
Public

SMART CONTRACT AUDIT REPORT

for

BETA FINANCE

Prepared By: Shuxiao Wang

PeckShield
May 29, 2021

1/21 PeckShield Audit Report #: 2021-115

sxwang@peckshield.com

Public

Document Properties

Client Beta Finance
Title Smart Contract Audit Report
Target Beta
Version 1.0
Author Xuxian Jiang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Shuxiao Wang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 29, 2021 Xuxian Jiang Final Release
1.0-rc1 May 23, 2021 Xuxian Jiang Release Candidate #1
0.2 May 12, 2021 Xuxian Jiang Add More Findings #1
0.1 May 6, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2021-115

Public

Contents

1 Introduction 4
1.1 About Beta . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Incorrect Collateral Accounting In BetaBank::put() 11
3.2 Improved Sanity Checks For System/Function Parameters 12
3.3 Suggested Adherence Of Checks-Effects-Interactions Pattern 14
3.4 Improved Next Interest Rate Calculation . 15
3.5 Trust Issue of Admin Keys . 16

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2021-115

Public

1 | Introduction

Given the opportunity to review the Beta design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Beta

The Beta protocol is a permissionless money market for lending and borrowing crypto assets that is
designed specifically to reduce systematic risk of price volatility for all yield farmers.

The basic information of Beta is as follows:

Table 1.1: Basic Information of Beta

Item Description
Issuer Beta Finance
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 29, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit. Note that Beta assumes a trusted price oracle with timely market price feeds for supported
assets and the oracle itself is not part of this audit.

• https://github.com/beta-finance/beta.git (3e84d6d)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/beta-finance/beta.git (0c55e06)

4/21 PeckShield Audit Report #: 2021-115

Public

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/21 PeckShield Audit Report #: 2021-115

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2021-115

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/21 PeckShield Audit Report #: 2021-115

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2021-115

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Beta protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 3

Informational 0

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/21 PeckShield Audit Report #: 2021-115

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerability, and 3 low-severity vulnerabilities.

Table 2.1: Key Beta Audit Findings

ID Severity Title Category Status
PVE-001 High Incorrect Collateral Accounting In Beta-

Bank::put()
Business Logic Fixed

PVE-002 Low Improved Sanity Checks Of System/Function
Parameters

Coding Practices Fixed

PVE-003 Low Suggested Adherence Of Checks-Effects-
Interactions Pattern

Time and State Fixed

PVE-004 Low Improved Next Interest Rate Calculation Business Logic Fixed
PVE-005 Medium Trust Issue of Admin Keys Security Features Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/21 PeckShield Audit Report #: 2021-115

Public

3 | Detailed Results

3.1 Incorrect Collateral Accounting In BetaBank::put()

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: BetaBank

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Beta protocol is a permissionless money market for crypto-asset lending and borrowing. For
borrowing users, they mainly interact with a core contract BetaBank, which provides a number of
functionalities, e.g., open(), borrow(), repay(), put(), and take(). In the following, we examine the
put() logic.

To elaborate, we show below the implementation of put(). It is designed to allow a payer to add
more collateral to the given position. (Note the payer must be the position owner or the sender.) It
comes to our attention the collateral-updating logic about the given position (line 256) is incorrect:
positions[_owner][_pid].collateralSize += pos.collateralSize. The proper update logic should be
positions[_owner][_pid].collateralSize = pos.collateralSize.

230 /// @dev Puts more collateral to the given position. Payer must be position owner or
sender.

