
01

Audit Report
April, 2021

https://audits.quillhash.com/smart-contract-audit

Contents

Introduction 01

02

03

04

05

07

08

Audit Goals

Issue Categories

Manual Audit

Automated Testing

Summary

Disclaimer

Introduction

This Audit Report mainly focuses on the overall security of PYR contract.
With this report, we have tried to ensure the reliability and correctness of
their smart contract by a complete and rigorous assessment of their
system's architecture and the smart contract codebase.

01

Auditing Approach and Methodologies applied

The Quillhash team has performed rigorous testing of the project starting
with analyzing the code design patterns in which we reviewed the smart
contract architecture to ensure it is well structured and safe use of third-
party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart
Contract to find any potential issues like race conditions, transaction-
ordering dependence, timestamp dependence, and denial of service
attacks.

In Automated Testing, We tested the Smart Contract with our in-house
developed tools to identify vulnerabilities and security flaws.

The code was tested and this included -

Analyzing the complexity of the code in-depth and detailed, manual
review of the code, line-by-line.
Deploying the code on testnet using multiple clients to run live tests.
Analyzing failure preparations to check how the Smart Contract
performs in case of any bugs and vulnerabilities.
Checking whether all the libraries used in the code are on the latest
version.
Analyzing the security of the on-chain data.

02

Audit Details

Audit Goals

Project Name: PYR
Website/Etherscan Code (Testnet):
PYR Token: 0xafc1e8882e205026c28e0add8ee44b0435349b0d

Languages: Solidity
Platforms and Tools: Remix IDE, Solhint, VScode, Slither, Mythril

Security
Identifying security related issues within each contract and the system of
contract.

Sound Architecture
Evaluation of the architecture of this system through the lens of established
smart contract best practices and general software best practices.

Code Correctness and Quality
A full review of the contract source code. The primary areas of focus
include:
 Accuracy
 Readability
 Sections of code with high complexity

The focus of the audit was to verify that the Smart Contract System is
secure, resilient and working according to the specifications. The audit
activities can be grouped in the following three categories:

https://ropsten.etherscan.io/address/0xafc1e8882e205026c28e0add8ee44b0435349b0d

03

Issue Categories

Every issue in this report was assigned a severity level from the following:

Issues on this level are critical to the smart contract’s performance/
functionality and should be fixed before moving to a live environment.

Issues on this level could potentially bring problems and should eventually
be fixed.

Issues on this level are minor details and warnings that can remain unfixed
but would be better fixed at some point in the future.

High severity issues

Medium severity issues

Low severity issues

Number of issues per severity

Open

High

Closed

Low

1 0

0 0

00

00

Medium Informational

04

Manual Audit

No issues found

High level severity issues

No issues found

Medium level severity issues

Low level severity issues
It is a good practice to lock the solidity version for a live deployment (use
0.5.17 instead of ^0.5.17). Contracts should be deployed with the same
compiler version and flags that they have been tested the most with.
Locking the pragma helps ensure that contracts do not accidentally get
deployed using, for example, the latest compiler which may have higher
risks of undiscovered bugs. Contracts may also be deployed by others
and the pragma indicates the compiler version intended by the original
authors.

1.

05

Automated Testing

Solhint Linting Violations

Solhint is an open-source project for linting solidity code, providing both
security and style guide validations. It integrates seamlessly into most
mainstream IDEs. We used Solhint as a plugin within our VScode for this
analysis. No violations were detected by Solhint, it is recommended to use
Solhint’s npm package to lint the contract.

Mythril
Mythril is a security analysis tool for EVM bytecode. It detects security
vulnerabilities in smart contracts built for Ethereum, Hedera, Quorum,
Vechain, Roostock, Tron and other EVM-compatible blockchains. It uses
symbolic execution, SMT solving and taint analysis to detect a variety of
security vulnerabilities.

Mythril detected no issues.

Slither

Slither, an open-source static analysis framework. This tool provides rich
information about Ethereum smart contracts and has critical properties.
While Slither is built as a security-oriented static analysis framework, it is
also used to enhance the user’s understanding of smart contracts, assist in
code reviews, and detect missing optimizations.

INFO:Detectors:
Redundant expression "this (PYR.sol#28)" inContext (PYR.sol#17-31)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:
PYRToken.slitherConstructorVariables() (PYR.sol#460-472) uses literals with too many digits:
 - totalTokensAmount = 50000000 (PYR.sol#462)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
PYRToken.decimals (PYR.sol#466) should be constant
PYRToken.name (PYR.sol#464) should be constant
PYRToken.symbol (PYR.sol#465) should be constant
PYRToken.totalTokensAmount (PYR.sol#462) should be constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-
declared-constant
INFO:Detectors:
totalSupply() should be declared external:
 - ERC20.totalSupply() (PYR.sol#299-301)

https://example.comhttps://www.npmjs.com/package/solhint

06

balanceOf(address) should be declared external:
 - ERC20.balanceOf(address) (PYR.sol#306-308)
transfer(address,uint256) should be declared external:
 - ERC20.transfer(address,uint256) (PYR.sol#318-321)
allowance(address,address) should be declared external:
 - ERC20.allowance(address,address) (PYR.sol#326-328)
approve(address,uint256) should be declared external:
 - ERC20.approve(address,uint256) (PYR.sol#337-340)
transferFrom(address,address,uint256) should be declared external:
 - ERC20.transferFrom(address,address,uint256) (PYR.sol#354-358)
increaseAllowance(address,uint256) should be declared external:
 - ERC20.increaseAllowance(address,uint256) (PYR.sol#372-375)
decreaseAllowance(address,uint256) should be declared external:
 - ERC20.decreaseAllowance(address,uint256) (PYR.sol#391-394)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-
declared-external
INFO:Slither:PYR.sol analyzed (5 contracts with 72 detectors), 14 result(s) found
INFO:Slither:Use https://crytic.io/ to get access to additional detectors and Github integration

07

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an
endorsement of the PYR contract. Securing smart contracts is a multistep
process, therefore running a bug bounty program as a complement to this
audit is strongly recommended

08

Summary

The use case of the smart contract is simple and the code is relatively small.
Altogether, the code is written and demonstrates effective use of
abstraction, separation of concerns, and modularity. Overall the code is well
written and readable with no high and medium level concerns.

17

https://example.comhttps://audits.quillhash.com/smart-contract-audit
https://example.comhttps://audits.quillhash.com/smart-contract-audit

