
Public

SMART CONTRACT AUDIT REPORT

for

ALPACA FINANCE PROTOCOL

Prepared By: Shuxiao Wang

PeckShield
March 20, 2021

1/37 PeckShield Audit Report #: 2021-067

sxwang@peckshield.com

Public

Document Properties

Client Alpaca Finance Protocol
Title Smart Contract Audit Report
Target Alpaca Finance Protocol
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Huaguo Shi
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 March 20, 2021 Xuxian Jiang Final Release
1.0-rc March 19, 2021 Xuxian Jiang Release Candidate
0.3 March 16, 2021 Xuxian Jiang Add More Findings #2
0.2 March 10, 2021 Xuxian Jiang Add More Findings #1
0.1 March 7, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/37 PeckShield Audit Report #: 2021-067

Public

Contents

1 Introduction 4
1.1 About Alpaca Finance Protocol . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 12
3.1 Possible Drain of Vault Funds With Double Returns Of Excess Tokens 12
3.2 Possible Costly LPs From Improper Vault Initialization 14
3.3 Accommodation of Non-Compliant ERC20 Tokens 16
3.4 Proper Leftover Return After Liquidation . 18
3.5 Trading Fee Discrepancy Between Alpaca And PancakeSwap 20
3.6 Excessive Initialized Allowance In ibTokenRouter And PancakeswapWorker 21
3.7 Proper Asset Return In removeLiquidityToken() And swapTokenForExactAlpaca() . . 22
3.8 Implicit Assumption of Zero Balance in ibTokenRouter 24
3.9 Inconsistency Between Document and Implementation 26
3.10 Trust Issue of Admin Keys . 27
3.11 ALPACA Voting Amplification With Sybil Attacks 30
3.12 Inappropriate Funder Reset in FairLaunch::withdraw() 32
3.13 Timely massUpdatePools During Pool Weight Changes 33

4 Conclusion 35

References 36

3/37 PeckShield Audit Report #: 2021-067

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the the Alpaca

Finance Protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Alpaca Finance Protocol

The Alpaca Finance Protocol is designed as an evolutional improvement of Alpha Homora, which is a
leveraged yield farming and leveraged liquidity providing protocol launched on the Ethereum mainnet.
The Alpha Homora protocol provides a solid base by enabling ETH lenders to earn high interest on
ETH (and the lending interest rate comes from leveraged yield farmers). From another perspective,
yield farmers can get even higher farming APY and trading fees APY from taking on leveraged yield
farming positions. The audited implementation makes improvements, including the direct integration
of mining support at the protocol level as well as the customizability of base tokens (instead of native
tokens).

The basic information of Alpaca Finance Protocol is as follows:

Table 1.1: Basic Information of Alpaca Finance Protocol

Item Description
Issuer Alpaca Finance Protocol

Website https://www.alpacafinance.org/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report March 20, 2021

4/37 PeckShield Audit Report #: 2021-067

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/alpaca-finance/alpaca-contract.git (6724fc6)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/alpaca-finance/alpaca-contract.git (d8b3c01)

1.2 About PeckShield

PeckShield Inc. [13] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/37 PeckShield Audit Report #: 2021-067

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

6/37 PeckShield Audit Report #: 2021-067

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/37 PeckShield Audit Report #: 2021-067

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/37 PeckShield Audit Report #: 2021-067

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Alpaca Finance Protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 5

Low 5

Informational 1

Total 13

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/37 PeckShield Audit Report #: 2021-067

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-
ities, 5 medium-severity vulnerabilities, 5 low-severity vulnerabilities, and 1 informational recommen-
dation.

Table 2.1: Key Audit Findings of Alpaca Finance Protocol Protocol

ID Severity Title Category Status
PVE-001 High Possible Drain of Vault Funds With Dou-

ble Returns Of Excess Tokens
Business Logic Fixed

PVE-002 Medium Possible Costly LPs From Improper
Vault Initialization

Time and State Fixed

PVE-003 Low Accommodation of Non-Compliant
ERC20 Tokens

Coding Practices Fixed

PVE-004 High Proper Leftover Return After Liquida-
tion

Business Logic Fixed

PVE-005 Medium Trading Fee Discrepancy Between Al-
paca And PancakeSwap

Business Logic Fixed

PVE-006 Low Excessive Initialized Allowance In ibTo-
kenRouter And PancakeswapWorker

Business Logic Fixed

PVE-007 Medium Proper Asset Return In removeLiquid-
ityToken() And swapTokenForExactAl-
paca()

Business Logic Fixed

PVE-008 Low Implicit Assumption of Zero Balance in
ibTokenRouter

Business Logic Fixed

PVE-009 Informational Inconsistency Between Document and
Implementation

Coding Practices Fixed

PVE-010 Medium Trust Issue of Admin Keys Business Logic Mitigated
PVE-011 Low ALPACA Voting Amplification With

Sybil Attacks
Business Logic Confirmed

PVE-012 Medium Inappropriate Funder Reset in Fair-
Launch::withdraw()

Business Logic Fixed

PVE-013 Low Timely massUpdatePools During Pool
Weight Changes

Business Logic Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need

10/37 PeckShield Audit Report #: 2021-067

Public

to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

11/37 PeckShield Audit Report #: 2021-067

Public

3 | Detailed Results

3.1 Possible Drain of Vault Funds With Double Returns Of
Excess Tokens

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: Vault

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

The Alpaca Finance Protocol shares the same architecture from Alpha Homora with the central Vault
contract. This contract is the main entry for suppliers and borrowers. Specifically, suppliers can
deposit assets as liquidity and get in return the corresponding pool tokens. Borrowers can perform
leveraged yield farming with these assets.

To elaborate, we show below the core work() routine. This routine allows farming users to create
new farming positions to maximize yield farming potential. In particular, it performs the following
steps: it firstly validates the given arguments and prepares the farming position; Next it ensures the
given worker can accept more debt (and remove the existing debt); After that, it then performs the
actual work in either borrowing more funds into the position or repaying to close the position. Finally,
it validates the position and returns back excess tokens, if any.

Our analysis leads to the discovery of a double return issue when excess tokens are returned
back to the farming user (lines 261 − 268). In particular, when the if-condition of token == config.

getWrappedNativeAddr()) is satisfied, the computed excess tokens are returned twice back to the user.
The first time occurs at line 265 (with the native BNB tokens) inside the if branch while the second
time happens at line 267 (with the wrapped WBNB tokens).

213 f unc t i on work (uint256 id , address worker , uint256 pr inc ipa lAmount , uint256 l oan ,
uint256 maxReturn , bytes c a l l d a t a data)

214 ex te rna l payable

12/37 PeckShield Audit Report #: 2021-067

Public

215 onlyEOA t ran s f e rTokenToVau l t (p r i n c i pa lAmount) acc rue (p r i n c i pa lAmount) nonReent rant
216 {
217 r equ i r e (f a i r L a un c hPoo l I d != uint256 (−1) , "work: poolId not set") ;
218 // 1. Sanity check the input position , or add a new position of ID is 0.
219 i f (i d == 0) {
220 i d = n e x tPo s i t i o n ID++;
221 p o s i t i o n s [i d] . worker = worker ;
222 p o s i t i o n s [i d] . owner = msg . sender ;
223 } e l s e {
224 r equ i r e (i d < nex tPo s i t i o n ID , "bad position id") ;
225 r equ i r e (p o s i t i o n s [i d] . worker == worker , "bad position worker") ;
226 r equ i r e (p o s i t i o n s [i d] . owner == msg . sender , "not position owner") ;
227 I F a i r L aunch (c o n f i g . ge tFa i rLaunchAddr ()) . w i t hd r awA l l (msg . sender , f a i r L a un c hPoo l I d) ;
228 IDebtToken (debtToken) . burn (address (t h i s) , debtToken . ba lanceOf (address (t h i s))) ;
229 }
230 emit Work(id , l o an) ;
231 // Update execution scope variables
232 POSITION_ID = i d ;
233 (STRATEGY,) = ab i . decode (data , (address , bytes)) ;
234 // 2. Make sure the worker can accept more debt and remove the existing debt.
235 r equ i r e (c o n f i g . i sWorke r (worker) , "not a worker") ;
236 r equ i r e (l oan == 0 c o n f i g . acceptDebt (worker) , "worker not accept more debt") ;
237 uint256 debt = _removeDebt (i d) . add (l oan) ;
238 // 3. Perform the actual work , using a new scope to avoid stack -too -deep errors.
239 uint256 back ;
240 {
241 uint256 sendERC20 = pr i n c i pa lAmount . add (l oan) ;
242 r equ i r e (sendERC20 <= IERC20 (token) . ba lanceOf (address (t h i s)) , "insufficient funds

