
Public

SMART CONTRACT AUDIT REPORT

for

DEGO FINANCE

Prepared By: Shuxiao Wang

PeckShield
May 20, 2021

1/22 PeckShield Audit Report #: 2021-119

sxwang@peckshield.com

Public

Document Properties

Client Dego Finance
Title Smart Contract Audit Report
Target Dego-Ino
Version 1.0
Author Xuxian Jiang
Auditors Yiqun Chen, Xuxian Jiang
Reviewed by Shuxiao Wang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 20, 2021 Xuxian Jiang Final Release
1.0-rc1 May 18, 2021 Xuxian Jiang Release Candidate #1
0.2 May 14, 2021 Xuxian Jiang Add More Findings #1
0.1 May 5, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/22 PeckShield Audit Report #: 2021-119

Public

Contents

1 Introduction 4
1.1 About Dego Finance . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Improved refund() Logic . 12
3.2 Reentrancy Risk in raise()/split() . 13
3.3 Improved Sanity Checks Of System/Function Parameters 14
3.4 Avoided Storage Use For Constant State Variables 17
3.5 Trust Issue of Admin Keys . 18

4 Conclusion 20

References 21

3/22 PeckShield Audit Report #: 2021-119

Public

1 | Introduction

Given the opportunity to review the Dego Finance’s dego-ino design document and related smart
contract source code, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Dego Finance

Dego Finance is a NFT+DeFi protocol and infrastructure with two main functions: First, it acts as an
independent and open NFT ecosystem with services covering the full NFT lifecycle, enabling anyone
to issue NFTs, participate in auctions, and trade NFTs. Second, it is also building an NFT protocol to
provide a cross-chain layer 2 infrastructure. By building on multiple blockchains such as Binance Smart

Chain, Ethereum, and Polkadot, Dego Finance enables blockchain projects to acquire users, distribute
tokens and develop more diverse NFT applications. The audited dego-ino protocol implements the
much-needed initial NFC offering platform.

The basic information of Dego-Ino is as follows:

Table 1.1: Basic Information of Dego-Ino

Item Description
Issuer Dego Finance

Website https://dego.finance
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 20, 2021

4/22 PeckShield Audit Report #: 2021-119

https://dego.finance/

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/dego-labs/ino.git (30c1d38)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/dego-labs/ino.git (TBD)

1.2 About PeckShield

PeckShield Inc. [12] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/22 PeckShield Audit Report #: 2021-119

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/22 PeckShield Audit Report #: 2021-119

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/22 PeckShield Audit Report #: 2021-119

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/22 PeckShield Audit Report #: 2021-119

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/22 PeckShield Audit Report #: 2021-119

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Dego-Ino protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 2

Informational 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/22 PeckShield Audit Report #: 2021-119

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 2 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key Dego-Ino Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved refund() Logic Business Logics Fixed
PVE-002 Medium Reentrancy Risk in raise()/split() Time and State Fixed
PVE-003 Low Improved Sanity Checks Of System/-

Function Parameters
Coding Practices Fixed

PVE-004 Informational Avoided Storage Use For Constant State
Variables

Coding Practices Fixed

PVE-005 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/22 PeckShield Audit Report #: 2021-119

Public

3 | Detailed Results

3.1 Improved refund() Logic

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RaisedPool

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [5]

Description

The dego-ino protocol has a central contract RaisedPool that provides a number of key functions,
e.g., raise(), vest(), split(), withdraw(), and refund(), to facilitate various NFC operations. In the
following, we examine one specific refund() function.

To elaborate, we show below the refund() logic. It basically returns remaining target tokens from
the pool back to its creator. We note that the refund() logic has two conditions require(block.

timestamp > _endRaisedTime) (line 413) and require(_remainAmount > 0) (line 414). Note these two
conditions are a subset of canRefund(), which additionally requires require(!hasRefund). With that,
it is suggested to simplify the logic of refund() by enforcing require(canRefund()). Moreover, the
_remainAmount state variable needs to be zeroed out before returning from refund().

