
Public

SMART CONTRACT AUDIT REPORT

for

BANCOR

Prepared By: Shuxiao Wang

Hangzhou, China
October 11, 2020

1/32 PeckShield Audit Report #: 2020-45

sxwang@peckshield.com

Public

Document Properties

Client Bancor
Title Smart Contract Audit Report
Target Governance and Liquidity Protection
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 October 11, 2020 Xuxian Jiang Final Release
0.3 October 7, 2020 Xuxian Jiang Additional Findings #2
0.2 October 2, 2020 Xuxian Jiang Additional Findings #1
0.1 September 25, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/32 PeckShield Audit Report #: 2020-45

Public

Contents

1 Introduction 5
1.1 About Bancor . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 7

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Flashloan-Assisted Sandwich Attacks To Foil Proposals 12
3.2 Incompatibility with Deflationary/Rebasing Tokens 14
3.3 Missed Sanity Checks For System Parameters . 16
3.4 Possible Front-Running To Block Proposal Execution 17
3.5 Inconsistent Calculation on Quorum Satisfaction . 19
3.6 Unintended Removal of Voters’ Stakes in revokeVotes() 20
3.7 Improved Verification of Matching IDs in unprotectLiquidity() 21
3.8 Optimization in removeLiquidityReturn() . 23

4 Conclusion 25

5 Appendix 26
5.1 Basic Coding Bugs . 26

5.1.1 Constructor Mismatch . 26
5.1.2 Ownership Takeover . 26
5.1.3 Redundant Fallback Function . 26
5.1.4 Overflows & Underflows . 26
5.1.5 Reentrancy . 27
5.1.6 Money-Giving Bug . 27

3/32 PeckShield Audit Report #: 2020-45

Public

5.1.7 Blackhole . 27
5.1.8 Unauthorized Self-Destruct . 27
5.1.9 Revert DoS . 27
5.1.10 Unchecked External Call . 28
5.1.11 Gasless Send . 28
5.1.12 Send Instead Of Transfer . 28
5.1.13 Costly Loop . 28
5.1.14 (Unsafe) Use Of Untrusted Libraries . 28
5.1.15 (Unsafe) Use Of Predictable Variables . 29
5.1.16 Transaction Ordering Dependence . 29
5.1.17 Deprecated Uses . 29

5.2 Semantic Consistency Checks . 29
5.3 Additional Recommendations . 29

5.3.1 Avoid Use of Variadic Byte Array . 29
5.3.2 Make Visibility Level Explicit . 30
5.3.3 Make Type Inference Explicit . 30
5.3.4 Adhere To Function Declaration Strictly . 30

References 31

4/32 PeckShield Audit Report #: 2020-45

Public

1 | Introduction

Given the opportunity to review the Bancor’s Governance and Liquidity Protection design doc-
ument and related smart contract source code, we in the report outline our systematic approach to
evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional sugges-
tions or recommendations for improvement. Our results show that the given version of Bancor’s
governance and liquidity protection can be further improved due to the presence of several issues
related to either security or performance. This document outlines our audit results.

1.1 About Bancor

The Bancor Protocol is a fully on-chain liquidity protocol that can be implemented on any smart
contract-enabled blockchain. It pioneers the new way of AMM-based trading that allows for buying
and selling tokens against a smart contract. The BancorV2 advances the DEX frontline in further
effectively mitigating the risk of impermanent loss for both stable and volatile tokens, providing
liquidity with 100% exposure to a single reserve token, and offering a more efficient bonding curve
that reduces slippage. This audit covers new BancorV2 modules that implement the features of its
own governance and liquidity protection.

The basic information of Governance and Liquidity Protection is as follows:

Table 1.1: Basic Information of Governance and Liquidity Protection

Item Description
Issuer Bancor

Website http://bancor.network/
Audit Modules Governance and Liquidity Protection

Type Ethereum Smart Contract
Platform Solidity

Audit Method Whitebox
Latest Audit Report October 11, 2020

5/32 PeckShield Audit Report #: 2020-45

Public

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit. For the liquidity-protection repository, it contains a number of sub-directories (e.g.,
bancox, converter, and liquidity-protection) and this audit covers only the liquidity-protection

sub-directory.