in the vault") ;
243 uint256 beforeERC20 = IERC20 (token) . ba lanceOf (address (t h i s)) . sub (sendERC20) ;
244 IERC20 (token) . t r a n s f e r (worker , sendERC20) ;
245 IWorker (worker) . work (id , msg . sender , debt , data) ;
246 back = IERC20 (token) . ba lanceOf (address (t h i s)) . sub (beforeERC20) ;
247 }
248 // 4. Check and update position debt.
249 uint256 l e s sDeb t = Math . min (debt , Math . min (back , maxReturn)) ;
250 debt = debt . sub (l e s sDeb t) ;
251 i f (debt > 0) {
252 r equ i r e (debt >= con f i g . minDebtS ize () , "too small debt size") ;
253 uint256 h e a l t h = IWorker (worker) . h e a l t h (i d) ;
254 uint256 workFactor = c o n f i g . workFactor (worker , debt) ;
255 r equ i r e (h e a l t h . mul (workFactor) >= debt . mul (10000) , "bad work factor") ;
256 IDebtToken (debtToken) . mint (address (t h i s) , debt) ;
257 I F a i r L aunch (c o n f i g . ge tFa i rLaunchAddr ()) . d e p o s i t (msg . sender , f a i r L aunchPoo l I d , debt

) ;
258 _addDebt (id , debt) ;
259 }
260 // 5. Return excess token back.
261 i f (back > l e s sDeb t) {
262 i f (token == con f i g . getWrappedNat iveAddr ()) {
263 SafeToken . s a f eT r a n s f e r (token , c o n f i g . ge tWNat iveRe laye r () , back . sub (l e s sDeb t)) ;
264 WNat iveRe layer (uint160 (c o n f i g . ge tWNat iveRe laye r ())) . withdraw (back . sub (l e s sDeb t))

13/37 PeckShield Audit Report #: 2021-067

Public

;
265 msg . sender . t r a n s f e r (back . sub (l e s sDeb t)) ;
266 }
267 SafeToken . s a f eT r a n s f e r (token , msg . sender , back . sub (l e s sDeb t)) ;
268 }
269 // Release execution scope
270 POSITION_ID = _NO_ID;
271 STRATEGY = _NO_ADDRESS;
272 }

Listing 3.1: Vault :: work()

With the double return of excess tokens, a malicious farming user can simply drain the entire Vault

! Fortunately, it is important to highlight that the funds on current Vault deployment/configuration
are not affected from this finding as the Leveraged Yield Farming (LYF) feature is not activated yet
and all call to work() routine will be effectively blocked by require(config.isWorker(worker), "Vault

::work:: not a worker") (line 235).

Recommendation Prevent the double return issue by revising the core work() logic.

Status This issue has been fixed in this commit: 405338d.

3.2 Possible Costly LPs From Improper Vault Initialization

• ID: PVE-002

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Vault

• Category: Time and State [7]

• CWE subcategory: CWE-362 [4]

Description

In the Alpaca Finance Protocol, the Vault contract is an essential one that manages current debt
positions and mediates the access to various workers. Meanwhile, the Vault contract allows liquidity
providers to provide liquidity so that lenders can earn high interest and the lending interest rate
comes from leveraged yield farmers. While examining the share calculation when lenders provide
liquidity (via deposit()), we notice an issue that may unnecessarily make the Vault-related pool
token extremely expensive and bring hurdles (or even causes loss) for later liquidity providers.

To elaborate, we show below the deposit() routine. This routine is used for liquidity providers to
deposit desired liquidity and get respective pool tokens in return. The issue occurs when the pool is
being initialized under the assumption that the current pool is empty.

176 /// @dev Add more token to the lending pool. Hope to get some good returns.
177 f unc t i on d e p o s i t (uint256 amountToken)

14/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/405338d

Public

178 ex te rna l o v e r r i d e payable
179 t r an s f e rTokenToVau l t (amountToken) acc rue (amountToken) nonReent rant {
180 _depos i t (amountToken) ;
181 }

183 f unc t i on _depos i t (uint256 amountToken) i n t e r n a l {
184 uint256 t o t a l = to ta lToken () . sub (amountToken) ;
185 uint256 s ha r e = t o t a l == 0 ? amountToken : amountToken . mul (t o t a l S u p p l y ()) . d i v (t o t a l)

;
186 _mint (msg . sender , s h a r e) ;
187 r equ i r e (t o t a l S u p p l y () > 1e17 , "Vault:: deposit :: no tiny shares") ;
188 }

Listing 3.2: Vault :: deposit ()

Specifically, when the pool is being initialized, the share value directly takes the given value of
amountToken (line 185), which is under control by the malicious actor. As this is the first deposit,
the current total supply equals the calculated share = total == 0 ? amountToken : amountToken.mul(

totalSupply()).div(total)= 1WEI. After that, the actor can further transfer a huge amount of tokens
with the goal of making the pool token extremely expensive.

An extremely expensive pool token can be very inconvenient to use as a small number of 1WEI
may denote a large value. Furthermore, it can lead to precision issue in truncating the computed pool
tokens for deposited assets. If truncated to be zero, the deposited assets are essentially considered
dust and kept by the pool without returning any pool tokens.

This is a known issue that has been mitigated in popular UniswapV2. When providing the initial
liquidity to the contract (i.e. when totalSupply is 0), the liquidity provider must sacrifice 1000 LP
tokens (by sending them to address(0)). By doing so, we can ensure the granularity of the LP tokens
is always at least 1000 and the malicious actor is not the sole holder. This approach may bring an
additional cost for the initial stake provider, but this cost is expected to be low and acceptable.
Another alternative requires a guarded launch to ensure the pool is always initialized properly.

Recommendation Revise current execution logic of deposit() to defensively calculate the share
amount when the pool is being initialized.

Status This issue has been fixed by requiring a minimal share in the Vault by the following
commit: dd7efee.

15/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/dd7efeed3411dd8f1f6d573f6e0e3713d466ffad

Public

3.3 Accommodation of Non-Compliant ERC20 Tokens

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [8]

• CWE subcategory: CWE-1126 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.3: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. In the
following, we use the StrategyAddBaseTokenOnly::execute() routine as an example. This routine is
designed to execute a specific worker strategy. To accommodate the specific idiosyncrasy, there is a
need to approve() twice (line 47): the first one reduces the allowance to 0; and the second one sets
the new allowance.

16/37 PeckShield Audit Report #: 2021-067

Public

32 /// @dev Execute worker strategy. Take LP tokens + BaseToken. Return LP tokens +
BaseToken.

