
Public

SMART CONTRACT AUDIT REPORT

for

Alpaca’s Partial Close Strategies

Prepared By: Yiqun Chen

PeckShield
July 30, 2021

1/17 PeckShield Audit Report #: 2021-205

sxwang@peckshield.com

Public

Document Properties

Client Alpaca Finance Protocol
Title Smart Contract Audit Report
Target Partial Close Strategies
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Jing Wang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 30, 2021 Xuxian Jiang Final Release
1.0-rc July 22, 2021 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2021-205

Public

Contents

1 Introduction 4
1.1 About Alpaca . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Proper Slippage Control in PartialCloseLiquidate Strategies 11
3.2 Accommodation of Non-Compliant ERC20 Tokens 13

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2021-205

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the the Alpaca

Finance Protocol regarding the support of a new Partial Close Strategies, we outline in the report
our systematic approach to evaluate potential security issues in the smart contract implementation,
expose possible semantic inconsistencies between smart contract code and design document, and
provide additional suggestions or recommendations for improvement. Our results show that the given
version of smart contracts is well engineered without security-related issues. due to the presence of
several issues related to either security or performance. This document outlines our audit results.

1.1 About Alpaca

The Alpaca Finance Protocol is a leveraged yield farming and leveraged liquidity providing protocol
running on Binance Smart Chain (BSC). The audited implementation extends the previous version by
adding the support of new strategies, including partial close strategies for respective workers,
which make the system distinctive and valuable when compared with current yield farming offerings.
The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of the audited protocol

Item Description
Name Alpaca Finance Protocol

Website https://www.alpacafinance.org/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 30, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/alpaca-finance/bsc-alpaca-contract.git (e31614d)

4/17 PeckShield Audit Report #: 2021-205

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/alpaca-finance/bsc-alpaca-contract.git (43a2840)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

5/17 PeckShield Audit Report #: 2021-205

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2021-205

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2021-205

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2021-205

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Alpaca Finance Protocol

regarding the support of new partial close strategies. During the first phase of our audit, we study
the smart contract source code and run our in-house static code analyzer through the codebase. The
purpose here is to statically identify known coding bugs, and then manually verify (reject or confirm)
issues reported by our tool. We further manually review business logics, examine system operations,
and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 2

Informational 0

Total 2

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2021-205

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 low-severity vulnerabili-
ties.

Table 2.1: Key Audit Findings of Partial Close Strategies Protocol

ID Severity Title Category Status
PVE-001 Low Proper Slippage Control in Partial-

CloseLiquidate Strategies
Business Logic Fixed

PVE-002 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/17 PeckShield Audit Report #: 2021-205

Public

3 | Detailed Results

3.1 Proper Slippage Control in PartialCloseLiquidate Strategies

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

As a yield farming and leveraged liquidity providing protocol, Alpaca has a constant need of performing
token swaps between base and farming tokens. In the following, we examine the worker strategy logic
from the new PancakeswapV2RestrictedSingleAssetStrategyPartialCloseLiquidate contract.

To elaborate, we show below the execute() implementation. As the name indicates, it is designed
to execute the worker strategy by taking the intended farmingToken and returning the needed baseToken

. To detect and prevent unintended slippage, the worker strategy allows the enforcement in specifying
the minimal returned baseToken, i.e., minBaseTokenAmount.

68 /// @dev Execute worker strategy. take farmingToken return Basetoken
69 /// @param data Extra calldata information passed along to this strategy.
70 function execute(
71 address , /* user */
72 uint256 , /* debt */
73 bytes calldata data
74) external override onlyWhitelistedWorkers nonReentrant {
75 // 1. farmingTokenToLiquidate - How much farmingToken to liquidate?
76 // minBaseTokenAmount - For validating slippage
77 (uint256 farmingTokenToLiquidate , uint256 minBaseTokenAmount) = abi.decode(data , (

uint256 , uint256));
78 IWorker02 worker = IWorker02(msg.sender);
79 address baseToken = worker.baseToken ();
80 address farmingToken = worker.farmingToken ();
81 // 2. Approve router to do their stuffs
82 farmingToken.safeApprove(address(router), uint256 (-1));

11/17 PeckShield Audit Report #: 2021-205

Public

83 // 3. Convert some farmingTokens back to a baseTokens.
84 require(
85 farmingToken.myBalance () >= farmingTokenToLiquidate ,
86 "PancakeswapV2RestrictedSingleAssetStrategyPartialCloseLiquidate :: execute ::

insufficient farmingToken received from worker"
87);
88 router.swapExactTokensForTokens(farmingTokenToLiquidate , 0, worker.getReversedPath ()

, address(this), now);
89 // 4. Transfer all baseTokens (as a result of a conversion) back to the calling

worker
90 require(
91 baseToken.myBalance () >= minBaseTokenAmount ,
92 "PancakeswapV2RestrictedSingleAssetStrategyPartialCloseLiquidate :: execute ::

insufficient baseToken amount received"
93);
94 baseToken.safeTransfer(msg.sender , baseToken.myBalance ());
95 // 4.1 transfer remaining farmingTokens back to worker
96 farmingToken.safeTransfer(msg.sender , farmingToken.myBalance ());
97 // 5. Reset approval for safety reason
98 farmingToken.safeApprove(address(router), 0);

100 emit PancakeswapV2RestrictedSingleAssetStrategyPartialCloseLiquidateEvent(
101 baseToken ,
102 farmingToken ,
103 farmingTokenToLiquidate
104);
105 }

Listing 3.1: PancakeswapV2RestrictedSingleAssetStrategyPartialCloseLiquidate::execute()

Our analysis shows this enforcement is enforced on the baseToken balance after the conversion. An
improved one can be applied to enforce based on the difference after and before the conversion. Note
the three strategies share the same issue, i.e., PancakeswapV2RestrictedStrategyPartialCloseLiquidate,
PancakeswapV2RestrictedSingleAssetStrategyPartialCloseLiquidate, and WaultSwapRestrictedStrategy

PartialCloseLiquidate.