• https://github.com/bancorprotocol/gov-contracts.git (2a20137)

• https://github.com/bancorprotocol/liquidity-protection.git (4ce6834)

1.2 About PeckShield

PeckShield Inc. [18] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [13]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

6/32 PeckShield Audit Report #: 2020-45

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [12], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

7/32 PeckShield Audit Report #: 2020-45

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

8/32 PeckShield Audit Report #: 2020-45

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/32 PeckShield Audit Report #: 2020-45

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the Bancor’s
governance subsystem and its new liquidity protection feature. During the first phase of our audit,
we study the smart contract source code and run our in-house static code analyzer through the
codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 1

Medium 2

Low 2

Informational 3

Total 8

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities that need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/32 PeckShield Audit Report #: 2020-45

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
2medium-severity vulnerabilities, 2 low-severity vulnerabilities, and 3 informational recommendations.

Table 2.1: Key Governance and Liquidity Protection Audit Findings

ID Severity Title Category Status
PVE-001 High Flashloan-Assisted Sandwich Attacks To Foil

Proposals
Business Logics Fixed

PVE-002 Informational Incompatibility with Deflationary/Rebasing
Tokens

Business Logics Confirmed

PVE-003 Informational Missed Sanity Checks For System Parameters Coding Practices Fixed
PVE-004 Medium Possible Front-Running To Block Proposal

Execution
Time and State Fixed

PVE-005 Low Inconsistent Calculation on Quorum Satisfac-
tion

Coding Practices Fixed

PVE-006 Medium Unintended Removal of Voters’ Stakes in re-
vokeVotes()

Business Logics Fixed

PVE-007 Low Improved Verification of Matching IDs in un-
protectLiquidity()

Security Features Fixed

PVE-008 Informational Optimization in removeLiquidityReturn() Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

11/32 PeckShield Audit Report #: 2020-45

Public

3 | Detailed Results

3.1 Flashloan-Assisted Sandwich Attacks To Foil Proposals

• ID: PVE-001

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: BancorGovernance

• Category: Business Logics [10]

• CWE subcategory: CWE-841 [7]

Description

In Bancor, the governance subsystem works by requiring voters to stake their assets (i.e., gBNT).
These staked assets represent voting powers and will be locked for a predefined lock duration if used
for voting. A proposal will not be considered pass if the number of voters does not meet the required
quorum.

To elaborate, we show the code snippet of the voteFor() routine. As the name indicates, it is
used to vote in favor of the target proposal. For every incoming vote, either For or Against, the
current quorum is calculated in the calculateQuorumRatio() routine.

462 /**
463 * @notice votes for a proposal
464 *
465 * @param _id id of the proposal to vote for
466 */
467 f unc t i on vo teFo r (uint256 _id) pub l i c on l y S t a k e r proposa lNotEnded (_id) {
468 // mark sender as voter
469 v o t e r s [msg . sender] = t rue ;

471 // get against votes for this sender
472 uint256 v o t e sAga i n s t = p r o p o s a l s [_id] . v o t e sAga i n s t [msg . sender] ;
473 // do we have against votes for this sender?
474 i f (v o t e sAga i n s t > 0) {
475 // yes , remove the against votes first
476 p r o p o s a l s [_id] . t o t a l V o t e sAg a i n s t = p r o p o s a l s [_id] . t o t a l V o t e sAg a i n s t . sub (

v o t e sAga i n s t) ;

12/32 PeckShield Audit Report #: 2020-45

Public

477 p r o p o s a l s [_id] . v o t e sAga i n s t [msg . sender] = 0 ;
478 }

480 // calculate voting power in case voting for twice
481 uint256 vote = vote sOf (msg . sender) . sub (p r o p o s a l s [_id] . v o t e sFo r [msg . sender]) ;

483 // increase total for votes of the proposal
484 p r o p o s a l s [_id] . t o t a lVo t e s F o r = p r o p o s a l s [_id] . t o t a lVo t e s F o r . add (vo te) ;
485 // set for votes to the votes of the sender
486 p r o p o s a l s [_id] . v o t e sFo r [msg . sender] = vote sOf (msg . sender) ;
487 // update total votes available on the proposal
488 p r o p o s a l s [_id] . t o t a l V o t e s A v a i l a b l e = t o t a l V o t e s ;
489 // recalculate quorum based on overall votes
490 p r o p o s a l s [_id] . quorum = ca l cu l a t eQuorumRat i o (_id) ;
491 // lock sender
492 vo teLocks [msg . sender] = voteLock . add (block . number) ;

494 // emit vote event
495 emit Vote (_id , msg . sender , true , vo t e) ;
496 }

Listing 3.1: BancorGovernance.sol

Our analysis shows that the way calculateQuorumRatio() calculates the quorum is based on two
numbers. The first number is in essence the current votes on the proposal, i.e., totalProposalVotes;
and the second number is the total number of votes staked in the system, i.e., totalVotes. It is
important to point out that every stake() will increase totalVotes while every unstake() will decrease
totalVotes, no matter whether the votes are casted or not.