33 /// @param data Extra calldata information passed along to this strategy.
34 f unc t i on ex e cu t e (address /* user */ , uint256 /* debt */ , bytes c a l l d a t a data)
35 ex te rna l
36 o v e r r i d e
37 payable
38 nonReent rant
39 {
40 // 1. Find out what farming token we are dealing with and min additional LP tokens.
41 (
42 address baseToken ,
43 address quoteToken ,
44 uint256 minLPAmount
45) = ab i . decode (data , (address , address , uint256)) ;
46 IUn i swapV2Pa i r lpToken = IUni swapV2Pa i r (f a c t o r y . g e tPa i r (quoteToken , baseToken)) ;
47 IERC20 (baseToken) . approve (address (r o u t e r) , uint256 (−1)) ; // trust router 100%
48 // 2. Compute the optimal amount of baseToken to be converted to quoteToken.
49 uint256 balance = IERC20 (baseToken) . ba lanceOf (address (t h i s)) ;
50 (uint256 r0 , uint256 r1 ,) = lpToken . g e tRe s e r v e s () ;
51 uint256 r I n = lpToken . token0 () == baseToken ? r0 : r1 ;
52 uint256 a In = AlpacaMath . s q r t (r I n . mul (balance . mul (3988000) . add (r I n . mul (3988009)))) .

sub (r I n . mul (1997)) / 1994 ;
53 // 3. Convert that portion of baseToken to quoteToken.
54 address [] memory path = new address [] (2) ;
55 path [0] = baseToken ;
56 path [1] = quoteToken ;
57 r o u t e r . swapExactTokensForTokens (aIn , 0 , path , address (t h i s) , now) ;
58 // 4. Mint more LP tokens and return all LP tokens to the sender.
59 quoteToken . sa f eApprove (address (r o u t e r) , 0) ;
60 quoteToken . sa f eApprove (address (r o u t e r) , u in t (−1)) ;
61 (, , uint256 moreLPAmount) = r o u t e r . a d d L i q u i d i t y (
62 baseToken , quoteToken , IERC20 (baseToken) . ba lanceOf (address (t h i s)) , quoteToken .

myBalance () , 0 , 0 , address (t h i s) , now
63) ;
64 r equ i r e (moreLPAmount >= minLPAmount , "insufficient LP tokens received") ;
65 lpToken . t r a n s f e r (msg . sender , lpToken . ba lanceOf (address (t h i s))) ;
66 }

Listing 3.4: StrategyAddBaseTokenOnly::execute()

Moreover, it is important to note that for certain non-compliant ERC20 tokens (e.g., USDT),
the transfer() function does not have a return value. However, the IERC20 interface has defined the
transfer() interface with a bool return value. As a result, the call to transfer() may expect a return
value. With the lack of return value of USDT’s transfer(), the call will be unfortunately reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

17/37 PeckShield Audit Report #: 2021-067

Public

To use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version
of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom(). We highlight that this
issue is present in a number of contracts, including CollateralLocker, LiquidityLocker, LoanLib, etc.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been fixed by using the safe-version implementations in the following
commit: df3d498.

3.4 Proper Leftover Return After Liquidation

• ID: PVE-004

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: Vault

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.1, the Alpaca Finance Protocol shares the same architecture as Alpha

Homora. Specifically, the Vault contract allows borrowers to maximize yield farming potential by
borrowing funds available in the Vault. While examining the underwater positions, we notice an issue
that does not properly return leftovers (after the liquidation) back to the position owner.

To elaborate, we show below the core kill() routine. This routine is designed to validate the
given position is indeed defaulted and then liquidate the position. However, if we focus on the leftover
return logic (lines 302 − 310), it shows different recipients for different tokens. Especially, when the
if-condition of token == config.getWrappedNativeAddr()) is satisfied, the possible leftover tokens are
returned back to msg.sender. If not, the leftover tokens are returned back to pos.owner. However, in
either case, these tokens should be returned back to pos.owner.

274 /// @dev Kill the given to the position. Liquidate it immediately if killFactor
condition is met.

275 /// @param id The position ID to be killed.
276 f unc t i on k i l l (uint256 i d) ex te rna l onlyEOA acc rue (0) nonReent rant {
277 r equ i r e (f a i r L a un c hPoo l I d != uint256 (−1) , "work: poolId not set") ;
278 // 1. Verify that the position is eligible for liquidation.
279 Po s i t i o n storage pos = p o s i t i o n s [i d] ;
280 r equ i r e (pos . debtShare > 0 , "no debt") ;
281 uint256 debt = _removeDebt (i d) ;
282 uint256 h e a l t h = IWorker (pos . worker) . h e a l t h (i d) ;
283 uint256 k i l l F a c t o r = c o n f i g . k i l l F a c t o r (pos . worker , debt) ;
284 r equ i r e (h e a l t h . mul (k i l l F a c t o r) < debt . mul (10000) , "can’t liquidate") ;

18/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/df3d498

Public

285 // 2. Perform liquidation and compute the amount of token received.
286 uint256 be foreToken = IERC20 (token) . ba lanceOf (address (t h i s)) ;
287 IWorker (pos . worker) . l i q u i d a t e (i d) ;
288 uint256 back = IERC20 (token) . ba lanceOf (address (t h i s)) . sub (be fo reToken) ;
289 uint256 p r i z e = back . mul (c o n f i g . g e tK i l l B p s ()) . d i v (10000) ;
290 uint256 r e s t = back . sub (p r i z e) ;
291 // 3. Clear position debt and return funds to liquidator and position owner.
292 i f (p r i z e > 0) {
293 i f (token == con f i g . getWrappedNat iveAddr ()) {
294 SafeToken . s a f eT r a n s f e r (token , c o n f i g . ge tWNat iveRe laye r () , p r i z e) ;
295 WNat iveRe layer (uint160 (c o n f i g . ge tWNat iveRe laye r ())) . withdraw (p r i z e) ;
296 msg . sender . t r a n s f e r (p r i z e) ;
297 } e l s e {
298 SafeToken . s a f eT r a n s f e r (token , msg . sender , p r i z e) ;
299 }
300 }
301 uint256 l e f t = r e s t > debt ? r e s t − debt : 0 ;
302 i f (l e f t > 0) {
303 i f (token == con f i g . getWrappedNat iveAddr ()) {
304 SafeToken . s a f eT r a n s f e r (token , c o n f i g . ge tWNat iveRe laye r () , l e f t) ;
305 WNat iveRe layer (uint160 (c o n f i g . ge tWNat iveRe laye r ())) . withdraw (l e f t) ;
306 msg . sender . t r a n s f e r (l e f t) ;
307 } e l s e {
308 SafeToken . s a f eT r a n s f e r (token , pos . owner , l e f t) ;
309 }
310 }
311 // 4. Distribute ALPACAs in FairLaunch
312 I F a i r L aunch (c o n f i g . ge tFa i rLaunchAddr ()) . w i t hd r awA l l (pos . owner , f a i r L a un c hPoo l I d) ;
313 IDebtToken (debtToken) . burn (address (t h i s) , debtToken . ba lanceOf (address (t h i s))) ;
314 emit K i l l (id , msg . sender , p r i z e , l e f t) ;
315 }

Listing 3.5: Vault :: kill ()

Meanwhile, it is important to highlight that the funds on current Vault deployment/configuration
are not affected from this issue with the same reason in Section 3.1, i.e., the Leveraged Yield Farming

(LYF) feature is not activated and there is no worker in place to allow for either work() or kill().

Recommendation Properly returns the leftover funds after liquidation back to the position
owner.

Status This issue has been fixed in this commit: 405338d.

19/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/405338d

Public

3.5 Trading Fee Discrepancy Between Alpaca And
PancakeSwap

• ID: PVE-005

• Severity: Medium

• Likelihood: High

• Impact: Medium

• Target: Multiple Contracts

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

In the Alpaca Finance Protocol, a number of situations require the real-time swap of one token to
another. For example, the StrategyAddBaseTokenOnly strategy takes only the base token and converts
some portion of it to quote token so that their ratio matches the current swap price in the PancakeSwap

pool. Note that in PancakeSwap, if you make a token swap or trade on the exchange, you will need to
pay a 0.2% trading fee, which is broken down into two parts. The first part of 0.17% is returned to
liquidity pools in the form of a fee reward for liquidity providers while the remaining 0.03% is sent to
the PancakeSwap Treasury.

