
Preliminary Comments

OMG Network
Jun 8th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
QCK-01 : Redundant Member `bondValue` in Struct `Ticket`

QCK-02 : Function Should be Declared External

QCK-03 : Centralization Risks

QCK-04 : Logic Related to IFE Claims and Owed Amount

QPC-01 : Function Should be Declared External

QPC-02 : Lack of Checks for Reentrancy

QTC-01 : Deployment Risks

Appendix

Disclaimer

About

OMG Network Preliminary Comments

Summary
This report has been prepared for OMG Network smart contracts to discovering issues and vulnerabilities

in the source code of their Smart Contract and any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Static Analysis and

Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross-referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from minor to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

OMG Network Preliminary Comments

Overview

Project Summary

Project Name OMG Network

Platform Ethereum

Language Solidity

Codebase
https://github.com/omgnetwork/plasma-
contracts/tree/master/plasma_framework/contracts/quasar

Commit
08ae3c077420897523f4cb3ddbd5ac4aa99e8605
e0a304c29cf878f54e2bea98bdd99c4b0df0b685

Audit Summary

Delivery Date Jun 08, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues 7

Critical 0

Major 0

Medium 0

Minor 3

Informational 4

Discussion 0

OMG Network Preliminary Comments

https://github.com/omgnetwork/plasma-contracts/tree/master/plasma_framework/contracts/quasar

Audit Scope

ID file SHA256 Checksum

QTC contracts/quasar/QToken.sol 1730dd811b74878590a62a337367f80f99f9d8263ebf2398f03f48cdc28c630e

QCK contracts/quasar/Quasar.sol bdee2278117a799551872050b24c9b47c775b83d77322cabe95ffebb053ab6cc

QPC contracts/quasar/QuasarPool.sol f97b66fd6232620cf24ee04fbeef1a9848ad4f7c45a6b2159f5d9748782e65d0

OMG Network Preliminary Comments

Understandings

Overview

The Quasar contracts implement QToken, Quasar pool, and Quasar ticket system on Ethereum.

The contract QToken implements the token that could exchange with other tokens in the Quasar pool.

The contract QuasarPool provides a pool that users could deposit and withdraw registered tokens.

The contract Quasar , together with the contract QuasarPool , constructs a ticket system that users can

claim their on-chain assets by creating tickets, claiming tickets, submitting IFE claims, challenging IFE

claims, and processing IFE claim. Meanwhile, the exchange rates between asset tokens and QToken will

be increased as users pay fees when they claim tickets or processing IFE claims.

Dependencies

There are a few depending injection contracts or addresses in the current project:

token registered by calling function QuasarPool.registerQToken() for contract QuasarPool .

plasmaFramework , paymentExitGame , spendingConditionRegistry for contract Quasar .

We assume these contracts or addresses are valid and non-vulnerable actors and implementing proper

logic to collaborate with the current project.

Priviledged Functions

The contract QToken contains the following privileged functions that are restricted by the

onlyFrom(quasarContract) modifier:

QToken.mint() is used to mint token for accounts.

QToken.burn() is used to burn tokens from accounts.

The contract QuasarPool contains the following privileged function that is restricted by the

onlyQuasarMaintainer() modifier: *QuasarPool.registerQToken() is used to register a new token in the

Quasar pool.

The contract Quasar contains the following privileged functions that are restricted by the

onlyQuasarMaintainer() modifier:

Quasar.setSafeBlockMargin() is used to modify safe block margin for the contract.

Quasar.pauseQuasar() is used to pause the contract.

Quasar.resumeQuasar() is used to resume the contract.

OMG Network Preliminary Comments

Quasar.withdrawUnclaimedBonds() is used to withdraw unclaimed bonds from the contract.

To improve the trustworthiness of the project, any dynamic runtime updates in the project should be

notified to the community. Any plan to invoke the aforementioned functions should also consider moving to

the execution queue of the Timelock contract.