230 f unc t i on ca l cu l a t eQuo rumRat i o (uint256 _id) i n t e r n a l view re tu rn s (uint256) {
231 // calculate overall votes
232 uint256 t o t a l P r o p o s a l V o t e s = p r o p o s a l s [_id] . t o t a lVo t e s F o r . add (
233 p r o p o s a l s [_id] . t o t a l V o t e sAg a i n s t
234) ;

236 re tu rn t o t a l P r o p o s a l V o t e s . mul (10000) . d i v (t o t a l V o t e s) ;
237 }

Listing 3.2: BancorGovernance.sol

Unfortunately, the total number of votes in the system are not subject to the predefined lockup
period. As a result, a malicious attack can be possibly arranged by sandwiching a voteFor() transac-
tion with a preceding one and a tailgating one. The preceding transaction can be a flashloan-assisted
stake() to dramatically increase totalVotes and the tailgating one is the unstake() counterpart that
basically returns back the flashloan. The purpose here is to only increase totalVotes for the sand-
wiched voteFor() such that the proposal being voted always has an extremely low quorum, i.e.,
proposals[_id].quorum = calculateQuorumRatio(_id) (line 490).

428 f unc t i on s t a k e (uint256 _amount) pub l i c {
429 r equ i r e (_amount > 0 , "ERR_STAKE_ZERO") ;

13/32 PeckShield Audit Report #: 2020-45

Public

431 // increase vote power
432 vo t e s [msg . sender] = vote sOf (msg . sender) . add (_amount) ;
433 // increase total votes
434 t o t a l V o t e s = t o t a l V o t e s . add (_amount) ;
435 // transfer tokens to this contract
436 govToken . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , _amount) ;

438 // emit staked event
439 emit Staked (msg . sender , _amount) ;
440 }

Listing 3.3: BancorGovernance.sol

Instead of sandwiching other’s legitimate voteFor() transactions, the malicious actor can simply
vote herself and sandwich her voting transaction in a similar way. By doing so, the malicious actor
can foil any submitted proposal.

Recommendation Enforce the predefined lockup period for the staked assets to defeat possible
flashloans.

Status The issue has been confirmed and accordingly fixed by enforcing the predefined lock
period for certain portion of staked assets. The fixup chooses 10% of staked assets for the lockup
and the commit can be found below: fa4125483241a02c09dbb64fa78106ea3eacedf5.

3.2 Incompatibility with Deflationary/Rebasing Tokens

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: BancorGovernance

• Category: Business Logics [10]

• CWE subcategory: CWE-841 [7]

Description

The BancorGovernance contract behaves as the main entry for interaction with voting users. In
particular, one entry routine, i.e., stake(), accepts user stakes of supported assets (e.g., gBNT).
Naturally, the contract implements a number of low-level helper routines to transfer assets in or out
of the BancorGovernance contract. These asset-transferring routines work as expected with standard
ERC20 tokens: namely the vault’s internal asset balances are always consistent with actual token
balances maintained in individual ERC20 token contract.

423 /**
424 * @notice stakes vote tokens
425 *

14/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/gov-contracts/commit/fa4125483241a02c09dbb64fa78106ea3eacedf5

Public

426 * @param _amount amount of vote tokens to stake
427 */
428 f unc t i on s t a k e (uint256 _amount) pub l i c {
429 r equ i r e (_amount > 0 , "ERR_STAKE_ZERO") ;
430
431 // increase vote power
432 vo t e s [msg . sender] = vote sOf (msg . sender) . add (_amount) ;
433 // increase total votes
434 t o t a l V o t e s = t o t a l V o t e s . add (_amount) ;
435 // transfer tokens to this contract
436 govToken . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , _amount) ;
437
438 // emit staked event
439 emit Staked (msg . sender , _amount) ;
440 }

Listing 3.4: BancorGovernance.sol

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge a certain fee for every transfer

() or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these low-level asset-transferring routines. In other words, the above operations,
such as stake() and unstake(), may introduce unexpected balance inconsistencies when comparing
internal asset records with external ERC20 token contracts.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of bluntly assuming the amount parameter in transfer() or
transferFrom() will always result in the full transfer, we need to ensure the increased or decreased
amount in the BancorGovernance before and after the transfer() or transferFrom() is expected and
aligned well with our operation.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into the governance
subsystem. In our case, it is indeed possible to effectively regulate the set of tokens that can be
supported. Keep in mind that there exist certain assets (e.g., USDT) that may have control switches
that can be dynamically exercised to suddenly become one.