To elaborate, we show below the getAmountOut() routine inside the the PancakeLibrary. For
comparison, we also show the getMktSellAmount() routine in PancakeswapWorker. It is interesting to
note that PancakeswapWorker has implicitly assumed the trading fee is 0.03%, instead of 0.02%. The
difference in the built-in trading fee may skew the optimal allocation of assets in the developed
strategies, including StrategyAddBaseTokenOnly and StrategyAddTwoSidesOptimal. It also affects the
helper contract, i,e., ibTokenRouter.

43 // given an input amount of an asset and pair reserves , returns the maximum output
amount of the other asset

44 f unc t i on getAmountOut (u in t amountIn , u in t r e s e r v e I n , u in t r e s e r v eOu t) i n t e r n a l pure
re tu rn s (u in t amountOut) {

45 r equ i r e (amountIn > 0 , ’PancakeLibrary: INSUFFICIENT_INPUT_AMOUNT ’) ;
46 r equ i r e (r e s e r v e I n > 0 && re s e r v eOu t > 0 , ’PancakeLibrary: INSUFFICIENT_LIQUIDITY

’) ;
47 u in t amountInWithFee = amountIn . mul (998) ;
48 u in t numerator = amountInWithFee . mul (r e s e r v eOu t) ;
49 u in t denominator = r e s e r v e I n . mul (1000) . add (amountInWithFee) ;
50 amountOut = numerator / denominator ;
51 }

Listing 3.6: PancakeLibrary :: getAmountOut()

1067 /// @dev Return maximum output given the input amount and the status of Uniswap
reserves.

1068 /// @param aIn The amount of asset to market sell.
1069 /// @param rIn the amount of asset in reserve for input.

20/37 PeckShield Audit Report #: 2021-067

Public

1070 /// @param rOut The amount of asset in reserve for output.
1071 f unc t i on getMktSel lAmount (uint256 aIn , uint256 r I n , uint256 rOut) pub l i c pure re tu rn s

(uint256) {
1072 i f (a I n == 0) re tu rn 0 ;
1073 r equ i r e (r I n > 0 && rOut > 0 , "bad reserve values") ;
1074 uint256 aInWithFee = a In . mul (997) ;
1075 uint256 numerator = aInWithFee . mul (rOut) ;
1076 uint256 denominator = r I n . mul (1000) . add (aInWithFee) ;
1077 re tu rn numerator / denominator ;
1078 }

Listing 3.7: PancakeswapWorker::getMktSellAmount()

Recommendation Make the built-in trading fee in Alpaca consistent with the actual trading
fee in PancakeSwap.

Status This issue has been fixed in this commit: 3de015c.

3.6 Excessive Initialized Allowance In ibTokenRouter And
PancakeswapWorker

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ibTokenRouter

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.5, the Alpaca Finance Protocol has a number of situations that require
the real-time swap of one token to another. The swap operation can be performed in two forms.
The first form is to directly transfer() the tokens to the trading pool (e.g., PancakeSwap) and the
trading pool will calculate the input amount for trading. The second form specifies the spending
allowance on the recipient, who will then call transferFrom() to retrieved the swapped amount. The
Alpaca protocol has used both forms. Apparently, for the second form, we need to take extra caution
in specifying the intended allowance.

To elaborate, we show below the initialize() routine from the ibTokenRouter contract. This
routine has approved the allowed expenditure on a number of tokens to the UniswapV2Router02.
However, one specific approve() (line 35) is completely unnecessary and can be removed. The reason
is that there is no need to trade the base token through the UniswapV2Router02 in this contract.

23 f unc t i on i n i t i a l i z e (address _router , address _token , address _ibToken , address _alpaca
) pub l i c i n i t i a l i z e r {

21/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/3de015c

Public

24 OwnableUpgradeSafe . __Ownable_init () ;
25
26 r o u t e r = _router ;
27 token = _token ;
28 ibToken = _ibToken ;
29 a l pa ca = _alpaca ;
30 address f a c t o r y = IUniswapV2Router02 (r o u t e r) . f a c t o r y () ;
31 lpToken = UniswapV2L ibra ry . p a i r F o r (f a c t o r y , ibToken , a l p a ca) ;
32 // approve router to move all assets under this contract
33 IUn i swapV2Pa i r (lpToken) . approve (r ou t e r , uint256 (−1)) ; // 100% trust in the router
34 IERC20 (ibToken) . approve (r ou t e r , uint256 (−1)) ; // 100% trust in the router
35 IERC20 (token) . approve (r ou t e r , uint256 (−1)) ; // 100% trust in the router
36 IERC20 (a l pa ca) . approve (r ou t e r , uint256 (−1)) ; // 100% trust in the router
37
38 // approve bank to move token under this contract
39 IERC20 (token) . approve (ibToken , uint256 (−1)) ; // 100% tust in Bank
40 }

Listing 3.8: ibTokenRouter:: initialize ()

Note that another initialize() routine in the PancakeswapWorker contract shares a similar issue.

Recommendation Remove the excessive allowance granted in ibTokenRouter::initialize() and
PancakeswapWorker::initialize().

Status This issue has been fixed in this commit: dd27fda.

3.7 Proper Asset Return In removeLiquidityToken() And
swapTokenForExactAlpaca()

• ID: PVE-007

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: ibTokenRouter

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

In the Alpaca Finance Protocol, there is a handy contract IbTokenRouter that provides a number of
convenience routines for token-swapping, liquidity addition, and liquidity removal. In the following,
we examine two specific routines, i.e., removeLiquidityToken() and swapTokenForExactAlpaca(). The
first routine is designed to remove liquidity from the ibToken-Alpaca pool and swap the received
ibToken tokens back to the base token while the second routine is used to swap the base token for
the exact amount of Alpaca.

22/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/dd27fda

Public

To elaborate, we show below the full implementation of removeLiquidityToken(). This routine
implements a rather straightforward logic in firstly removing the liquidity from the ibToken-Alpaca

pool (line 261), then sending the received Alpaca to the designated recipient (line 270), and next
swapping the received ibToken back to the base token (lines 271 − 275). However, it comes to our
attention that the unwrapped base token is sent to the msg.sender, not the designated recipient to

(line 274).
248 // Remove Token and Alpaca from ibToken -Alpha Pool.
249 // 1. Remove ibToken and Alpaca from the pool.
250 // 2. Redeem ibToken back to Token on Bank contract
251 // 3. Return Token and Alpaca to caller.
252 f unc t i on r emoveL iqu id i t yToken (
253 uint256 l i q u i d i t y ,
254 uint256 amountAlpacaMin ,
255 uint256 amountTokenMin ,
256 address to ,
257 uint256 d e a d l i n e
258) pub l i c r e tu rn s (uint256 amountAlpaca , uint256 amountToken) {
259 SafeToken . s a f eT ran s f e rF rom (lpToken , msg . sender , address (t h i s) , l i q u i d i t y) ;
260 uint256 amountIbToken ;
261 (amountAlpaca , amountIbToken) = IUniswapV2Router02 (r o u t e r) . r emov eL i q u i d i t y (
262 a lpaca ,
263 ibToken ,
264 l i q u i d i t y ,
265 amountAlpacaMin ,
266 0 ,
267 address (t h i s) ,
268 d e a d l i n e
269) ;
270 SafeToken . s a f eT r a n s f e r (a lpaca , to , amountAlpaca) ;
271 I V a u l t (ibToken) . withdraw (amountIbToken) ;
272 amountToken = IERC20 (token) . ba lanceOf (address (t h i s)) ;
273 i f (amountToken > 0) {
274 SafeToken . s a f eT r a n s f e r (token , msg . sender , IERC20 (token) . ba lanceOf (address (t h i s))) ;
275 }
276 r equ i r e (amountToken >= amountTokenMin , "IbTokenRouter: receive less Token than

amountTokenmin") ;
277 }

Listing 3.9: ibTokenRouter::removeLiquidityToken()

The second routine swapTokenForExactAlpaca() shares a similar issue, i.e., the left-over base token
should be sent back to msg.sender, instead of the designated recipient to (line 403).

Recommendation Use the right recipient in the handling logic of removeLiquidityToken() and
swapTokenForExactAlpaca().

