
Public

SMART CONTRACT AUDIT REPORT

for

Alpaca’s addCollateral() Routine

Prepared By: Yiqun Chen

PeckShield
August 18, 2021

1/15 PeckShield Audit Report #: 2021-238

sxwang@peckshield.com

Public

Document Properties

Client Alpaca Finance Protocol
Title Smart Contract Audit Report
Target Vault/Configuration Contracts
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Jing Wang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 August 18, 2021 Xuxian Jiang Final Release
1.0-rc August 18, 2021 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/15 PeckShield Audit Report #: 2021-238

Public

Contents

1 Introduction 4
1.1 About Alpaca . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Accommodation of approve() Idiosyncrasies . 11
3.2 Improved Precision By Multiplication And Division Reordering 12

4 Conclusion 14

References 15

3/15 PeckShield Audit Report #: 2021-238

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the the Alpaca

Finance Protocol with the inclusion of new configuration contracts, we outline in the report our
systematic approach to evaluate potential security issues in the smart contract implementation,
expose possible semantic inconsistencies between smart contract code and design document, and
provide additional suggestions or recommendations for improvement. Our results show that the given
version of smart contracts is well engineered without security-related issues. due to the presence of
several issues related to either security or performance. This document outlines our audit results.

1.1 About Alpaca

The Alpaca Finance Protocol is a leveraged yield farming and leveraged liquidity providing protocol
running on Binance Smart Chain (BSC). The audited implementation extends the previous version
by adding the support of new configuration contracts, including ConfigurableInterestVaultConfig,
WorkerConfig, and SingleAssetWorkerConfig. It also updates the main Vault contract for collateral
addition to make the system distinctive and valuable when compared with current yield farming
offerings. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of the audited protocol

Item Description
Name Alpaca Finance Protocol

Website https://www.alpacafinance.org/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report August 18, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

4/15 PeckShield Audit Report #: 2021-238

Public

• https://github.com/alpaca-finance/bsc-alpaca-contract.git (8d89033)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/15 PeckShield Audit Report #: 2021-238

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/15 PeckShield Audit Report #: 2021-238

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/15 PeckShield Audit Report #: 2021-238

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/15 PeckShield Audit Report #: 2021-238

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Alpaca Finance Protocol

regarding the support of new configuration contracts and an updated Vault, During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 1

Informational 1

Total 2

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/15 PeckShield Audit Report #: 2021-238

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 low-severity vulnerability,
and 1 informational recommendation.

Table 2.1: Key Audit Findings of Vault/Configuration Contracts Protocol

ID Severity Title Category Status
PVE-001 Informational Accommodation of approve() Idiosyn-

crasies
Coding Practices Resolved

PVE-002 Low Improved Precision By Multiplication
And Division Reordering

Coding Practices Resolved

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/15 PeckShield Audit Report #: 2021-238

Public

3 | Detailed Results

3.1 Accommodation of approve() Idiosyncrasies

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Vault

• Category: Coding Practices [3]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

11/15 PeckShield Audit Report #: 2021-238

Public

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.1: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. In the
following, we use the Vault::setFairLaunchPoolId() routine as an example. This routine is designed
to approve the FairLaunch contract to move debtToken on users’ behalf. To accommodate the specific
idiosyncrasy, for each safeApprove() (line 460), there is a need to safeApprove() twice: the first one
reduces the allowance to 0; and the second one sets the new allowance.

459 function setFairLaunchPoolId(uint256 _poolId) external onlyOwner {
460 SafeToken.safeApprove(debtToken , config.getFairLaunchAddr (), uint256 (-1));
461 fairLaunchPoolId = _poolId;
462 }

Listing 3.2: Vault::setFairLaunchPoolId()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status This issue has been resolved as the supported debtToken has an implementation that
is fully compliant with the ERC20 standard. With that, there is no need to adjust the current
implementation.

3.2 Improved Precision By Multiplication And Division
Reordering

• ID: PVE-002

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: WorkerConfig

• Category: Numeric Errors [4]

• CWE subcategory: CWE-190 [2]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one

12/15 PeckShield Audit Report #: 2021-238

Public

possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the WorkerConfig::isStable() as an example. This routine is used to measure
the stability of the given worker and prevent it from being manipulated.

115 /// @dev Return whether the given worker is stable , presumably not under manipulation.
116 function isStable(address worker) public view override returns (bool) {
117 IPancakePair lp = IWorker(worker).lpToken ();
118 address token0 = lp.token0 ();
119 address token1 = lp.token1 ();
120 // 1. Check that reserves and balances are consistent (within 1%)
121 (uint256 r0, uint256 r1,) = lp.getReserves ();
122 uint256 t0bal = token0.balanceOf(address(lp));
123 uint256 t1bal = token1.balanceOf(address(lp));
124 _isReserveConsistent(r0 , r1 , t0bal , t1bal);
125 // 2. Check that price is in the acceptable range
126 (uint256 price , uint256 lastUpdate) = oracle.getPrice(token0 , token1);
127 require(lastUpdate >= now - 1 days , "WorkerConfig :: isStable :: price too stale");
128 uint256 lpPrice = r1.mul(1e18).div(r0);
129 uint256 maxPriceDiff = workers[worker]. maxPriceDiff;
130 require(lpPrice <= price.mul(maxPriceDiff).div (10000) , "WorkerConfig :: isStable ::

price too high");
131 require(lpPrice >= price.mul (10000).div(maxPriceDiff), "WorkerConfig :: isStable ::

price too low");
132 // 3. Done
133 return true;
134 }

Listing 3.3: WorkerConfig::isStable()

We notice the comparison between the lpPrice and the external oracle price (lines 130 − 131)
involves mixed multiplication and devision. For improved precision, it is better to calculate the multi-
plication before the division, i.e., require(lpPrice.mul(10000)<= price.mul(maxPriceDiff)), instead of
current require(lpPrice <= price.mul(maxPriceDiff).div(10000)) (line 130). Note that the resulting
precision loss may be just a small number, but it plays a critical role when certain boundary conditions
are met. And it is always the preferred choice if we can avoid the precision loss as much as possible.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been fixed by this pull request: 109.

13/15 PeckShield Audit Report #: 2021-238

https://github.com/alpaca-finance/bsc-alpaca-contract/pull/109

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Alpaca Finance Protocol, which
is a leveraged-yield farming protocol built on the Binance Smart Chain. With the new support of new
configuration contracts and an updated Vault, the system makes it distinctive and valuable when
compared with current yield farming offerings. The current code base is well organized and those
identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

14/15 PeckShield Audit Report #: 2021-238

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

15/15 PeckShield Audit Report #: 2021-238

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Alpaca
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Accommodation of approve() Idiosyncrasies
	Improved Precision By Multiplication And Division Reordering

	Conclusion
	References