We emphasize that the current deployment is safe since it only supports gBNT for stakes and gBNT

is not deflationary or rebasing. However, the current code implementation is generic in supporting
various tokens and there is a need to highlight the possible pitfall from the audit perspective.

Recommendation Since this deployment uses the gBNT as the staking asset, there is no need
to address this issue. However, if current codebase needs to support possible deflationary tokens,
it is better to check the balance before and after the transfer()/transferFrom() call to ensure the
book-keeping amount is accurate. This support may bring additional gas cost. Also, keep in mind
that certain tokens may not be deflationary for the time being. However, they could have a control
switch that can be exercised to turn them into deflationary tokens. One example is widely-adopted

15/32 PeckShield Audit Report #: 2020-45

Public

USDT.

Status As mentioned above, with gBNT as the staking asset, there is no need to address this
issue.

3.3 Missed Sanity Checks For System Parameters

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: BancorGovernance

• Category: Coding Practices [9]

• CWE subcategory: CWE-1126 [4]

Description

The governance subsystem in Bancor has a few system-wide parameters that can be dynamically
adjusted. For example, quorum specifies the quorum needed for proposals to pass; voteMinimum indicates
the needed votes for a proposer to submit a proposal; voteDuration controls the default voting
duration of a submitted proposal; and voteLock requires the post-vote lock duration for the staked
assets. Naturally, these parameters have their corresponding update routines, i.e., setQuorum(),
setVoteMinimum(), setVoteDuration(), and setVoteLock().

While reviewing these system parameters, our analysis shows the update logic on these parameters
can be improved by applying more rigorous sanity checks and emitting relevant events to notify off-
chain analytics and reporting tools.

310 /**
311 * @notice updates the quorum needed for proposals to pass
312 *
313 * @param _quorum required quorum
314 */
315 f unc t i on setQuorum (uint256 _quorum) pub l i c ownerOnly {
316 quorum = _quorum ;
317 }

319 /**
320 * @notice updates the required votes needed to propose
321 *
322 * @param _voteMinimum required minimum votes
323 */
324 f unc t i on setVoteMinimum (uint256 _voteMinimum) pub l i c ownerOnly {
325 voteMinimum = _voteMinimum ;
326 }

328 /**
329 * @notice updates the proposals voting duration

16/32 PeckShield Audit Report #: 2020-45

Public

330 *
331 * @param _voteDuration vote duration
332 */
333 f unc t i on s e tVo t eDu ra t i on (uint256 _voteDurat ion) pub l i c ownerOnly {
334 vo t eDu ra t i on = _voteDurat ion ;
335 }

337 /**
338 * @notice updates the post vote lock duration
339 *
340 * @param _voteLock vote lock
341 */
342 f unc t i on se tVoteLock (uint256 _voteLock) pub l i c ownerOnly {
343 voteLock = _voteLock ;
344 }

Listing 3.5: BancorGovernance.sol

Recommendation Validate the given arguments before updating these system-wide parameters
and emit relevant events to notify off-chain analytics tools.

Status The issue has been fixed by this commit: c7b8ac53fb1dc7e7e122474df8a6956e5e871184.

3.4 Possible Front-Running To Block Proposal Execution

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: BancorGovernance

• Category: Time and State [11]

• CWE subcategory: CWE-682 [6]

Description

As mentioned in Section 3.1, the governance subsystem in Bancor specifies the entire life-cycle of
a proposal. A proposal, if successfully passed, will lead to its activation in triggering the enclosed
executor.

To elaborate, we show below the code snippet of the execute() routine that is responsible to
trigger the proposal execution after necessary validation. However, we notice that an earlier call
before invoking executor is made to tallyVotes().

386 f unc t i on ex e cu t e (uint256 _id) pub l i c proposa lEnded (_id) {
387 // get voting info of proposal
388 (uint256 f o rRa t i o , uint256 aga i n s tRa t i o , uint256 quorumRatio) = p r o p o s a l S t a t s (

_id) ;
389 // check proposal state
390 r equ i r e (p r o p o s a l s [_id] . quorumRequired < quorumRatio , "ERR_NO_QUORUM") ;

17/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/gov-contracts/commit/c7b8ac53fb1dc7e7e122474df8a6956e5e871184

Public

391
392 // tally votes
393 t a l l y V o t e s (_id) ;
394 // do execution on the contract to be executed
395 I E x e c u t o r (p r o p o s a l s [_id] . e x e cu t o r) . e x e cu t e (_id , f o rRa t i o , a g a i n s tRa t i o ,

quorumRatio) ;
396
397 // emit proposal executed event
398 emit Proposa lExecu ted (_id , p r o p o s a l s [_id] . e x e cu t o r) ;
399 }

Listing 3.6: BancorGovernance.sol

This tallyVotes() routine basically closes the proposal (line 417) and emits the ProposalFinished

event. This execution logic seems sound and necessary.