Status This issue has been fixed in this commit: fe9de9a.

23/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/fe9de9a

Public

3.8 Implicit Assumption of Zero Balance in ibTokenRouter

• ID: PVE-008

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ibTokenRouter

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.7, there is a handy contract ibTokenRouter that provides a number of
convenience routines for token-swapping and liquidation addition/removal, e.g., addLiquidityToken()
, addLiquidityTwoSidesOptimal(), addLiquidityTwoSidesOptimalToken(), removeLiquidityToken(),
removeLiquidityAllAlpaca(), swapExactTokenForAlpaca(), swapAlpacaForExactToken(),
swapExactAlpacaForToken(), and swapTokenForExactAlpaca().

During the analysis of these convenience routines, we notice they make an implicit assumption
that the contract balance is zero. This may be reasonable as this contract is not supposed to hold
any assets. However, it still needs to defensively consider the possibility when the contract has a
non-zero balance.

To elaborate, we show below the addLiquidityToken() routine that is designed to receive base
tokens and Alpaca tokens from the caller, wrap received base tokens, and then provide them to the
pool as liquidity.

49 // Provide liquidity for the ibToken -Token Pool.
50 // 1. Receive Token and Alpaca from caller.
51 // 2. Mint ibToken based on the given token amount.
52 // 3. Provide liquidity to the pool.
53 f unc t i on addL iqu i d i t yToken (
54 uint256 amountTokenDesired ,
55 uint256 amountTokenMin ,
56 uint256 amountAlpacaDes i red ,
57 uint256 amountAlpacaMin ,
58 address to ,
59 uint256 d e a d l i n e
60)
61 ex te rna l
62 r e tu rn s (
63 uint256 amountAlpaca ,
64 uint256 amountToken ,
65 uint256 l i q u i d i t y
66) {
67 i f (amountTokenDesired > 0) {
68 SafeToken . s a f eT ran s f e rF rom (token , msg . sender , address (t h i s) , amountTokenDesired) ;
69 }
70 i f (amountAlpacaDes i red > 0) {

24/37 PeckShield Audit Report #: 2021-067

Public

71 SafeToken . s a f eT ran s f e rF rom (a lpaca , msg . sender , address (t h i s) , amountAlpacaDes i red)
;

72 }
73 I V a u l t (ibToken) . d e p o s i t (amountTokenDesired) ;
74 uint256 amount IbTokenDes i red = IERC20 (ibToken) . ba lanceOf (address (t h i s)) ;
75 uint256 amountIbToken ;
76 (amountAlpaca , amountIbToken , l i q u i d i t y) = IUniswapV2Router02 (r o u t e r) . a d d L i q u i d i t y (
77 a lpaca ,
78 ibToken ,
79 amountAlpacaDes i red ,
80 amountIbTokenDes i red ,
81 amountAlpacaMin ,
82 0 ,
83 to ,
84 d e a d l i n e
85) ;
86 i f (amountAlpacaDes i red > amountAlpaca) {
87 SafeToken . s a f eT r a n s f e r (a lpaca , msg . sender , amountAlpacaDes i red . sub (amountAlpaca)) ;
88 }
89 I V a u l t (ibToken) . withdraw (amount IbTokenDes i red . sub (amountIbToken)) ;
90 amountToken = amountTokenDesired − IERC20 (token) . ba lanceOf (address (t h i s)) ;
91 i f (amountToken > 0) {
92 SafeToken . s a f eT r a n s f e r (token , msg . sender , IERC20 (token) . ba lanceOf (address (t h i s))) ;
93 }
94 r equ i r e (amountToken >= amountTokenMin , "IbTokenRouter: require more token than

amountTokenMin") ;
95 }

Listing 3.10: ibTokenRouter::addLiquidityToken()

It comes to our attention that this routine returns amountToken as the amount of base tokens
consumed in the liquidity addition. However, the calculation of amountToken = amountTokenDesired -

IERC20(token).balanceOf(address(this)) (line 90) is problematic with the initial zero balance assump-
tion. In fact, if the assumption does not hold, there is an underflow in the calculation of amountToken!
With that, it is also helpful to ensure that unexpected amount will not be returned. Note another
routine swapTokenForExactAlpaca() shares the same issue.

Recommendation Revise the aforementioned routines to better accommodate the cases when
the zero balance assumption does not hold.

Status This issue has been fixed in this commit: fe9de9a.

25/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/fe9de9a

Public

3.9 Inconsistency Between Document and Implementation

• ID: PVE-009

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [8]

• CWE subcategory: CWE-1041 [1]

Description

There are a few misleading comments embedded among lines of solidity code, which bring unnecessary
hurdles to understand and/or maintain the software.

A few example comments can be found in various execute() routines scattered in different con-
tacts, e.g., line 32 of StrategyAddBaseTokenOnly, line 32 of StrategyAddTwoSidesOptimal, and line 30
of StrategyWithdrawMinimizeTrading. Using the StrategyAddBaseTokenOnly::execute() routine as an
example, the preceding function summary indicates that this routine expects to “Take LP tokens +
BaseToken. Return LP tokens + BaseToken.” However, our analysis shows that it only takes base
tokens and returns LP tokens back to the sender.

28 /// @dev Execute worker strategy. Take LP tokens + BNB. Return LP tokens + BNB.
29 /// @param data Extra calldata information passed along to this strategy.
30 f unc t i on ex e cu t e (
31 address , /* user */
32 uint , /* debt */
33 bytes c a l l d a t a data
34) ex te rna l payable nonReent rant {
35 // 1. Find out what farming token we are dealing with and min additional LP tokens.
36 (address fToken , u in t minLPAmount) = ab i . decode (data , (address , u in t)) ;
37 IUn i swapV2Pa i r lpToken = IUni swapV2Pa i r (f a c t o r y . g e tPa i r (fToken , wbnb)) ;
38 // 2. Compute the optimal amount of BNB to be converted to farming tokens.
39 u in t balance = address (t h i s) . balance ;
40 (u in t r0 , u in t r1 ,) = lpToken . g e tRe s e r v e s () ;
41 . . .
42 }

Listing 3.11: StrategyAllBNBOnly::execute()

Note that the StrategyLiquidate::execute() routine takes LP tokens and returns base tokens;
the StrategyAddTwoSidesOptimal::execute() routine takes base and fToken tokens and returns LP

tokens; while the StrategyWithdrawMinimizeTrading::execute() routine takes LP tokens and returns
base and fToken tokens.

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status This issue has been fixed in this commit: fe9de9a.

26/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/fe9de9a

Public

3.10 Trust Issue of Admin Keys

• ID: PVE-010

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the Alpaca Finance Protocol, all debt positions are managed by the Vault contract. And there is
a privileged account that plays a critical role in governing and regulating the system-wide operations
(e.g., parameter setting and strategy adjustment). It also has the privilege to control or govern the
flow of assets managed by this protocol. Our analysis shows that the privileged account needs to be
scrutinized. In the following, we examine the privileged account and their related privileged accesses
in current contracts.

To elaborate, we show below the kill() routine in the Vault contract. This routine allows anyone
to liquidate the given position assuming it is underwater and available for liquidation. There is a key
factor, i.e., killFactor, that greatly affects the decision on whether the position can be liquidated
(line 283). Note that killFactor is a risk parameter that can be dynamically configured by the
privileged owner.

274 /// @dev Kill the given to the position. Liquidate it immediately if killFactor
condition is met.