231 /// @param _owner The position owner to put more collateral.
232 /// @param _pid The position id to put more collateral.
233 /// @param _amount The amount of collateral to put via ‘transferFrom ‘.
234 /// @param _payer The payer to drain collateral token from.
235 f unc t i on put (
236 address _owner ,
237 u in t _pid ,
238 u in t _amount ,
239 address _payer
240) ex te rna l o v e r r i d e l o c k {
241 r equ i r e (_pid < n e x t P o s i t i o n I d s [_owner] , ’put/bad -pid’) ;

11/21 PeckShield Audit Report #: 2021-115

Public

242 // 1. pre -conditions
243 r equ i r e (a l l owAc t i o nFo r (_owner , msg . sender) , ’put/bad -sender ’) ;
244 r equ i r e (_payer == msg . sender _payer == _owner , ’put/bad -payer’) ;
245 // 2. transfer collateral tokens in
246 Po s i t i o n memory pos = p o s i t i o n s [_owner] [_pid] ;
247 u in t amount ;
248 {
249 u in t ba lB e f o r e = IERC20 (pos . c o l l a t e r a l) . ba lanceOf (address (t h i s)) ;
250 IERC20 (pos . c o l l a t e r a l) . s a f eT ran s f e rF rom (_payer , address (t h i s) , _amount) ;
251 u in t b a l A f t e r = IERC20 (pos . c o l l a t e r a l) . ba lanceOf (address (t h i s)) ;
252 amount = b a l A f t e r − ba lB e f o r e ;
253 }
254 // 3. update the position - no collateral check required
255 pos . c o l l a t e r a l S i z e += amount ;
256 p o s i t i o n s [_owner] [_pid] . c o l l a t e r a l S i z e += pos . c o l l a t e r a l S i z e ;
257 emit Put (_pid , _amount , _payer) ;
258 }

Listing 3.1: BetaBank::put()

Recommendation Revise the current BetaBank::put() logic to properly reflect the added col-
lateral.

Status The issue has been fixed by this commit: 43d232c.

3.2 Improved Sanity Checks For System/Function Parameters

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Beta protocol is no exception. Specifically, if we examine the BetaConfig contract,
it has defined a number of protocol-wide risk parameters, such as reserveRate and cFactors. In the
following, we show a representative routinethat allow for their changes.

90 /// @dev Sets the global reserve information.
91 f unc t i on s e t R e s e r v e I n f o (address _r e s e r v eB en e f i c i a r y , u in t _rese rveRate) ex te rna l {
92 r equ i r e (msg . sender == governor , ’setReserveInfo/not -governor ’) ;
93 r equ i r e (_rese rveRate < 1e18 , ’setReserveInfo/bad -rate’) ;
94 r e s e r v e B e n e f i c i a r y = _ r e s e r v eB e n e f i c i a r y ;
95 r e s e r v eRa t e = _rese rveRate ;
96 emit S e tR e s e r v e I n f o (_ r e s e r v eB en e f i c i a r y , _re se rveRate) ;

12/21 PeckShield Audit Report #: 2021-115

https://github.com/beta-finance/beta/commit/43d232c

Public

97 }

Listing 3.2: BetaConfig:: setReserveInfo ()

These parameters define various aspects of the protocol operation and maintenance and need
to exercise extra care when configuring or updating them. Our analysis shows the update logic on
these parameters can be improved by applying more rigorous sanity checks. Based on the current
implementation, certain corner cases may lead to an undesirable consequence. For example, an
unlikely mis-configuration of reserveBeneficiary may revert every single accrue(), hence hurting the
adoption of the protocol.

Moreover, the BetaBank::open() logic can be improved to validate the presence of the price oracle
for the collateral: require(IBetaOracle(oracle).getAssetETHPrice(_collateral)> 0, ’open/no-price’)

. And the given position ID is suggested to be validated before it can be used in a number of
position-updating routines, e.g., _buy()/_repay()/short() in BetaRunnerBase.