401 /**
402 * @notice tallies votes of proposal with given id
403 *
404 * @param _id id of the proposal to tally votes for
405 */
406 f unc t i on t a l l y V o t e s (uint256 _id) pub l i c proposa lEnded (_id) {
407 // get voting info of proposal
408 (uint256 f o rRa t i o , uint256 aga i n s tRa t i o ,) = p r o p o s a l S t a t s (_id) ;
409 // assume we have no quorum
410 bool quorumReached = f a l s e ;
411 // do we have a quorum?
412 i f (p r o p o s a l s [_id] . quorum >= p r o p o s a l s [_id] . quorumRequired) {
413 quorumReached = t rue ;
414 }
415
416 // close proposal
417 p r o p o s a l s [_id] . open = f a l s e ;
418
419 // emit proposal finished event
420 emit P r op o s a l F i n i s h e d (_id , f o rRa t i o , a g a i n s tRa t i o , quorumReached) ;
421 }

Listing 3.7: BancorGovernance.sol

However, our further analysis shows that current execution logic suffers from a front-running
attack. In particular, upon observing the execute() transaction, a front-runner can arrange another
transaction to invoke tallyVotes() on the same proposal. By doing so, the front-runner can imme-
diately close the proposal before execute() is invoked. Once the proposal is closed, the execute()

transaction will simply be reverted because of the proposal status check in the proposalEnded(_id)

modifier (line 219).
217 mod i f i e r proposa lEnded (uint256 _id) {
218 r equ i r e (p r o p o s a l s [_id] . s t a r t > 0 && p r o p o s a l s [_id] . s t a r t < block . number , "

ERR_NO_PROPOSAL") ;
219 r equ i r e (p r o p o s a l s [_id] . open , "ERR_NOT_OPEN") ;

18/32 PeckShield Audit Report #: 2020-45

Public

220 r equ i r e (p r o p o s a l s [_id] . end < block . number , "ERR_NOT_ENDED") ;
221 _;
222 }

Listing 3.8: BancorGovernance.sol

Recommendation Develop an effective mitigation to the above front-running attack to ensure
normal proposal execution.

Status The issue has been fixed by this commit: c7b8ac53fb1dc7e7e122474df8a6956e5e871184.

The team has expanded the proposal status set by including an additional separate flag to indicate
whether the proposal has been executed or not.

3.5 Inconsistent Calculation on Quorum Satisfaction

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BancorGovernance

• Category: Coding Practices [9]

• CWE subcategory: CWE-1099 [3]

Description

The quorum calculation is critical to determine whether a proposal is passed or not. However, for the
same quorum calculation, we notice unnecessary discrepancy in determining the result of a proposal.
Specifically, the discrepancy stems from two related functions, i.e., execute() and tallyVotes().

387 f unc t i on ex e cu t e (uint256 _id) pub l i c proposa lEnded (_id) {
388 // get voting info of proposal
389 (uint256 f o rRa t i o , uint256 aga i n s tRa t i o , uint256 quorumRatio) = p r o p o s a l S t a t s (

_id) ;
390 // check proposal state
391 r equ i r e (p r o p o s a l s [_id] . quorumRequired < quorumRatio , "ERR_NO_QUORUM") ;
392
393 // tally votes
394 t a l l y V o t e s (_id) ;
395 // do execution on the contract to be executed
396 I E x e c u t o r (p r o p o s a l s [_id] . e x e cu t o r) . e x e cu t e (_id , f o rRa t i o , a g a i n s tRa t i o ,

quorumRatio) ;
397
398 // emit proposal executed event
399 emit Proposa lExecu ted (_id , p r o p o s a l s [_id] . e x e cu t o r) ;
400 }

Listing 3.9: BancorGovernance.sol

19/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/gov-contracts/commit/c7b8ac53fb1dc7e7e122474df8a6956e5e871184

Public

For comparison, we show the execute() routine above and the tallyVotes() routine below. The
above case considers the proposal quorum is reached if proposals[_id].quorumRequired<quorumRatio

while the below case considers the result based on proposals[_id].quorumRequired<=proposals[_id

].quorum. In other words, a discrepancy occurs when proposals[_id].quorum == proposals[_id].

quorumRequired.