275 /// @param id The position ID to be killed.
276 f unc t i on k i l l (uint256 i d) ex te rna l onlyEOA acc rue (0) nonReent rant {
277 r equ i r e (f a i r L a un c hPoo l I d != uint256 (−1) , "work: poolId not set") ;
278 // 1. Verify that the position is eligible for liquidation.
279 Po s i t i o n storage pos = p o s i t i o n s [i d] ;
280 r equ i r e (pos . debtShare > 0 , "no debt") ;
281 uint256 debt = _removeDebt (i d) ;
282 uint256 h e a l t h = IWorker (pos . worker) . h e a l t h (i d) ;
283 uint256 k i l l F a c t o r = c o n f i g . k i l l F a c t o r (pos . worker , debt) ;
284 r equ i r e (h e a l t h . mul (k i l l F a c t o r) < debt . mul (10000) , "can’t liquidate") ;
285 // 2. Perform liquidation and compute the amount of token received.
286 uint256 be foreToken = IERC20 (token) . ba lanceOf (address (t h i s)) ;
287 IWorker (pos . worker) . l i q u i d a t e (i d) ;
288 uint256 back = IERC20 (token) . ba lanceOf (address (t h i s)) . sub (be fo reToken) ;
289 uint256 p r i z e = back . mul (c o n f i g . g e tK i l l B p s ()) . d i v (10000) ;
290 uint256 r e s t = back . sub (p r i z e) ;
291 // 3. Clear position debt and return funds to liquidator and position owner.
292 i f (p r i z e > 0) {
293 i f (token == con f i g . getWrappedNat iveAddr ()) {
294 SafeToken . s a f eT r a n s f e r (token , c o n f i g . ge tWNat iveRe laye r () , p r i z e) ;
295 WNat iveRe layer (uint160 (c o n f i g . ge tWNat iveRe laye r ())) . withdraw (p r i z e) ;
296 msg . sender . t r a n s f e r (p r i z e) ;

27/37 PeckShield Audit Report #: 2021-067

Public

297 } e l s e {
298 SafeToken . s a f eT r a n s f e r (token , msg . sender , p r i z e) ;
299 }
300 }
301 uint256 l e f t = r e s t > debt ? r e s t − debt : 0 ;
302 i f (l e f t > 0) {
303 i f (token == con f i g . getWrappedNat iveAddr ()) {
304 SafeToken . s a f eT r a n s f e r (token , c o n f i g . ge tWNat iveRe laye r () , l e f t) ;
305 WNat iveRe layer (uint160 (c o n f i g . ge tWNat iveRe laye r ())) . withdraw (l e f t) ;
306 msg . sender . t r a n s f e r (l e f t) ;
307 } e l s e {
308 SafeToken . s a f eT r a n s f e r (token , pos . owner , l e f t) ;
309 }
310 }
311 // 4. Distribute ALPACAs in FairLaunch
312 I F a i r L aunch (c o n f i g . ge tFa i rLaunchAddr ()) . w i t hd r awA l l (pos . owner , f a i r L a un c hPoo l I d) ;
313 IDebtToken (debtToken) . burn (address (t h i s) , debtToken . ba lanceOf (address (t h i s))) ;
314 emit K i l l (id , msg . sender , p r i z e , l e f t) ;
315 }

Listing 3.12: Vault :: kill ()

Also, if we examine the privileged function on available PancakeswapWorker, i.e., setCriticalStrategies
(), this routine allows the update of new strategies to work on a user’s position. It has been high-
lighted that bad strategies can steal user funds. Note that this privileged function is guarded with
onlyOwner.

254 /// @dev Update critical strategy smart contracts. EMERGENCY ONLY. Bad strategies can
steal funds.

255 /// @param _addStrat The new add strategy contract.
256 /// @param _liqStrat The new liquidate strategy contract.
257 f unc t i on s e t C r i t i c a l S t r a t e g i e s (I S t r a t e g y _addStrat , I S t r a t e g y _ l i q S t r a t) ex te rna l

onlyOwner {
258 addSt r a t = _addStrat ;
259 l i q S t r a t = _ l i q S t r a t ;
260 }

Listing 3.13: PancakeswapWorker:: setCriticalStrategies ()

It is worrisome if the privileged owner account is a plain EOA account. The discussion with the
team confirms that the owner account is currently managed by a timelock. A plan needs to be in place
to migrate it under community governance. Note that a multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO. In the meantime,
a timelock-based mechanism can also be considered as mitigation.

In the following, we make efforts to keep track of the current deployment of various contracts in
Alpaca and the results are shown in Table 3.1. Note a number of contracts are deployed by taking a
proxy-based approach where the proxy contract is deployed at the front-end while the logic contract

28/37 PeckShield Audit Report #: 2021-067

Public

contains the actual business logic implementation. Specifically, it takes a delegatecall-based proxy
pattern so that each component is split into two contracts: a back-end logic contract (that holds
the implementation) and a front-end proxy (that contains the data and uses delegatecall to interact
with the logic contract). From the user’s perspective, they interact with the proxy while the code is
executed on the logic contract. Accordingly, the privileged admin account of these front-end proxies
also needs to be trusted. Fortunately, as shown in the Table 3.1, the current deployment is eventually
managed by the Timelock contract (deployed at 0x2D5408f2287BF9F9B05404794459a846651D0a59).

Table 3.1: Current Contract Deployment of Alpaca (as of 2021/03/19)

Contract Address Note Owner/Admin
Deployer 0xc44f82b07ab3e691f826951a6e335e1bc1bb0b51
Timelock 0x2D5408f2287BF9F9B05404794459a846651D0a59 Deployer

ProxyAdmin 0x5379F32C8D5F663EACb61eeF63F722950294f452 Timelock
BUSD Vault 0x7C9e73d4C71dae564d41F78d56439bB4ba87592f Proxy Timelock/ProxyAdmin

BUSD Vault Impl 0xD50aAb6B210fe049B6c5262f5A7676204699AB8E
BUSD Vault Config 0xd7b805E88c5F52EDE71a9b93F7048c8d632DBEd4 Proxy Timelock/ProxyAdmin

BUSD Vault Config Impl 0xFe16999D88856a9E492cE3088Eaea8Fc9E2a05C4
BNB Vault 0xd7D069493685A581d27824Fc46EdA46B7EfC0063 Proxy Timelock/ProxyAdmin

BNB Vault Impl 0xD50aAb6B210fe049B6c5262f5A7676204699AB8E
BNB Vault Config 0x53dbb71303ad0F9AFa184B8f7147F9f12Bb5Dc01 Proxy Timelock/ProxyAdmin

BNB Vault Config Impl 0xFe16999D88856a9E492cE3088Eaea8Fc9E2a05C4
FairLaunch 0xA625AB01B08ce023B2a342Dbb12a16f2C8489A8F
ALPACA 0x8f0528ce5ef7b51152a59745befdd91d97091d2f ERC20 Tokens

ALPACA-WBNB LP 0xf3ce6aac24980e6b657926dfc79502ae414d3083 ERC20 Tokens
WBNB 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c ERC20 Tokens
ibBNB 0xd7D069493685A581d27824Fc46EdA46B7EfC0063 ERC20 Tokens

debtibBNB 0x5138133f0671071D8b8F1C4c180881bfCfe22CeC ERC20 Tokens
ibBUSD 0x7C9e73d4C71dae564d41F78d56439bB4ba87592f ERC20 Tokens

debtibBUSD 0xD19D6253D979cCF663869fee30b8e0Ac86029ebd ERC20 Tokens
SimplePriceOracle 0x166f56F2EDa9817cAB77118AE4FCAA0002A17eC7 Proxy Timelock/ProxyAdmin

SimplePriceOracle Impl 0x588c58d88319B2EDF7426006668cDfF60940F3C7
StrategyAddBaseOnly 0x1DBa79e73a7Ea9749fc28B921bc9431D09BEf2B5 Proxy ProxyAdmin

StrategyAddBaseOnly Impl 0x88d5186eb7fE8a28b358f1382A1499B2b81D8550
StrategyLiquidate 0xc7c025aA69F4b525E3F9f5186b524492ee1C86bB Proxy ProxyAdmin

StrategyLiquidate Impl 0xC1203f662CecE399768ab9a92A2717d3CA93B465
PancakeswapWorker Not Deployed Yet

A further examination of the Timelock parameters shows the pre-configured 86, 400s delay, which
is 24 hours. In other words, all privileged operations will go through 24-hour timelock, which greatly
alleviates the centralized admin key concerns.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