OMG Network Preliminary Comments

Findings

ID Title Category Severity Status

QCK-01
Redundant Member bondValue in Struct
Ticket

Gas Optimization, Coding
Style

Informational Resolved

QCK-02 Function Should be Declared External Gas Optimization Informational Resolved

QCK-03 Centralization Risks Centralization / Privilege Minor Resolved

QCK-04
Logic Related to IFE Claims and Owed
Amount

Logical Issue Minor Resolved

QPC-01 Function Should be Declared External Gas Optimization Informational Resolved

QPC-02 Lack of Checks for Reentrancy Logical Issue Minor Resolved

QTC-01 Deployment Risks Centralization / Privilege Informational Resolved

OMG Network Preliminary Comments

7
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 3 (42.86%)

Informational 4 (57.14%)

Discussion 0 (0.00%)

QCK-01 | Redundant Member bondValue in Struct Ticket

Category Severity Location Status

Gas Optimization, Coding Style Informational contracts/quasar/Quasar.sol: 57, 174 Resolved

Description

The state bondValue of the contract is immutable after contract initialization. According to the code

implementation in L174 and L205, the field bondValue within any Ticket STRUCT instance would be

initialized as the same value as the state bondValue of this CONTRACT. Afterwards, the state bondValue

within any struct instance will not be mutated after struct initialization. Therefore, the member bondValue

in struct Ticket is unnecessary. It can be replaced with the state bondValue of the contract whenever

used.

Recommendation

It is highly recommended to remove the member bondValue from the struct Ticket and use state variable

bondValue of the contract to replace ticket.bondValue .

Alleviation

The OMG Network team heeded our advice and resolved this issue in the commit

e0a304c29cf878f54e2bea98bdd99c4b0df0b685.

OMG Network Preliminary Comments

https://github.com/omgnetwork/plasma-contracts/commit/e0a304c29cf878f54e2bea98bdd99c4b0df0b685

QCK-02 | Function Should be Declared External

Category Severity Location Status

Gas
Optimization

Informational
contracts/quasar/Quasar.sol: 119, 128, 143, 150, 157, 173, 222, 247
, 279, 320

Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example：

Quasar.setSafeBlockMargin()

Quasar.flushExpiredTicket()

Quasar.pauseQuasar()

Quasar.resumeQuasar()

Quasar.withdrawUnclaimedBonds()

Quasar.obtainTicket()

Quasar.claim()

Quasar.ifeClaim()

Quasar.challengeIfeClaim()

Quasar.processIfeClaim()

Recommendation

It is highly recommended to change the visibility of the aforementioned functions from public to

external for gas optimization.

Alleviation

The Quasar contract’s bytecode size is very close to the EIP-170 limit. Using an external function with

calldata parameters increases the bytecode size. The OMG Network team changed public to external

where it is possible in the commit e0a304c29cf878f54e2bea98bdd99c4b0df0b685.

OMG Network Preliminary Comments

https://github.com/omgnetwork/plasma-contracts/commit/e0a304c29cf878f54e2bea98bdd99c4b0df0b685

QCK-03 | Centralization Risks

Category Severity Location Status

Centralization / Privilege Minor contracts/quasar/Quasar.sol: 119, 143, 150, 157 Resolved

Description

The role quasarMaintainer has authority to:

modify safe block margin by calling Quasar.setSafeBlockMargin() ;

pause the contract by calling Quasar.pauseQuasar() ;

resume the contract by calling Quasar.resumeQuasar() ;

withdraw unclaimed bonds by calling Quasar.withdrawUnclaimedBonds() .

Recommendation

We advise the client to handle the quasarMaintainer account carefully to avoid any potential hack. We

also advise the client to consider the following solutions:

1. Apply an associated Timelock contract to implement above functions, with reasonable latency for

community awareness on privileged operations;

2. Apply Multisig with community-voted 3rd-party independent co-signers;

3. Apply DAO or Governance module to increase transparency and community involvement.

Alleviation

The OMG Network team implemented the library TimelockedValue to update the safe block margin with

latency in the commit e0a304c29cf878f54e2bea98bdd99c4b0df0b685 .

[OMG Network Team]: While we agree that the quasarMaintainer account should be carefully managed,

the effects of it being compromised are minimal and most of the maintainer methods would not affect the

users.

pauseQuasar() only prevents new withdrawals from being started. Existing withdrawals have had

their funds reserved and can continue as normal without fear of losing funds.

withdrawUnclaimedBonds() can only withdraw funds that are destined for the quasarMaintainer

anyway and so should not be considered a Centralization risk as no user funds are in danger

setSafeBlockNumber() does protect the liquidity pool in the event that the plasma chain goes

byzantine and the Plasma operator continues publishing blocks. We have added a timelock to this

OMG Network Preliminary Comments

method to warn liquidity providers when safeBlockNum is changed and allow them time to withdraw

their funds if they don’t agree with it.