406 f unc t i on t a l l y V o t e s (uint256 _id) pub l i c proposa lEnded (_id) {
407 // get voting info of proposal
408 (uint256 f o rRa t i o , uint256 aga i n s tRa t i o ,) = p r o p o s a l S t a t s (_id) ;
409 // assume we have no quorum
410 bool quorumReached = f a l s e ;
411 // do we have a quorum?
412 i f (p r o p o s a l s [_id] . quorum >= p r o p o s a l s [_id] . quorumRequired) {
413 quorumReached = t rue ;
414 }
415
416 // close proposal
417 p r o p o s a l s [_id] . open = f a l s e ;
418
419 // emit proposal finished event
420 emit P r op o s a l F i n i s h e d (_id , f o rRa t i o , a g a i n s tRa t i o , quorumReached) ;
421 }

Listing 3.10: BancorGovernance.sol

Recommendation Be consistent in determining whether a proposal is passed by resolving the
above discrepancy.

Status The issue has been fixed by this commit: c7b8ac53fb1dc7e7e122474df8a6956e5e871184.

3.6 Unintended Removal of Voters’ Stakes in revokeVotes()

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: BancorGovernance

• Category: Business Logics [10]

• CWE subcategory: CWE-841 [7]

Description

The BancorGovernance contract contains a function named revokeVotes() that allows a voter to revoke
her votes. However, the revokeVotes() function not only revokes the status of being a voter, but
clears the internal recorded amount of staked assets. This seems an unintended behavior as the votes
being revoked should not mean the staked assets are also removed. In current implementation, the

20/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/gov-contracts/commit/c7b8ac53fb1dc7e7e122474df8a6956e5e871184

Public

voters will not get those staked assets back and the removed assets will be locked forever in the
contract. And there is no way to recover these locked assets.

533 /**
534 * @notice revokes votes
535 */
536 f unc t i on r e vokeVote s () pub l i c on l yVo t e r {
537 v o t e r s [msg . sender] = f a l s e ;
538 t o t a l V o t e s = t o t a l V o t e s . sub (vo t e s [msg . sender]) ;
539
540 // emit vote revocation event
541 emit VotesRevoked (msg . sender , vo te sOf (msg . sender) , t o t a l V o t e s) ;
542 vo t e s [msg . sender] = 0 ;
543 }

Listing 3.11: BancorGovernance.sol

Recommendation Revise the revokeVotes() logic by returning back the staked assets back to
the voter or recovering the removed assets for a better use.

Status The issue has been fixed by this commit: c7b8ac53fb1dc7e7e122474df8a6956e5e871184.

The team decides to remove this function.

3.7 Improved Verification of Matching IDs in
unprotectLiquidity()

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LiquidityProtection

• Category: Security Features [8]

• CWE subcategory: CWE-284 [5]

Description

The BancorV2 protocol proposes an interesting feature, i.e., liquidity protection, which offers pro-
tection against so-called impermanent loss. The impermanent loss essentially reflects the difference
between holding an asset versus providing liquidity (e.g., in a DEX) and is typically a temporary
loss of funds from providing liquidity. This feature addresses a long-due issue to better protect the
interests of liquidity providers and is considered essential for wide adoption.

The implementation of liquidity protection involves the support of a number of related rou-
tines, i.e., protectLiquidity(), unprotectLiquidity(), addLiquidity(), and removeLiquidity(). While
reviewing these functions, we notice a potential issue in unprotectLiquidity() whose purpose is to
cancel a pair of protections created with an earlier protectLiquidity().

21/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/gov-contracts/commit/c7b8ac53fb1dc7e7e122474df8a6956e5e871184

Public

To elaborate, we show below the unprotectLiquidity() routine. Its execution logic is rather
straightforward in firstly validating the provided pair of protection IDs and then removing them from
the storage (via removeProtectedLiquidity()).