164 f unc t i on open (
165 address _owner ,
166 address _under ly ing ,
167 address _c o l l a t e r a l
168) ex te rna l o v e r r i d e whenNotPaused onlyOwner (_owner) r e tu rn s (u in t p id) {
169 address bToken = bTokens [_unde r l y i ng] ;
170 r equ i r e (bToken != address (0) , ’open/bad -underlying ’) ;
171 r equ i r e (_unde r l y i ng != _co l l a t e r a l , ’open/self -collateral ’) ;
172 r equ i r e (IBe t aCon f i g (c o n f i g) . g e t C o l l F a c t o r (_ c o l l a t e r a l) > 0 , ’open/bad -collateral ’) ;
173 r equ i r e (IBe t aO ra c l e (o r a c l e) . getAssetETHPr ice (_ c o l l a t e r a l) > 0 , ’open/no-price’) ;
174 p id = n e x t P o s i t i o n I d s [_owner]++;
175 Po s i t i o n storage pos = p o s i t i o n s [_owner] [p i d] ;
176 pos . bToken = bToken ;
177 pos . c o l l a t e r a l = _ c o l l a t e r a l ;
178 emit Open (pid , _owner , bToken , _ c o l l a t e r a l) ;
179 }

Listing 3.3: BetaBank::open()

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.

Status The issue has been fixed by the following commits: 9472543, 6285ee2, and d59ab91.

13/21 PeckShield Audit Report #: 2021-115

https://github.com/beta-finance/beta/commit/9472543
https://github.com/beta-finance/beta/commit/6285ee2
https://github.com/beta-finance/beta/commit/d59ab91

Public

3.3 Suggested Adherence Of Checks-Effects-Interactions
Pattern

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BToken

• Category: Time and State [8]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [13] exploit, and the recent Uniswap/Lendf.Me hack [12].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the BToken as an example, the accrue() function (see the code snippet below) is provided to externally
call a token contract to transfer assets. However, the invocation of an external contract requires
extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 95) starts before effecting the update
on internal state (line 102), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the same entry
function.

80 /// @dev Accrues interest rate and adjust the rate. Can be called by anyone at any
time.

81 f unc t i on acc rue () pub l i c {
82 i f (block . timestamp <= las tAcc rueT ime) re tu rn ;
83 address betaBank_ = betaBank ; // gas savings
84 r equ i r e (! IBetaBank (betaBank_) . i sPau sed () , ’BetaBank/paused ’) ;
85 // gas savings
86 u in t tota lLoan_ = to t a l L oan ;
87 u in t t o t a l A v a i l a b l e_ = t o t a l A v a i l a b l e ;
88 u in t i n t e r e s tRa t e_ = i n t e r e s t R a t e ;
89 u in t t imePast = block . timestamp − l a s tAcc rueT ime ;
90 IB e t aCon f i g c o n f i g = IBe t aCon f i g (IBetaBank (betaBank_) . c o n f i g ()) ;
91 I B e t a I n t e r e s tMod e l model = IB e t a I n t e r e s tMod e l (IBetaBank (betaBank_) . i n t e r e s tMod e l ()) ;
92 u in t i n t e r e s t = (i n t e r e s tRa t e_ ∗ tota lLoan_ ∗ t imePast) / (365 days) / 1 e18 ;
93 tota lLoan_ += i n t e r e s t ;
94 t o t a l L oan = tota lLoan_ ;

14/21 PeckShield Audit Report #: 2021-115

Public

95 i n t e r e s t R a t e = model . g e tN e x t I n t e r e s tR a t e (i n t e r e s tRa t e_ , t o t a lA v a i l a b l e_ , tota lLoan_ ,
t imePast) ;

96 i f (i n t e r e s t > 0) {
97 u in t t oRe s e r v e = (i n t e r e s t ∗ c o n f i g . r e s e r v eRa t e ()) / 1 e18 ;
98 address b e n e f i c i a r y = c o n f i g . r e s e r v e B e n e f i c i a r y () ;
99 _mint (b e n e f i c i a r y , (t oRe s e r v e ∗ t o t a l S u p p l y ()) / (tota lLoan_ + t o t a l A v a i l a b l e_ −

t oRe s e r v e)) ;
100 emit Accrue (i n t e r e s t) ;
101 }
102 l a s tAcc rueT ime = block . timestamp ;
103 }

Listing 3.4: BToken::accrue()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy. However, it is important to take precautions to block possible re-entrancy.

Recommendation Apply necessary reentrancy prevention by following the well-established
Checks-Effects-Interactions best practice to block possible re-entrancy.

Status The issue has been fixed by this commit: 35d92e8.