OMG Network Preliminary Comments

QCK-04 | Logic Related to IFE Claims and Owed Amount

Category Severity Location Status

Logical Issue Minor contracts/quasar/Quasar.sol: 1 Resolved

Description

According to the code implementation, if a bad IFE claim is not challenged within the eight-day limitation, it

would finally get processed. In this case, the attacker could withdraw the tokens that do not belong to him

from the contract. This might lead to the contract not having enough balance to pay other users' claims

later.

We noticed that in the contract QuasarPool , users are allowed to send a certain amount of tokens (amount

not exceeding tokenData[token].owedAmount), to the contract account by calling the function

QuasarPool.repayOwedToken() . We hope to confirm with the team about the using scenarios of the

function: if the function QuasarPool.repayOwedToken() and the variable tokenData[token].owedAmount

are designed to handle the situation when a bad IFE claim is processed.

Alleviation

[OMG Network Team]: IFE claims are intended as a way of making sure that the user does not lose funds

in the event that the user initiated a withdrawal and sent funds to the quasarOwner , but the Plasma

operator does not include the transaction in a block. This mirrors the Plasma MoreVP protocol. One of the

security assumptions of Plasma is that users are able to monitor invalid transactions or IFEs and challenge

them. This holds true for Quasar users as well - they can either check for invalid IFEs once every 8 days, or

trust someone else to do that for them.

However, in the unlikely event that an invalid IFE does get processed, then yes, the quasarOwner can make

up the funds by calling repayOwedToken() . Note that this means that users must trust the quasarOwner to

do the right thing at cost to themself. The assumption is that users would prefer to monitor and challenge

invalid IFEs instead.

OMG Network Preliminary Comments

QPC-01 | Function Should be Declared External

Category Severity Location Status

Gas Optimization Informational contracts/quasar/QuasarPool.sol: 40, 50, 79, 110, 120 Resolved

Description

The functions which are never called internally within the contract should have external visibility. For

example：

QuasarPool.addEthCapacity()

QuasarPool.addTokenCapacity()

QuasarPool.withdrawFunds()

QuasarPool.registerQToken()

QuasarPool.repayOwedToken()

Recommendation

It is highly recommended to change the visibility of the aforementioned functions from public to

external for gas optimization.

Alleviation

The OMG Network team heeded our advice and resolved this issue in the commit

e0a304c29cf878f54e2bea98bdd99c4b0df0b685.

OMG Network Preliminary Comments

https://github.com/omgnetwork/plasma-contracts/commit/e0a304c29cf878f54e2bea98bdd99c4b0df0b685

QPC-02 | Lack of Checks for Reentrancy

Category Severity Location Status

Logical Issue Minor contracts/quasar/QuasarPool.sol: 50, 79, 120 Resolved

Description

Functions that contain state updates or event emits after external calls are vulnerable to potential

reentrancy attacks. For example,

QuasarPool.addTokenCapacity()

QuasarPool.withdrawFunds()

QuasarPool.repayOwedToken()

Recommendation

It is highly recommended to apply OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent any potential reentrancy attack.

Alleviation

The OMG Network team heeded our advice and resolved this issue in the commit

e0a304c29cf878f54e2bea98bdd99c4b0df0b685.

OMG Network Preliminary Comments

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/omgnetwork/plasma-contracts/commit/e0a304c29cf878f54e2bea98bdd99c4b0df0b685

QTC-01 | Deployment Risks

Category Severity Location Status

Centralization / Privilege Informational contracts/quasar/QToken.sol: 22~23, 31 Resolved

Description

According to the contract implementation, the owner account quasarContract is capable to mint an

unlimited amount of tokens by calling the function mint . On the other hand, quasarContract is capable to

burn all the amount of tokens of an account without any restriction. The concern is if quasarContract is

not set up properly, or it accidentally calls the aforementioned functions, it might cause some unexpected

loss, thus introducing centralization risks.

Recommendation

We advise the team to review the flow and confirm if it is an intended design. If the owner quasarContract

is designed to be the contract QuasarPool , please ensure quasarContract is set up properly, and QToken

is always bundled with the contract QuasarPool to work together, since the contract QToken is vulnerable

alone.

Alleviation

[OMG Network Team]: That’s correct, the owner of the QToken contract (stored as quasarContract)

should be set as the address of the QuasarPool contract. If this has been initialized incorrectly, then the

QuasarPool for that ERC20 token won’t work and it should not be used.

OMG Network Preliminary Comments

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

OMG Network Preliminary Comments

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

OMG Network Preliminary Comments

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

OMG Network Preliminary Comments