29/37 PeckShield Audit Report #: 2021-067

https://bscscan.com/address/0xc44f82b07ab3e691f826951a6e335e1bc1bb0b51
https://bscscan.com/address/0x2D5408f2287BF9F9B05404794459a846651D0a59
https://bscscan.com/address/0x5379F32C8D5F663EACb61eeF63F722950294f452
https://bscscan.com/address/0x7C9e73d4C71dae564d41F78d56439bB4ba87592f
https://bscscan.com/address/0xD50aAb6B210fe049B6c5262f5A7676204699AB8E
https://bscscan.com/address/0xd7b805E88c5F52EDE71a9b93F7048c8d632DBEd4
https://bscscan.com/address/0xFe16999D88856a9E492cE3088Eaea8Fc9E2a05C4
https://bscscan.com/address/0xd7D069493685A581d27824Fc46EdA46B7EfC0063
https://bscscan.com/address/0xD50aAb6B210fe049B6c5262f5A7676204699AB8E
https://bscscan.com/address/0x53dbb71303ad0F9AFa184B8f7147F9f12Bb5Dc01
https://bscscan.com/address/0xFe16999D88856a9E492cE3088Eaea8Fc9E2a05C4
https://bscscan.com/address/0xA625AB01B08ce023B2a342Dbb12a16f2C8489A8F
https://bscscan.com/address/0x8f0528ce5ef7b51152a59745befdd91d97091d2f
https://bscscan.com/address/0xf3ce6aac24980e6b657926dfc79502ae414d3083
https://bscscan.com/address/0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c
https://bscscan.com/address/0xd7D069493685A581d27824Fc46EdA46B7EfC0063
https://bscscan.com/address/0x5138133f0671071D8b8F1C4c180881bfCfe22CeC
https://bscscan.com/address/0x7C9e73d4C71dae564d41F78d56439bB4ba87592f
https://bscscan.com/address/0xD19D6253D979cCF663869fee30b8e0Ac86029ebd
https://bscscan.com/address/0x166f56F2EDa9817cAB77118AE4FCAA0002A17eC7
https://bscscan.com/address/0x588c58d88319B2EDF7426006668cDfF60940F3C7
https://bscscan.com/address/0x1DBa79e73a7Ea9749fc28B921bc9431D09BEf2B5
https://bscscan.com/address/0x88d5186eb7fE8a28b358f1382A1499B2b81D8550
https://bscscan.com/address/0xc7c025aA69F4b525E3F9f5186b524492ee1C86bB
https://bscscan.com/address/0xC1203f662CecE399768ab9a92A2717d3CA93B465

Public

Status This issue has been confirmed with the team. For the time being, it will be mitigated by
a 24-hour timelock to balance efficiency and timely adjustment. After the protocol becomes stable,
it is expected to migrate to a multi-sig account, and eventually be managed by community proposals
for decentralized governance.

3.11 ALPACA Voting Amplification With Sybil Attacks

• ID: PVE-011

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AlpacaToken

• Category: Business Logics [9]

• CWE subcategory: CWE-841 [5]

Description

In the Alpaca Finance Protocol, there is a protocol token, i.e., ALPACA, which has been enhanced with
the functionality to cast and record the votes. Moreover, the ALPACA contract allows for dynamic
delegation of a voter to another, though the delegation is not transitive. When a submitted proposal
is being tallied, the number of votes are counted prior to the proposal’s activation.

Our analysis with the ALPACA protocol token shows that the current token contract is vulnerable
to a so-called Sybil attacks 1. For elaboration, let’s assume at the very beginning there is a malicious
actor named Malice, who owns 100 ALPACA tokens. Malice has an accomplice named Trudy who
currently has 0 balance of ALPACAs. This Sybil attack can be launched as follows:

280 f unc t i on _de legate (address de l e g a t o r , address d e l e g a t e e) i n t e r n a l {
281 address c u r r e n tDe l e g a t e = _de l ega te s [d e l e g a t o r] ;
282 uint256 d e l e g a t o rBa l a n c e = ba lanceOf (d e l e g a t o r) ; // balance of underlying ALPACAs (

not scaled);
283 _de l ega te s [d e l e g a t o r] = d e l e g a t e e ;
284
285 emit DelegateChanged (d e l e g a t o r , c u r r e n tDe l e g a t e , d e l e g a t e e) ;
286
287 _moveDelegates (c u r r e n tDe l e g a t e , d e l e ga t e e , d e l e g a t o rBa l a n c e) ;
288 }
289
290 f unc t i on _moveDelegates (
291 address srcRep ,
292 address dstRep ,
293 uint256 amount
294) i n t e r n a l {
295 i f (s rcRep != dstRep && amount > 0) {
296 i f (s rcRep != address (0)) {
297 // decrease old representative

1The same issue occurs to the SUSHI token and the credit goes to Jong Seok Park[12].

30/37 PeckShield Audit Report #: 2021-067

Public

298 uint32 srcRepNum = numCheckpoints [s rcRep] ;
299 uint256 s rcRepOld = srcRepNum > 0 ? ch e c kpo i n t s [s rcRep] [srcRepNum − 1] . v o t e s :

0 ;
300 uint256 srcRepNew = srcRepOld . sub (amount) ;
301 _wr i t eCheckpo in t (srcRep , srcRepNum , srcRepOld , srcRepNew) ;
302 }
303
304 i f (dstRep != address (0)) {
305 // increase new representative
306 uint32 dstRepNum = numCheckpoints [dstRep] ;
307 uint256 dstRepOld = dstRepNum > 0 ? ch e c kpo i n t s [dstRep] [dstRepNum − 1] . v o t e s :

0 ;
308 uint256 dstRepNew = dstRepOld . add (amount) ;
309 _wr i t eCheckpo in t (dstRep , dstRepNum , dstRepOld , dstRepNew) ;
310 }
311 }
312 }

Listing 3.14: AlpacaToken.sol

1. Malice initially delegates the voting to Trudy. Right after the initial delegation, Trudy can have
100 votes if he chooses to cast the vote.

2. Malice transfers the full 100 balance to M1 who also delegates the voting to Trudy. Right after
this delegation, Trudy can have 200 votes if he chooses to cast the vote. The reason is that
the SushiToken contract’s transfer() does NOT _moveDelegates() together. In other words,
even now Malice has 0 balance, the initial delegation (of Malice) to Trudy will not be affected,
therefore Trudy still retains the voting power of 100 ALPACA. When M1 delegates to Trudy, since
M1 now has 100 ALPACAs, Trudy will get additional 100 votes, totaling 200 votes.

3. We can repeat by transferring Mi’s 100 ALPACA balance to Mi+1 who also delegates the votes
to Trudy. Every iteration will essentially add 100 voting power to Trudy. In other words, we
can effectively amplify the voting powers of Trudy arbitrarily with new accounts created and
iterated!

Recommendation To mitigate, it is necessary to accompany every single transfer() and
transferFrom() with the _moveDelegates() so that the voting power of the sender’s delegate will be
moved to the destination’s delegate. By doing so, we can effectively mitigate the above Sybil attacks.

Status This issue has been acknowledged by the team who has further confirmed that the
voting feature of the ALPACA token contract is not used.

31/37 PeckShield Audit Report #: 2021-067

Public

3.12 Inappropriate Funder Reset in FairLaunch::withdraw()

• ID: PVE-012

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: FairLaunch, FairLaunchV2

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

The Alpaca Finance Protocol has been designed to provide incentive mechanisms that reward the
staking of supported assets. The rewards are carried out by designating a number of staking pools
into which supported assets can be staked. And staking users are rewarded in proportional to their
share of LP tokens in the reward pool.

While examining the reward mechanisms, we notice the current implementation of withdraw()

routine is flawed. This routine is designed to withdraw previously staked assets back to the original
funder while sending the harvested assets to the intended recipient, i.e., the farming user. To
elaborate, we show below the withdraw() implementation.