Recommendation The minimal returned baseToken can be enforced based on the balance
difference after and before the conversion.

Status The issue has been fixed by this commit: e632570.

12/17 PeckShield Audit Report #: 2021-205

https://github.com/alpaca-finance/bsc-alpaca-contract/commit//e632570

Public

3.2 Accommodation of Non-Compliant ERC20 Tokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [3]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. Specifically, the transfer() routine does not have a return value defined and
implemented. However, the IERC20 interface has defined the transfer() interface with a bool return
value. As a result, the call to transfer() may expect a return value. With the lack of return value
of USDT’s transfer(), the call will be unfortunately reverted.

126 function transfer(address _to , uint _value) public onlyPayloadSize (2 * 32) {
127 uint fee = (_value.mul(basisPointsRate)).div (10000);
128 if (fee > maximumFee) {
129 fee = maximumFee;
130 }
131 uint sendAmount = _value.sub(fee);
132 balances[msg.sender] = balances[msg.sender].sub(_value);
133 balances[_to] = balances[_to].add(sendAmount);
134 if (fee > 0) {
135 balances[owner] = balances[owner].add(fee);
136 Transfer(msg.sender , owner , fee);
137 }
138 Transfer(msg.sender , _to , sendAmount);
139 }

Listing 3.2: USDT::transfer()

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In current implementation, if we examine the execute() routine from the PancakeswapV2Restricted

StrategyPartialCloseLiquidate contract that is designed to perform the intended partial close strategy

13/17 PeckShield Audit Report #: 2021-205

Public

by swapping the farmingToken to baseToken. To accommodate the specific idiosyncrasy, there is a
need to use safeTransfer() (instead of transfer() - line 98).

66 function execute(
67 address , /* user */
68 uint256 , /* debt */
69 bytes calldata data
70) external override onlyWhitelistedWorkers nonReentrant {
71 // 1. Find out what farming token we are dealing with.
72 (uint256 lpTokenToLiquidate , uint256 minBaseToken) = abi.decode(data , (uint256 ,

uint256));
73 IWorker worker = IWorker(msg.sender);
74 address baseToken = worker.baseToken ();
75 address farmingToken = worker.farmingToken ();
76 IPancakePair lpToken = IPancakePair(factory.getPair(farmingToken , baseToken));
77 // 2. Approve router to do their stuffs
78 address(lpToken).safeApprove(address(router), uint256 (-1));
79 farmingToken.safeApprove(address(router), uint256 (-1));
80 // 3. Remove some LP back to BaseToken and farming tokens as we want to return some

of the position.
81 require(
82 lpToken.balanceOf(address(this)) >= lpTokenToLiquidate ,
83 "PancakeswapV2RestrictedStrategyPartialCloseLiquidate :: execute :: insufficient LP

amount received from worker"
84);
85 router.removeLiquidity(baseToken , farmingToken , lpTokenToLiquidate , 0, 0, address(

this), now);
86 // 4. Convert farming tokens to baseToken.
87 address [] memory path = new address [](2);
88 path [0] = farmingToken;
89 path [1] = baseToken;
90 router.swapExactTokensForTokens(farmingToken.myBalance (), 0, path , address(this),

now);
91 // 5. Return all baseToken back to the original caller.
92 uint256 balance = baseToken.myBalance ();
93 require(
94 balance >= minBaseToken ,
95 "PancakeswapV2RestrictedStrategyPartialCloseLiquidate :: execute :: insufficient

baseToken received"
96);
97 SafeToken.safeTransfer(baseToken , msg.sender , balance);
98 lpToken.transfer(msg.sender , lpToken.balanceOf(address(this)));
99 // 6. Reset approve for safety reason

100 address(lpToken).safeApprove(address(router), 0);
101 farmingToken.safeApprove(address(router), 0);

103 emit PancakeswapV2RestrictedStrategyPartialCloseLiquidateEvent(baseToken ,
farmingToken , lpTokenToLiquidate);

104 }

Listing 3.3: PancakeswapV2RestrictedStrategyPartialCloseLiquidate::execute()

Note the WaultSwapRestrictedStrategyPartialCloseLiquidate contract has the same execute()

14/17 PeckShield Audit Report #: 2021-205

Public

function that shares the same issue.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been fixed by this commit: 214bec3.

15/17 PeckShield Audit Report #: 2021-205

https://github.com/alpaca-finance/bsc-alpaca-contract/commit/214bec3

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Alpaca Finance Protocol, which
is a leveraged-yield farming protocol built on the Binance Smart Chain. With the new support of addi-
tional strategies for respective workers, the system makes it distinctive and valuable when compared
with current yield farming offerings. The current code base is well organized and those identified
issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

16/17 PeckShield Audit Report #: 2021-205

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2021-205

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Alpaca
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Proper Slippage Control in PartialCloseLiquidate Strategies
	Accommodation of Non-Compliant ERC20 Tokens

	Conclusion
	References