3.4 Improved Next Interest Rate Calculation

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BToken

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In the Beta protocol, there is a dedicated interest rate contract to compute the new interest rate that
immediately becomes effective after current interest accrual. Note the new interest rate is calculated
fully on-chain, algorithmically deduced from the following self-explanatory states of the available
pools: prevRate, totalAvailable, totalLoan, and timePast. In the following, we examine the interest
rate calculation logic.

To elaborate, we show below the accrue() function that is designed to accrue pending interest
and adjust the rate accordingly with the new states. The statement of our focus is the follow-
ing: interestRate = model.getNextInterestRate(interestRate, totalAvailable, totalLoan, timePast)

(line 91).

15/21 PeckShield Audit Report #: 2021-115

https://github.com/beta-finance/beta/commit/35d92e8

Public

80 /// @dev Accrues interest rate and adjust the rate. Can be called by anyone at any
time.

81 f unc t i on acc rue () pub l i c {
82 i f (block . timestamp <= las tAcc rueT ime) re tu rn ;
83 address betaBank_ = betaBank ; // gas savings
84 r equ i r e (! IBetaBank (betaBank_) . i sPau sed () , ’BetaBank/paused ’) ;
85 // gas savings
86 u in t tota lLoan_ = to t a l L oan ;
87 u in t t o t a l A v a i l a b l e_ = t o t a l A v a i l a b l e ;
88 u in t i n t e r e s tRa t e_ = i n t e r e s t R a t e ;
89 u in t t imePast = block . timestamp − l a s tAcc rueT ime ;
90 IB e t aCon f i g c o n f i g = IBe t aCon f i g (IBetaBank (betaBank_) . c o n f i g ()) ;
91 I B e t a I n t e r e s tMod e l model = IB e t a I n t e r e s tMod e l (IBetaBank (betaBank_) . i n t e r e s tMod e l ()) ;
92 u in t i n t e r e s t = (i n t e r e s tRa t e_ ∗ tota lLoan_ ∗ t imePast) / (365 days) / 1 e18 ;
93 tota lLoan_ += i n t e r e s t ;
94 t o t a l L oan = tota lLoan_ ;
95 i n t e r e s t R a t e = model . g e tN e x t I n t e r e s tR a t e (i n t e r e s tRa t e_ , t o t a lA v a i l a b l e_ , tota lLoan_ ,

t imePast) ;
96 i f (i n t e r e s t > 0) {
97 u in t t oRe s e r v e = (i n t e r e s t ∗ c o n f i g . r e s e r v eRa t e ()) / 1 e18 ;
98 address b e n e f i c i a r y = c o n f i g . r e s e r v e B e n e f i c i a r y () ;
99 _mint (b e n e f i c i a r y , (t oRe s e r v e ∗ t o t a l S u p p l y ()) / (tota lLoan_ + t o t a l A v a i l a b l e_ −

t oRe s e r v e)) ;
100 emit Accrue (i n t e r e s t) ;
101 }
102 l a s tAcc rueT ime = block . timestamp ;
103 }

Listing 3.5: BToken::accrue()

It comes to our attention that the totalLoan used for the interest rate calculation is based on the
current loan without adding the pending interest. As a result, the utilization rate is slightly smaller
to be reflected in the new interest rate calculation. With that, we suggest to replace totalLoan (line
91) with totalLoan+interest.

Recommendation Adjust the given arguments for the new interest rate calculation in accrue().

Status The issue has been fixed by this commit: 5f9557a.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: BetaConfig

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

16/21 PeckShield Audit Report #: 2021-115

https://github.com/beta-finance/beta/commit/5f9557a

Public

Description

In the Beta protocol, there is a special administrative account, i.e., governor. This governor account
plays a critical role in governing and regulating the system-wide operations (e.g., authorizing other
roles, setting various parameters, and adjusting external oracles). It also has the privilege to regulate
or govern the flow of assets among the involved components.

With great privilege comes great responsibility. Our analysis shows that the governor account is
indeed privileged. In the following, we show representative privileged operations in the Beta protocol.

