
Public

SMART CONTRACT AUDIT REPORT

for

Alpies (NFT)

Prepared By: Yiqun Chen

PeckShield
October 18, 2021

1/15 PeckShield Audit Report #: 2021-315

contact@peckshield.com

Public

Document Properties

Client Alpaca Finance
Title Smart Contract Audit Report
Target Alpies
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Jing Wang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 October 18, 2021 Xuxian Jiang Final Release
1.0-rc October 14, 2021 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/15 PeckShield Audit Report #: 2021-315

Public

Contents

1 Introduction 4
1.1 About Alpies . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Suggested Constant/Immutable Usages For Gas Efficiency 11
3.2 Redundant State/Code Removal . 12

4 Conclusion 14

References 15

3/15 PeckShield Audit Report #: 2021-315

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the NFT collection
of Alpies, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts is well engineered without security-related
issues. due to the presence of several issues related to either security or performance. This document
outlines our audit results.

1.1 About Alpies

Alpies are a hand-drawn, limited-edition 10, 000-piece NFT collection, which will be released in two
sets on BSC and then ETH. Both sets will be bridgeable between BSC and ETH so users may be able to
trade them on OpenSea and other marketplaces. The basic information of the audited contracts is as
follows:

Table 1.1: Basic Information of the audited protocol

Item Description
Name Alpaca Finance

Website https://alpies.alpacafinance.org/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report October 18, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/alpaca-finance/alpies-contract.git (754674e)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/15 PeckShield Audit Report #: 2021-315

Public

• https://github.com/alpaca-finance/alpies-contract.git (d574982)

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/15 PeckShield Audit Report #: 2021-315

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/15 PeckShield Audit Report #: 2021-315

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [4], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/15 PeckShield Audit Report #: 2021-315

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/15 PeckShield Audit Report #: 2021-315

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Alpies contracts. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 1

Informational 1

Total 2

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/15 PeckShield Audit Report #: 2021-315

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 low-severity vulnerability,
and 1 informational recommendation.

Table 2.1: Key Audit Findings of Alpies Protocol

ID Severity Title Category Status
PVE-001 Informational Suggested Constant/Immutable Us-

ages For Gas Efficiency
Coding Practices Fixed

PVE-002 Low Redundant State/Code Removal Coding Practices Confirmed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/15 PeckShield Audit Report #: 2021-315

Public

3 | Detailed Results

3.1 Suggested Constant/Immutable Usages For Gas Efficiency

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: pricemodels

• Category: Coding Practices [3]

• CWE subcategory: CWE-1099 [1]

Description

Since version 0.6.5, Solidity introduces the feature of declaring a state as immutable. An immutable

state variable can only be assigned during contract creation, but will remain constant throughout the
life-time of a deployed contract. The main benefit of declaring a state as immutable is that reading
the state is significantly cheaper than reading from regular storage, since it is not stored in storage
anymore. Instead, an immutable state will be directly inserted into the runtime code.

This feature is introduced based on the observation that the reading and writing of storage-based
contract states are gas-expensive. Therefore, it is always preferred if we can reduce, if not eliminate,
storage reading and writing as much as possible. Those state variables that are written only once
are candidates of immutable states under the condition that each fits the pattern, i.e., “a constant,
once assigned in the constructor, is read-only during the subsequent operation.”

In the following, we show a number of key state variables defined in AscendingStepModel, including
blockPerStep, priceStep, startPrice, and priceCeiling. If there is no need to dynamically update these
four key state variables, they can be declared as either constants or immutable for gas efficiency. In
particular, blockPerStep, priceStep, startPrice, and priceCeiling can all be declared as immutable.

20 cont ract Ascend ingStepMode l i s IP r i c eMode l {
21 us ing SafeMath f o r u int256 ;

23 /// @dev states
24 uint256 pub l i c o v e r r i d e s t a r t B l o c k ;
25 uint256 pub l i c o v e r r i d e endBlock ;

11/15 PeckShield Audit Report #: 2021-315

Public

26 uint256 pub l i c b lockPe rS t ep ;
27 uint256 pub l i c p r i c e S t e p ;

29 uint256 pub l i c s t a r t P r i c e ;
30 uint256 pub l i c p r i c e C e i l i n g ;
31 . . .
32 }

Listing 3.1: AscendingStepModel.sol

Note that the DescendingStepModel contract shares the same issue.

Recommendation Revisit the state variable definition and make extensive use of constant/

immutable states.

Status The issue has been fixed in the following commit: ab69a60.

3.2 Redundant State/Code Removal

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Alpies

• Category: Coding Practices [3]

• CWE subcategory: CWE-563 [2]

Description

The Alpies protocol makes good use of a number of reference contracts, such as ERC721Upgradeable,
OwnableUpgradeable, SafeMathUpgradeable, and Initializable, to facilitate its code implementation
and organization. For example, the Alpies smart contract has so far imported at least five reference
contracts. However, we observe the inclusion of certain unused code or the presence of unnecessary
redundancies that can be safely removed.

For example, if we examine closely the Alpies contract, there is a helper routine _updateUserPurchaseWindow
() that is used to update the user purchase history for current window. It comes to our attention
that the check on _userPurchaseHistory.windowStartBlock == 0 (line 229) is redundant as it is already
covered in the earlier check via _isNewPurchaseWindow(_userPurchaseHistory)() in the same line. In
other words, the if-condition can be simplified as if (_isNewPurchaseWindow(_userPurchaseHistory)).

220 /// @dev update user purchase history for current window
221 /// @param _buyer user address
222 /// @param _amount The amount of alpies that user purchased
223 function _updateUserPurchaseWindow(address _buyer , uint256 _amount) internal {
224 PurchaseHistory storage _userPurchaseHistory = userPurchaseHistory[_buyer];
225 // if first purchase or start new window
226 // 1. update purchase amount

12/15 PeckShield Audit Report #: 2021-315

https://github.com/alpaca-finance/alpies-contract/commit/ab69a60

Public

227 // 2. set new windowStartBlock
228 // else only update purchase amount
229 if (_isNewPurchaseWindow(_userPurchaseHistory) _userPurchaseHistory.

windowStartBlock == 0) {
230 _userPurchaseHistory.counter = _amount;
231 _userPurchaseHistory.windowStartBlock = block.number;
232 } else {
233 _userPurchaseHistory.counter = _userPurchaseHistory.counter.add(_amount);
234 }
235 }

Listing 3.2: Alpies::_updateUserPurchaseWindow()

Recommendation Consider the removal of the redundant code with a simplified, consistent
implementation.

Status The issue has been fixed in the following commit: 2507795.

13/15 PeckShield Audit Report #: 2021-315

https://github.com/alpaca-finance/alpies-contract/commit/2507795

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of Alpies, which are a hand-drawn,
limited edition 10, 000-piece NFT collection and will be released in two sets on BSC and then ETH. Both
sets will be bridgeable between BSC and ETH so users may be able to trade them on OpenSea and
other marketplaces. The current code base is well organized and those identified issues are promptly
confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

14/15 PeckShield Audit Report #: 2021-315

Public

References

[1] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

15/15 PeckShield Audit Report #: 2021-315

https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Alpies
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested Constant/Immutable Usages For Gas Efficiency
	Redundant State/Code Removal

	Conclusion
	References

