 9

Results 10

3.3 USE OF TX.ORIGIN – Low 10

 Description 10

Results 11

3.4 USE OF INLINE ASSEMBLY – Informational 11

 Description 11

Results 11

3.5 POSSIBLE MISUSE OF PUBLIC FUNCTIONS – Informational 12

Description 12

Results 13

3.6 LASTEST ECONOMIC ATTACK ON FARMING PLATFORMS – Informational 15

Description 15

Results 15

3.7 STATIC ANALYSIS REPORT – Informational 15

Description 15

Results 15-17

3.8 AUTOMATED SECURITY SCAN – Informational 18

Description 18

Results 18-19

 3

DOCUMENT REVISION HISTORY

CONTACTS

CONTACT COMPANY EMAIL

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Rob Behnke Halborn Rob.Behnke@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 12/22/2020 Gabi Urrutia

0.2 Document Edits 12/26/2020 Gabi Urrutia

1.0 Final Version 12/31/2020 Gabi Urrutia

 4

EX
EC
UT
IV

E
SU

MM
AR

Y

1.1 INTRODUCTION
Oraichain engaged Halborn to conduct a security assessment on

their Vault and Controller smart contracts beginning on December

22th, 2020 and ending December 31th, 2020. The security

assessment was scoped to the contracts vault_v2.sol and

controller_v2 and an audit of the security risk and implications

regarding the changes introduced by the development team at

Oraichain prior to its production release shortly following the

assessments deadline.

Both smart contracts do not import any external libraries. Thus,

the contract vault_v2.sol is made up of 19 contracts: Math,

SafeMath, IERC20, Address, SafeERC20, Initializable, Context,

ERC20, ERC20Detailed, IStrategy, IStrategyV2, IController,

IVault, IUpgradeSource, Storage, GovernableInit,

ControllableInit, VaultStorage and Vault. On the other hand, the

contract controller_v2 is made up of 14 contracts: Address,

SafeMath, IERC20, SafeERC20, IController, IStrategy, IVault,

Storage, Governable, IRewardPool, IFeeRewardForwarder,

IHardRewards, IApiConsumer and Controller. Therefore, the

contract works by itself without importing any external

contracts, increasing its security.

Overall, the smart contracts code does NOT contain any obvious

exploitation vectors that Halborn was able to leverage within the

timeframe of testing allotted. The most significant observations

made in the security assessment is in regard to the use of

multiples and floating pragmas and the use of deprecated

OpenZeppelin libraries. It is important to lock the pragma and

using the lastest versions OpenZeppelin libraries. In addition,

note that pay attention to the latest attacks on farming

platforms last October.

Halborn recommends performing further testing to validate

extended safety and correctness in context to the whole set of

contracts. External threats, such as economic attacks, oracle

 5

attacks, and inter-contract functions and calls should be

validated for expected logic and state.

1.2 TEST APPROACH & METHODOLOGY
Halborn performed a combination of manual and automated security

testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process,

and implementation; automated testing techniques help enhance

coverage of smart contracts and can quickly identify items that do

not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture, purpose, and use of Vault and

Controller.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract

logic/connectivity/functions (solgraph)

• Manual Assessment of use and safety for the critical

solidity variables and functions in scope to identify any

arithmetic related vulnerability classes.

• Scanning of solidity files for vulnerabilities, security

hotspots, or bugs. (MythX)

• Static Analysis of security for scoped contract and

imported functions. (Slither)

• Smart Contract analysis and automatic exploitation

(limited-time)

• Symbolic Execution / EVM bytecode security assessment

(limited-time)

1.3 SCOPE

IN-SCOPE:

Code related to Vault_v2 and Controller_v2 smart contracts.

Specific commit of contract: commit

EX
EC
UT
IV
E

SU
MM
AR
Y

 6

e097479e6417bd93e612d6db3dfe1edae7e76c43

OUT-OF-SCOPE:

Other smart contracts in the repository and economics attacks.

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW

0 0 0 3

SECURITY ANALYSIS RISK LEVEL

MULTIPLES AND FLOATING Low

OUTDATED LIBRARIES Low

USE OF TX.ORIGIN Low

USE OF INLINE ASSEMBLY Informational

POSSIBLE MISUSE OF PUBLIC FUNCTIONS Informational

THE LASTEST ECONOMIC ATTACK ON FARMING PLATFORM Informational

STATIC ANALYSIS REPORT Informational

AUTOMATED SECURITY SCAN Informational

 7

FINDINGS &
TECH DETAILS

 8

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

3.1 MULTIPLES AND FLOATING – LOW

Description:
In both contracts, many different pragmas are used instead of use
only one (. The Solidity Compiler only use the pragma which the
pragmas are not used. On the other hand, Vault and Controller
contracts use floating pragmas ^0.5.0. and ^0.5.5. Contracts
should be deployed with the same compiler version and flags that
they have been tested with thoroughly. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs
that affect the contract system negatively. At the time of this
audit, the current version is already at 0.7 The newer versions
provide features that provide checks and accounting, as well as
prevent insecure use of code.