450 f unc t i on u n p r o t e c t L i q u i d i t y (uint256 _id1 , uint256 _id2) ex te rna l protected {
451 r equ i r e (_id1 != _id2 , "ERR_SAME_ID") ;
452
453 P r o t e c t e d L i q u i d i t y memory l i q u i d i t y 1 = p r o t e c t e d L i q u i d i t y (_id1) ;
454 P r o t e c t e d L i q u i d i t y memory l i q u i d i t y 2 = p r o t e c t e d L i q u i d i t y (_id2) ;
455
456 // verify input & permissions
457 r equ i r e (l i q u i d i t y 1 . owner == msg . sender && l i q u i d i t y 2 . owner == msg . sender , "

ERR_ACCESS_DENIED") ;
458
459 // verify that the two protections were added together (using ‘protect ‘)
460 r equ i r e (
461 l i q u i d i t y 1 . poolToken == l i q u i d i t y 2 . poolToken &&
462 l i q u i d i t y 1 . r e s e r v eToken != l i q u i d i t y 2 . r e s e r v eToken &&
463 l i q u i d i t y 1 . timestamp == l i q u i d i t y 2 . timestamp &&
464 l i q u i d i t y 1 . poolAmount <= l i q u i d i t y 2 . poolAmount . add (1) &&
465 l i q u i d i t y 2 . poolAmount <= l i q u i d i t y 1 . poolAmount . add (1) ,
466 "ERR_PROTECTIONS_MISMATCH") ;
467
468 // burn the governance tokens from the caller
469 govToken . d e s t r o y (msg . sender , l i q u i d i t y 1 . r e s e r v eToken == networkToken ?

l i q u i d i t y 1 . rese rveAmount : l i q u i d i t y 2 . rese rveAmount) ;
470
471 // remove the protected liquidities from the store
472 s t o r e . r emov eP r o t e c t e dL i q u i d i t y (_id1) ;
473 s t o r e . r emov eP r o t e c t e dL i q u i d i t y (_id2) ;
474
475 // transfer the pool tokens back to the caller
476 s t o r e . withdrawTokens (l i q u i d i t y 1 . poolToken , msg . sender , l i q u i d i t y 1 . poolAmount . add

(l i q u i d i t y 2 . poolAmount)) ;
477 }

Listing 3.12: LiquidityProtection . sol

However, the validation checks are not sufficient. Imagine a scenario when an user creates two
pairs of protections: The first pair has two IDs: ID1-1 and ID1-2; and the second pair has ID2-1 and
ID2-2. For simplicity, we assume each ID shares the same poolAmount and the protections of ID1-2

and ID2-2 use BNT as their networkToken. With that, when the user may invoke unprotectLiquidity(

ID1-1, ID2-1), though the given ID1-1 and ID2-1 are not part of the same pair, they still successfully
pass the current validation checks (lines 457 − 466). This is certainly not unintended behavior.

Recommendation Apply additional sanity checks in ensuring one of the matching IDs is
networkToken.

Status The issue has been fixed by this commit: e2f7a2ed4a5c1e218e510f0a694e5a38f5751397.

22/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/liquidity-protection/commit/e2f7a2ed4a5c1e218e510f0a694e5a38f5751397

Public

3.8 Optimization in removeLiquidityReturn()

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LiquidityProtection

• Category: Coding Practices [9]

• CWE subcategory: CWE-1041 [2]

Description

Following the discussions in Section 3.7, we continue our analysis in the liquidity protection feature.
When reviewing the internal removeLiquidityReturn() routine, we notice a redundant computation
that can be optimized. To elaborate, we show below the code snippet of the removeLiquidityReturn()

routine.
814 f unc t i on r emov eL i qu i d i t yRe t u r n (
815 IDSToken _poolToken ,
816 IERC20Token _reserveToken ,
817 uint256 _poolAmount ,
818 uint256 _reserveAmount ,
819 F r a c t i o n memory _addRate ,
820 F r a c t i o n memory _removeRate ,
821 uint256 _addTimestamp ,
822 uint256 _removeTimestamp)
823 i n t e r n a l view re tu rn s (uint256)
824 {
825 // get the adjusted amount of pool tokens based on the exposure and rate changes
826 uint256 outputAmount = adjustedAmount (_poolToken , _reserveToken , _poolAmount ,

_addRate , _removeRate) ;
827
828 // calculate the protection level
829 F r a c t i o n memory l e v e l = p r o t e c t i o n L e v e l (_addTimestamp , _removeTimestamp) ;
830
831 // no protection , return the amount as is
832 i f (l e v e l . n == 0) {
833 re tu rn outputAmount ;
834 }
835
836 // protection is in effect , calculate loss / compensation
837 F r a c t i o n memory l o s s = impLoss (_addRate , _removeRate) ;
838 (uint256 compN , uint256 compD) = Math . r educedRa t i o (l o s s . n . mul (l e v e l . n) , l o s s . d .

mul (l e v e l . d) , MAX_UINT128) ;
839 re tu rn outputAmount . mul (compD) . add (_reserveAmount . mul (compN)) . d i v (compD) ;
840 }

Listing 3.13: LiquidityProtection . sol

If we examine the code at line 839, i.e., outputAmount.mul(compD).add(_reserveAmount.mul(compN))
.div(compD), the calculated amount can be simplified as outputAmount.add(_reserveAmount.mul(compN)

23/32 PeckShield Audit Report #: 2020-45

Public

.div(compD)). The reason is that the first mul(compD) will be immediately canceled out by the following
div(compD).