409 /*
410 * get target token from pool
411 */
412 f unc t i on r e f und () pub l i c onlyOwner {
413 r equ i r e (block . timestamp > _endRaisedTime , "wait to end") ;
414 r equ i r e (_remainAmount > 0 , "sale out") ;
415 Tran s f e rH e l p e r . s a f eT r a n s f e r (_targetToken , msg . sender , _remainAmount) ;
416
417 hasRefund = t rue ;
418 emit Refund (_targetToken , _remainAmount) ;
419 }

Listing 3.1: RaisedPool :: refund()

12/22 PeckShield Audit Report #: 2021-119

Public

Recommendation Improve the refund() by enforcing require(canRefund()) and zeroing out
_remainAmount. An example revision is show below:

409 /*
410 * get target token from pool
411 */
412 f unc t i on r e f und () pub l i c onlyOwner {
413 r equ i r e (canRefund () , "!refund") ;
414 Tran s f e rH e l p e r . s a f eT r a n s f e r (_targetToken , msg . sender , _remainAmount) ;
415 _remainAmount = 0 ;
416 hasRefund = t rue ;
417 emit Refund (_targetToken , _remainAmount) ;
418 }

Listing 3.2: RaisedPool :: refund()

Status The issue has been fixed in this commit: fe16a77.

3.2 Reentrancy Risk in raise()/split()

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: RaisedPool

• Category: Time and State [9]

• CWE subcategory: CWE-663 [4]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [14] exploit, and the recent Uniswap/Lendf.Me hack [13].

We notice there are several occasions the checks-effects-interactions principle is violated. Using
the RaisedPool as an example, the raise() function (see the code snippet below) is provided to
externally call a token contract to transfer assets. However, the invocation of an external contract
requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 171) starts before effecting the update
on internal states (lines 172−174), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the very same
raise() function.

13/22 PeckShield Audit Report #: 2021-119

https://github.com/dego-labs/ino/commit/fe16a77

Public

169 f unc t i on r a i s e (u in t amount) pub l i c {
170 u in t be f o r eBa l an c e = IERC20 (_costToken) . ba lanceOf (address (t h i s)) ;
171 Tran s f e rH e l p e r . s a f eT ran s f e rF rom (_costToken , msg . sender , address (t h i s) , amount) ;
172 u in t endBalance = IERC20 (_costToken) . ba lanceOf (address (t h i s)) ;
173
174 u in t r e f und = doRa i se (msg . sender , endBalance . sub (b e f o r eBa l an c e)) ;
175 i f (r e f und > 0) {
176 r equ i r e (r e f und <= IERC20 (_costToken) . ba lanceOf (address (t h i s)) , "not enough

refund token") ;
177 Tran s f e rH e l p e r . s a f eT r a n s f e r (_costToken , msg . sender , r e f und) ;
178 }
179 }

Listing 3.3: RaisedPool :: raise ()

It should be mentioned that the internal doRaise() handler implements the needed non-reentrancy
protection. However, this protection should be moved to cover its caller, i.e., raise(). Another similar
violation can be found in the split() routine within the same contract.

In the meantime, we should mention that the supported tokens in the protocol may need to be
whitelisted to avoid unwanted risks of reentrancy. Current standard ERC20-compliant tokens without
any extra functionality are not vulnerable or exploitable for re-entrancy.

Recommendation Apply necessary reentrancy prevention by making use of the common
nonReentrant modifier.

Status The issue has been fixed in this commit: fe16a77.

3.3 Improved Sanity Checks Of System/Function Parameters

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [7]

• CWE subcategory: CWE-1126 [2]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The dego-ino protocol is no exception. In the following, we examine a number of routines
that can benefit from improved validation.

The first example is the RaisedPool::initialize() function. As the name indicates, this routine
sets up necessary parameters for the associated pool. One specific set of arguments is times to
initialize startRaisedTime and endRaisedTime. It is helpful to enforce the following condition, i.e.,
require(startRaisedTime < endRaisedTime)

14/22 PeckShield Audit Report #: 2021-119

https://github.com/dego-labs/ino/commit/fe16a77

Public

88 f unc t i on i n i t i a l i z e (address c o n t r o l l e r , address [2] memory tokens , u in t [2] memory
p r i c eR a t i o e s ,

89 u in t saleAmount , u in t vsType , u in t [2] memory t imes , u in t [4] memory args , u in t
maxCe i l i ng ,

90 bool i s P r i v a t e , u in t i ndex , address f a c t o r y) pub l i c
91 {
92 r equ i r e (! i n i t i a l i z e d _ , "initialize: Already initialized!") ;
93
94 _con t r o l l e r = c o n t r o l l e r ;
95 _targetToken = tokens [0] ;
96 _pool Index = index ;
97 _costToken = tokens [1] ;
98
99 _ta r g e tP r i c eRa t i o = p r i c e R a t i o e s [0] ;