Code Location:

Vault_v2.sol Line #7

Line #39 – pragma solidity ^0.5.0

Line #198 – pragma solidity ^0.5.0

Line #277 – pragma solidity ^0.5.5

Line #350 – pragma solidity ^0.5.0

Line #427 – pragma solidity >=0.4.24 <0.6.0

Line #492 – pragma solidity ^0.5.0

Line #524 – pragma solidity ^0.5.0

Line #759 – pragma solidity ^0.5.0

Line #807 – pragma solidity 0.5.16

Line #864 – pragma solidity 0.5.16

Line #898 – pragma solidity 0.5.16

Line #938 – pragma solidity 0.5.16

Line #948 – pragma solidity 0.5.16

Line #985 – pragma solidity 0.5.16

Line #1035 – pragma solidity 0.5.16

Line #1231 – pragma solidity 0.5.16

Controller_v2.sol Line #1

 9

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Line #54 – pragma solidity ^0.5.0

Line #213 – pragma solidity ^0.5.0

Line #292 – pragma solidity ^0.5.0

Line #369 – pragma solidity 0.5.16

Line #403 – pragma solidity 0.5.16

Line #484 – pragma solidity 0.5.16

Line #521 – pragma solidity 0.5.16

 Line #587 – pragma solidity 0.5.16

Recommendation:

Consider using only one pragma in each smart contract and lock the

pragma version to avoid vulnerabilities in the following compiler

deployment.

3.2 OUTDATED LIBRARIES - LOW
Description:

OpenZeppelin is a set of testing Smart Contracts libraries to be

reused. Using OpenZeppelin libraries, the risk of smart contracts

is highly reduced. Otherwise, OpenZeppelin usually update the

Smart Contracts templates to add new functionality or fix

vulnerabilities found by the community. The versions of

OpenZeppelin used in Vault_v2 and Controller_v2 are already

deprecated. For instance, ERC20Detailed contract was removed and

merged with ERC20 contract.

The different versions of pragma used in both smart contracts of

OpenZeppelin and current libraries can be seen in the following table:

Controller_v2

Library Used version Current version

Address ^0.5.5 >=0.6.2 <0.8.0

SafeMath ^0.5.5 >=0.6.0 <0.8.0

IERC20 ^0.5.5 >=0.6.0 <0.8.0

SafeERC20 ^0.5.5 >=0.6.0 <0.8.0

Vault_v2

 10

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Library Used version Current version

Math ^0.5.0 >=0.6.0 <0.8.0

SafeMath ^0.5.0 >=0.6.0 <0.8.0

IERC20 ^0.5.0 >=0.6.0 <0.8.0

Address ^0.5.0 >=0.6.0 <0.8.0

SafeERC20 ^0.5.0 >=0.6.0 <0.8.0

Initializable >=0.4.24 <0.6.0 >=0.4.24 <0.8.0

Context ^0.5.0 >=0.6.0 <0.8.0

ERC20 ^0.5.0 >=0.6.0 <0.8.0

ERC20Detailed ^0.5.0 Removed and Merged

with ERC20

Recommendation:

When possible, use the most updated OpenZeppelin libraries to avoid

malfunctions or vulnerabilities already fixed in OpenZeppelin new

versions.

3.3 USE OF TX.ORIGIN - LOW
Description:

"tx.origin" is useful only in very exceptional cases. If it is use

for authentication, then it makes no impact, because any contract

you call can act on your behalf. So it is recommended to Never use

tx.origin for authorization.

Here in defense() function of vault_v2.sol contract which is

callable from external has this require() condition which should

be fix to filter out non required address to call this method.

Code Location:

Vault_v2.sol Line #1270

 11

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Recommendation:

When possible, do not tx.origin for authentication except for

exceptional cases. Furthermore, tx.origin will be probably deprecated in

the following versions of Solidity.

3.4 USE OF INLINE ASSEMBLY -
INFORMATIONAL
Description:

a low level. This discards several important safety features in

Solidity.

Code Location:

Vault_v2.sol Line #307

Vault_v2.sol Line #481

Vault_v2.sol Line #1009

Vault_v2.sol Line #1023

Vault_v2.sol Line #1199

Vault_v2.sol Line #1214

Vault_v2.sol Line #1221

 12

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

Controller_v2.sol Line #11

Recommendation:

When possible, do not use inline assembly because it is a manner to

access to the EVM (Ethereum Virtual Machine) at a low level. An attacker

could bypass many important safety features of Solidity.