Recommendation Optimize the removeLiquidityReturn() routine as follows.

814 f unc t i on r emov eL i qu i d i t yRe t u r n (
815 IDSToken _poolToken ,
816 IERC20Token _reserveToken ,
817 uint256 _poolAmount ,
818 uint256 _reserveAmount ,
819 F r a c t i o n memory _addRate ,
820 F r a c t i o n memory _removeRate ,
821 uint256 _addTimestamp ,
822 uint256 _removeTimestamp)
823 i n t e r n a l view re tu rn s (uint256)
824 {
825 // get the adjusted amount of pool tokens based on the exposure and rate changes
826 uint256 outputAmount = adjustedAmount (_poolToken , _reserveToken , _poolAmount ,

_addRate , _removeRate) ;
827
828 // calculate the protection level
829 F r a c t i o n memory l e v e l = p r o t e c t i o n L e v e l (_addTimestamp , _removeTimestamp) ;
830
831 // no protection , return the amount as is
832 i f (l e v e l . n == 0) {
833 re tu rn outputAmount ;
834 }
835
836 // protection is in effect , calculate loss / compensation
837 F r a c t i o n memory l o s s = impLoss (_addRate , _removeRate) ;
838 (uint256 compN , uint256 compD) = Math . r educedRa t i o (l o s s . n . mul (l e v e l . n) , l o s s . d .

mul (l e v e l . d) , MAX_UINT128) ;
839 re tu rn outputAmount . add (_reserveAmount . mul (compN) . d i v (compD)) ;
840 }

Listing 3.14: LiquidityProtection . sol

Status The issue has been fixed by this commit: 184ffb8eba6e4066911bd7484070aa4195ada22c.

24/32 PeckShield Audit Report #: 2020-45

https://github.com/bancorprotocol/liquidity-protection/commit/184ffb8eba6e4066911bd7484070aa4195ada22c

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Bancor’s governance subsystem
and its new liquidity protection feature. The system presents a unique offering in current DEX
ecosystem with the support of its own governance and liquidity protection. We are impressed by the
design and implementation, especially the underlying thinkings and efforts in reducing slippage and
ensuring liquidity protection. The current code base is well organized and those identified issues are
promptly confirmed and fixed.

As a final precaution, we need to emphasize that smart contracts as a whole are still in an early,
but exciting stage of development. To improve this report, we greatly appreciate any constructive
feedbacks or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

25/32 PeckShield Audit Report #: 2020-45

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [14, 15,
16, 17, 19].

• Result: Not found

• Severity: Critical

26/32 PeckShield Audit Report #: 2020-45

Public

5.1.5 Reentrancy

• Description: Reentrancy [20] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

27/32 PeckShield Audit Report #: 2020-45

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

28/32 PeckShield Audit Report #: 2020-45

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

29/32 PeckShield Audit Report #: 2020-45

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

30/32 PeckShield Audit Report #: 2020-45

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[3] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[4] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[5] MITRE. CWE-284: Improper Access Control. https://cwe.mitre.org/data/definitions/284.html.

[6] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[7] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[8] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[9] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

31/32 PeckShield Audit Report #: 2020-45

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html

Public

[10] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[11] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[12] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[13] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[14] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[15] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[16] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[17] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[18] PeckShield. PeckShield Inc. https://www.peckshield.com.

[19] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[20] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

32/32 PeckShield Audit Report #: 2020-45

https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Bancor
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Flashloan-Assisted Sandwich Attacks To Foil Proposals
	Incompatibility with Deflationary/Rebasing Tokens
	Missed Sanity Checks For System Parameters
	Possible Front-Running To Block Proposal Execution
	Inconsistent Calculation on Quorum Satisfaction
	Unintended Removal of Voters' Stakes in revokeVotes()
	Improved Verification of Matching IDs in unprotectLiquidity()
	Optimization in removeLiquidityReturn()

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