100 _cos tP r i c eRa t i o = p r i c e R a t i o e s [1] ;
101
102 _tota lSa leAmount = saleAmount ;
103 _remainAmount = _tota lSa leAmount ;
104 _star tRa i sedTime = t imes [0] ;
105 _endRaisedTime = t imes [1] ;
106
107 i f (vsType == 0) {
108 //do nothing
109 } e l s e i f (vsType == 1) {
110 r equ i r e (a r g s [0] > _endRaisedTime , "vest after end") ;
111 r equ i r e (a r g s [1] > a rg s [0] , "end larger then start") ;
112 } e l s e i f (vsType == 2) {
113 r equ i r e (a r g s [0] > _endRaisedTime , "vest after end") ;
114 r equ i r e (a r g s [1] > 0 , "not zero") ;
115 r equ i r e (a r g s [2] < BASE_PERCENT_10K, "too big") ;
116 r equ i r e (a r g s [3] == 0 , "phase start from zero") ;
117 } e l s e {
118 r equ i r e (f a l s e , "error vsType") ;
119 }
120
121 _i sP r i v a t e = i s P r i v a t e ;
122
123 _fac to ry = f a c t o r y ;
124 _vestType = vsType ;
125 _args = a rg s ;
126 _maxCei l ing = maxCe i l i ng ;
127
128 i n i t i a l i z e d _ = t rue ;
129 }

Listing 3.4: RaisedPool :: initialize ()

The second example is about the RaisedPool::withdraw() logic. It currently validates require(

block.timestamp > _endRaisedTime), which should be replaced with require(canWithdraw(), "wait to

end").

370 f unc t i on withdraw () pub l i c onlyOwner {

15/22 PeckShield Audit Report #: 2021-119

Public

371 r equ i r e (block . timestamp > _endRaisedTime , "wait to end") ;
372
373 u in t balance ;
374 i f (_costToken == address (0 x0)) {
375 balance = address (t h i s) . balance ;
376 } e l s e {
377 balance = IERC20 (_costToken) . ba lanceOf (address (t h i s)) ;
378 }
379
380 address teamWal let = I R a i s e d C o n t r o l l e r (_ c o n t r o l l e r) . getTeamWallet () ;
381 u in t withdrawFee = I R a i s e d C o n t r o l l e r (_ c o n t r o l l e r) . getWithdrawFee () ;
382 u in t f e e b a s e = I R a i s e d C o n t r o l l e r (_ c o n t r o l l e r) . getFeeBase () ;
383
384 u in t r a i s edFund = (f e e b a s e − withdrawFee) ∗ balance / f e e b a s e ;
385
386 i f (_costToken == address (0 x0)) {
387 Tran s f e rH e l p e r . sa feTrans fe rETH (msg . sender , r a i s edFund) ;
388 Tran s f e rH e l p e r . sa feTrans fe rETH (teamWal let , balance . sub (r a i s edFund)) ;
389 } e l s e {
390 Tran s f e rH e l p e r . s a f eT r a n s f e r (_costToken , msg . sender , r a i s edFund) ;
391 Tran s f e rH e l p e r . s a f eT r a n s f e r (_costToken , teamWal let , balance . sub (r a i s edFund))

;
392 }
393 hasWidthdraw = t rue ;
394 emit Withdraw (_targetToken , _costToken , ra i s edFund , balance . sub (r a i s edFund) ,

teamWal let) ;
395 }

Listing 3.5: RaisedPool ::withdraw()

The last example is about the INOFactory::forceChangeId() routine. It is helpful to ensure require

(value > _inoId, "wrong value") before the system-wide parameter _inoId is updated.

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range. Also, consider emitting related events for external monitoring and
analytics tools.

Status The issue has been fixed in this commit: fe16a77.

16/22 PeckShield Audit Report #: 2021-119

https://github.com/dego-labs/ino/commit/fe16a77

Public

3.4 Avoided Storage Use For Constant State Variables

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: RaisedController

• Category: Coding Practices [7]

• CWE subcategory: CWE-1099 [1]

Description

Since version 0.6.5, Solidity introduces the feature of declaring a state as immutable. An immutable

state variable can only be assigned during contract creation, but will remain constant throughout the
life-time of a deployed contract. The main benefit of declaring a state as immutable is that reading
the state is significantly cheaper than reading from regular storage, since it is not stored in storage
anymore. Instead, an immutable state will be directly inserted into the runtime code.