268 f unc t i on _withdraw (address _for , uint256 _pid , uint256 _amount) i n t e r n a l {
269 Poo l I n f o storage poo l = p o o l I n f o [_pid] ;
270 Us e r I n f o storage u s e r = u s e r I n f o [_pid] [_for] ;
271 r equ i r e (u s e r . fundedBy == msg . sender , "only funder") ;
272 r equ i r e (u s e r . amount >= _amount , "withdraw: not good") ;
273 updatePoo l (_pid) ;
274 _harvest (_for , _pid) ;
275 u s e r . amount = u s e r . amount . sub (_amount) ;
276 u s e r . rewardDebt = u s e r . amount . mul (poo l . accA lpacaPerShare) . d i v (1 e12) ;
277 u s e r . bonusDebt = u s e r . amount . mul (poo l . accA lpacaPerShareT i lBonusEnd) . d i v (1 e12) ;
278 u s e r . fundedBy = address (0) ;
279 i f (poo l . s takeToken != address (0)) {
280 IERC20 (poo l . s takeToken) . s a f eT r a n s f e r (address (msg . sender) , _amount) ;
281 }
282 emit Withdraw (msg . sender , _pid , u s e r . amount) ;
283 }

Listing 3.15: FairLaunch::_withdraw()

The specific flaw stems from the resetting of the original funder (line 278), which allows anyone
to occupy or claim the funder role (saved in fundedBy) by making a small deposit(). By doing so, it
creates a denial-of-service situation that prevents the Vault contract from depositing the debt tokens
for the farming user. In other words, the normal protocol functionality is affected.

243 // Deposit Staking tokens to FairLaunchToken for ALPACA allocation.
244 f unc t i on d e p o s i t (address _for , uint256 _pid , uint256 _amount) pub l i c o v e r r i d e {
245 Poo l I n f o storage poo l = p o o l I n f o [_pid] ;

32/37 PeckShield Audit Report #: 2021-067

Public

246 Us e r I n f o storage u s e r = u s e r I n f o [_pid] [_for] ;
247 i f (u s e r . fundedBy != address (0)) r equ i r e (u s e r . fundedBy == msg . sender , "bad sof") ;
248 r equ i r e (poo l . s takeToken != address (0) , "deposit: not accept deposit") ;
249 updatePoo l (_pid) ;
250 i f (u s e r . amount > 0) _harvest (_for , _pid) ;
251 i f (u s e r . fundedBy == address (0)) u s e r . fundedBy = msg . sender ;
252 IERC20 (poo l . s takeToken) . s a f eT ran s f e rF rom (address (msg . sender) , address (t h i s) , _amount

) ;
253 u s e r . amount = u s e r . amount . add (_amount) ;
254 u s e r . rewardDebt = u s e r . amount . mul (poo l . accA lpacaPerShare) . d i v (1 e12) ;
255 u s e r . bonusDebt = u s e r . amount . mul (poo l . accA lpacaPerShareT i lBonusEnd) . d i v (1 e12) ;
256 emit Depos i t (msg . sender , _pid , _amount) ;
257 }

Listing 3.16: FairLaunch:: deposit ()

Recommendation Correct the above flawed logic by avoiding the reset of the original funder.

Status This issue has been fixed in this commit: dd7efee.

3.13 Timely massUpdatePools During Pool Weight Changes

• ID: PVE-013

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: FairLaunch, FairLaunchV2

• Category: Business Logics [9]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.12, the Alpaca Finance Protocol provides incentive mechanisms that reward
the staking of supported assets. The rewards are carried out by designating a number of staking
pools into which supported assets can be staked. And staking users are rewarded in proportional to
their share of LP tokens in the reward pool.

The reward pools can be dynamically added via addPool() and the weights of supported pools
can be adjusted via setPool(). When analyzing the pool weight update routine setPool(), we notice
the need of timely invoking massUpdatePools() to update the reward distribution before the new pool
weight becomes effective.

142 // Update the given pool’s ALPACA allocation point. Can only be called by the owner.
143 f unc t i on s e tPoo l (
144 uint256 _pid ,
145 uint256 _al l ocPo in t ,
146 bool _withUpdate
147) pub l i c o v e r r i d e onlyOwner {

33/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/dd7efee

Public

148 i f (_withUpdate) {
149 massUpdatePools () ;
150 }
151 t o t a l A l l o c P o i n t = t o t a l A l l o c P o i n t . sub (p o o l I n f o [_pid] . a l l o c P o i n t) . add (_a l l o cPo i n t) ;
152 p o o l I n f o [_pid] . a l l o c P o i n t = _a l l o cPo i n t ;
153 }

Listing 3.17: FairLaunch:: setPool()

If the call to massUpdatePools() is not immediately invoked before updating the pool weights,
certain situations may be crafted to create an unfair reward distribution. Moreover, a hidden pool
without any weight can suddenly surface to claim unreasonable share of rewarded tokens. Fortunately,
this interface is restricted to the owner (via the onlyOwner modifier), which greatly alleviates the
concern.

Recommendation Timely invoke massUpdatePools() when any pool’s weight has been updated.
In fact, the third parameter (_withUpdate) to the setPool() routine can be simply ignored or removed.

142 // Update the given pool’s ALPACA allocation point. Can only be called by the owner.
143 f unc t i on s e tPoo l (
144 uint256 _pid ,
145 uint256 _al l ocPo in t ,
146 bool _withUpdate
147) pub l i c o v e r r i d e onlyOwner {
148 i f (_withUpdate) {
149 massUpdatePools () ;
150 }
151 t o t a l A l l o c P o i n t = t o t a l A l l o c P o i n t . sub (p o o l I n f o [_pid] . a l l o c P o i n t) . add (_a l l o cPo i n t) ;
152 p o o l I n f o [_pid] . a l l o c P o i n t = _a l l o cPo i n t ;
153 }

Listing 3.18: Revised FairLaunch:: setPool()

Status This issue has been fixed in this commit: dd7efee.

34/37 PeckShield Audit Report #: 2021-067

https://github.com/alpaca-finance/alpaca-contract/commit/dd7efeed3411dd8f1f6d573f6e0e3713d466ffad

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Alpaca Finance Protocol, which
is a leveraged-yield farming protocol built on the Binance Smart Chain with an initial fork from Alpha

Homora. The system continues the innovative design and clean implementation of Alpha Homora and
makes it distinctive and valuable when compared with current yield farming offerings. The current
code base is well organized and those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

35/37 PeckShield Audit Report #: 2021-067

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

36/37 PeckShield Audit Report #: 2021-067

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] Jong Seok Park. Sushiswap Delegation Double Spending Bug. https://medium.com/

bulldax-finance/sushiswap-delegation-double-spending-bug-5adcc7b3830f.

[13] PeckShield. PeckShield Inc. https://www.peckshield.com.

37/37 PeckShield Audit Report #: 2021-067

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://medium.com/bulldax-finance/sushiswap-delegation-double-spending-bug-5adcc7b3830f
https://medium.com/bulldax-finance/sushiswap-delegation-double-spending-bug-5adcc7b3830f
https://www.peckshield.com

	Introduction
	About Alpaca Finance Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possible Drain of Vault Funds With Double Returns Of Excess Tokens
	Possible Costly LPs From Improper Vault Initialization
	Accommodation of Non-Compliant ERC20 Tokens
	Proper Leftover Return After Liquidation
	Trading Fee Discrepancy Between Alpaca And PancakeSwap
	Excessive Initialized Allowance In ibTokenRouter And PancakeswapWorker
	Proper Asset Return In removeLiquidityToken() And swapTokenForExactAlpaca()
	Implicit Assumption of Zero Balance in ibTokenRouter
	Inconsistency Between Document and Implementation
	Trust Issue of Admin Keys
	ALPACA Voting Amplification With Sybil Attacks
	Inappropriate Funder Reset in FairLaunch::withdraw()
	Timely massUpdatePools During Pool Weight Changes

	Conclusion
	References