3.5 POSSIBLE MISUSE OF PUBLIC
FUNCTIONS – INFORMATIONAL

Description:

In public functions, array arguments are immediately copied array to

memory, while external functions can read directly from calldata.

Reading calldata is cheaper than memory allocation. Public functions

need to write the arguments to memory because public functions may be

memory. Thus, function expects its arguments being in memory when the

compiler generates the code for an internal function. In Vault and

Controlles contracts, many functions are never directly called by

another function in the same contract.

Code Location:

Controller_v2.sol Line #514

Controller_v2.sol Line #505

 13

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Controller_v2.sol Line #500

Controller_v2.sol Line #538

Vault_v2.sol Line #1014

Vault_v2.sol Line #774

Vault_v2.sol Line #658

Vault_v2.sol Line #969

Vault_v2.sol Line #1435

Vault_v2.sol Line #621

Vault_v2.sol Line #639

 14 FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Vault_v2.sol Line #1390

Vault_v2.sol Line #604

Vault_v2.sol Line #585

Vault_v2.sol Line #782

Vault_v2.sol Line #964

Recommendation:

Consider as much as possible declaring external variables instead of

public variables. As for best practices, you should use external if you

expect that the function will only ever be called externally and use

public if you need to call the function internally. In that case, both

functions are not called by another function in the same contract, so

marking both function as external can save gas.

 15

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

3.6 THE LASTEST ECONOMIC ATTACK
ON FARMING PLATFORMS -
INFORMATIONAL

Description:

Impermanent Loss, arbitrage and slippage are market effects which

affect the assets inside pools. The assets, such as USDT and USDC,

inside the vaults are located into shared pools.

On October 26, an attacker stole funds from the USDT and USDC

vaults of Harvest Finance. The attacker repeatedly exploited an

arbitrage and impermanent loss that influences the value of

individual assets inside the pool.

The value of asset invested are calculated in real -time. This

value is used by the vaults to calculate the number of shares to

be issued to the user depositing the funds. In addition, the value

of the assets was used by the attacker when funds are removed from

the vaults and it calculates how much payout the user will be

receive.

Reference: https://medium.com/harvest-finance/harvest-flashloan-

economic-attack-post-mortem-3cf900d65217

3.7 STATIC ANALYSIS REPORT –
INFORMATIONAL

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly into

their ABI and binary formats, Slither was run on Controller and Vault

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of

the contracts' APIs across the entire codebase.

Results:

 16

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Vault_v2

 17

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

Results:

Controller_v2

 18

FI
ND
IN
GS
 &
 T
EC
H

DE
TA

IL
S

3.8 AUTOMATED SECURITY SCAN –
INFORMATIONAL

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruit on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan on

the testers machine and sent the compiled results to the analyzers to

locate any vulnerabilities. Security Detections are only in scope, and

the analysis was pointed towards issues with vault and controller.

Results

Vault_v2

MythX detected 0 High findings, 17 Medium, and 19 Low.

Controller_v2

MythX detected 0 High findings, 0 Medium, and 0 Low.

 19

FI
ND
IN
GS
 &
 T
EC
H

DE
TA
IL
S

 20

THANK YOU FOR CHOOSING

	Code Location:
	Description: OpenZeppelin is a set of testing Smart Contracts libraries to be reused. Using OpenZeppelin libraries, the risk of smart contracts is highly reduced. Otherwise, OpenZeppelin usually update the Smart Contracts templates to add new functio...
	Description: "tx.origin" is useful only in very exceptional cases. If it is use for authentication, then it makes no impact, because any contract you call can act on your behalf. So it is recommended to Never use tx.origin for authorization.
	Here in defense() function of vault_v2.sol contract which is callable from external has this require() condition which should be fix to filter out non required address to call this method.
	Code Location:
	Description: a low level. This discards several important safety features in Solidity.
	Code Location:
	Description:
	Description: Impermanent Loss, arbitrage and slippage are market effects which affect the assets inside pools. The assets, such as USDT and USDC, inside the vaults are located into shared pools.
	On October 26, an attacker stole funds from the USDT and USDC vaults of Harvest Finance. The attacker repeatedly exploited an arbitrage and impermanent loss that influences the value of individual assets inside the pool.
	The value of asset invested are calculated in real -time. This value is used by the vaults to calculate the number of shares to be issued to the user depositing the funds. In addition, the value of the assets was used by the attacker when funds are re...