This feature is introduced based on the observation that the reading and writing of storage-based
contract states are gas-expensive. Therefore, it is always preferred if we can reduce, if not eliminate,
storage reading and writing as much as possible. Those state variables that are written only once
are candidates of immutable states under the condition that each fits the pattern, i.e., “a constant,
once assigned in the constructor, is read-only during the subsequent operation.”

In the following, we show the key state variables defined in RaisedController. If there is no need
to dynamically update these key state variables, they can be declared as immutable for gas efficiency.

15 cont ract Ra i s e dC o n t r o l l e r i s I R a i s e dC o n t r o l l e r , Governance {
16 us ing Address f o r address ;
17 us ing SafeMath f o r u in t ;
18 // config
19 address pub l i c _poo lFactory ;
20 address pub l i c _inoFactory ;

22 u in t pub l i c _withdrawFee = 100 ;
23 u in t constant pub l i c FEE_BASE = 10000;
24 . . .
25 }

Listing 3.6: RaisedController . sol

Recommendation Revisit the state variable definition and make extensive use of immutable

states.
Status The issue has been fixed in this commit: fe16a77.

17/22 PeckShield Audit Report #: 2021-119

https://github.com/dego-labs/ino/commit/fe16a77

Public

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: RaisedController

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the dego-ino protocol, the governance account plays a critical role in governing and regulating
the system-wide operations (e.g., add/remove minters and set system parameters). It also has the
privilege to regulate or govern the flow of assets among the involved components in the protocol.

We emphasize that current privilege assignment is necessary and required for proper protocol
operation. However, it is worrisome if the governance is not governed by a DAO-like structure. The
discussion with the team has confirmed that the governance will be managed by a multi-sig account.
Note that a compromised governance account is capable of modifying current protocol configuara-
tion with adverse consequences on user funds. In the following, we show representative privileged
operations in the dego-ino protocol.

107 f unc t i on s e t Sp l i tCo s tDego (u in t newValue) pub l i c
108 on lyGove rnance
109 {

111 r equ i r e (_sp l i tCos tDego != newValue , "invalid args") ;
112 emit ChangeSp l i tCostDego (_sp l i tCostDego , newValue) ;
113 _sp l i tCos tDego = newValue ;
114 }

117 f unc t i on getDegoToken () ex te rna l view o v e r r i d e r e tu rn s (address) {
118 re tu rn _degoToken ;
119 }

121 f unc t i on setDegoToken (address token) pub l i c
122 on lyGove rnance
123 {

125 r equ i r e (_degoToken != token , "invalid args") ;
126 emit ChangeDego (_degoToken , token) ;
127 _degoToken = token ;
128 }

131 f unc t i on getWithdrawFee () ex te rna l view o v e r r i d e r e tu rn s (u in t) {
132 re tu rn _withdrawFee ;

18/22 PeckShield Audit Report #: 2021-119

Public

133 }

135 f unc t i on getFeeBase () ex te rna l view o v e r r i d e r e tu rn s (u in t) {
136 re tu rn FEE_BASE ;
137 }

139 f unc t i on setWithdrawFee (u in t withdrawFee) pub l i c
140 on lyGove rnance
141 {

143 r equ i r e (withdrawFee != _withdrawFee && withdrawFee < FEE_BASE, "invalid args") ;
144 emit ChangeWithdrawFee (_withdrawFee , withdrawFee) ;
145 _withdrawFee = withdrawFee ;
146 }

Listing 3.7: Various Getters/Setters in RaisedController

Recommendation Promptly transfer the governance privilege to the intended DAO-like gover-
nance contract. And activate the normal on-chain community-based governance life-cycle and ensure
the intended trustless nature and high-quality distributed governance.

Status This issue has been confirmed and partially mitigated with a multi-sig account to
regulate the governance/controller privileges.

19/22 PeckShield Audit Report #: 2021-119

Public

4 | Conclusion

In this audit, we have analyzed the Dego-Ino design and implementation. The system presents a
much-needed initial NFC offering platform. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

20/22 PeckShield Audit Report #: 2021-119

Public

References

[1] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

21/22 PeckShield Audit Report #: 2021-119

https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html

Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] PeckShield. PeckShield Inc. https://www.peckshield.com.

[13] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[14] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

22/22 PeckShield Audit Report #: 2021-119

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Dego Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved refund() Logic
	Reentrancy Risk in raise()/split()
	Improved Sanity Checks Of System/Function Parameters
	Avoided Storage Use For Constant State Variables
	Trust Issue of Admin Keys

	Conclusion
	References