68 /// @dev Sets the risk configurations of the given levels.
69 f unc t i on s e t R i s kC o n f i g s (u in t [] c a l l d a t a l e v e l s , R i s kCon f i g [] c a l l d a t a c o n f i g s)

ex te rna l {
70 r equ i r e (msg . sender == governor , ’setRiskConfigs/not -governor ’) ;
71 r equ i r e (l e v e l s . l ength == co n f i g s . length , ’setRiskConfigs/bad -length ’) ;
72 f o r (u in t i d x = 0 ; i d x < l e v e l s . l ength ; i d x++) {
73 r equ i r e (c o n f i g s [i d x] . safetyLTV <= 1e18 , ’setRiskConfigs/bad -safety -ltv’) ;
74 r equ i r e (c o n f i g s [i d x] . l i q u i d a t i o nLTV <= 1e18 , ’setRiskConfigs/bad -liquidation -ltv’)

;
75 r equ i r e (
76 c o n f i g s [i d x] . safetyLTV < c o n f i g s [i d x] . l i qu i da t i onLTV ,
77 ’setRiskConfigs/inconsistent -ltv -values ’
78) ;
79 r equ i r e (c o n f i g s [i d x] . k i l l B oun t yRa t e <= 1e18 , ’setRiskConfigs/bad -kill -reward -

factor ’) ;
80 r C o n f i g s [l e v e l s [i d x]] = c o n f i g s [i d x] ;
81 emit Se tR i s kCon f i g (
82 l e v e l s [i d x] ,
83 c o n f i g s [i d x] . safetyLTV ,
84 c o n f i g s [i d x] . l i qu i da t i onLTV ,
85 c o n f i g s [i d x] . k i l l B o un t yRa t e
86) ;
87 }
88 }

90 /// @dev Sets the global reserve information.
91 f unc t i on s e t R e s e r v e I n f o (address _r e s e r v eB en e f i c i a r y , u in t _rese rveRate) ex te rna l {
92 r equ i r e (msg . sender == governor , ’setReserveInfo/not -governor ’) ;
93 r equ i r e (_rese rveRate < 1e18 , ’setReserveInfo/bad -rate’) ;
94 r equ i r e (_ r e s e r v eB e n e f i c i a r y != address (0) , ’setReserveInfo/bad -beneficiary ’) ;
95 r e s e r v e B e n e f i c i a r y = _ r e s e r v eB e n e f i c i a r y ;
96 r e s e r v eRa t e = _rese rveRate ;
97 emit S e tR e s e r v e I n f o (_ r e s e r v eB en e f i c i a r y , _re se rveRate) ;
98 }

Listing 3.6: Various Setters in BetaConfig

We emphasize that the privilege assignment with various core contracts is necessary and required
for proper protocol operations. However, it is worrisome if the governor is not governed by a DAO-like
structure. The discussion with the team has confirmed that the governance is currently managed by
a multi-sig account. We point out that a compromised governor account would allow the attacker

17/21 PeckShield Audit Report #: 2021-115

Public

to undermine necessary assumptions behind the protocol and subvert various protocol operations.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed.

18/21 PeckShield Audit Report #: 2021-115

Public

4 | Conclusion

In this audit, we have analyzed the Beta design and implementation. The system presents a unique,
robust offering as a decentralized non-custodial money market for lending and borrowing crypto
assets that is designed specifically to reduce systematic risk of price volatility for all yield farmers.
The current code base is well structured and neatly organized. Those identified issues are promptly
confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

19/21 PeckShield Audit Report #: 2021-115

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

20/21 PeckShield Audit Report #: 2021-115

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

21/21 PeckShield Audit Report #: 2021-115

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Beta
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect Collateral Accounting In BetaBank::put()
	Improved Sanity Checks For System/Function Parameters
	Suggested Adherence Of Checks-Effects-Interactions Pattern
	Improved Next Interest Rate Calculation
	Trust Issue of Admin Keys

	Conclusion
	References

