
Public

SMART CONTRACT AUDIT REPORT

for

HEGIC

Prepared By: Shuxiao Wang

Hangzhou, China
October 1, 2020

1/41 PeckShield Audit Report #: 2020-43

sxwang@peckshield.com

Public

Document Properties

Client Hegic
Title Smart Contract Audit Report
Target Hegic
Version 1.0
Author Xuxian Jiang
Auditors Huaguo Shi, Jeff Liu, Xuxian Jiang
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 October 1, 2020 Xuxian Jiang Final Release
1.0-rc2 September 30, 2020 Xuxian Jiang Release Candidate #2
1.0-rc1 September 28, 2020 Xuxian Jiang Release Candidate #1
0.4 September 15, 2020 Xuxian Jiang Additional Findings #3
0.3 September 10, 2020 Xuxian Jiang Additional Findings #2
0.2 September 8, 2020 Xuxian Jiang Additional Findings #1
0.1 September 4, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/41 PeckShield Audit Report #: 2020-43

Public

Contents

1 Introduction 5
1.1 About Hegic Protocol . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Non-Functional Lockup Periods in HegicStaking . 12
3.2 Possible Front-Running Against Pool Withdrawals And Staking 14
3.3 Bypass of Daily Reward Limit in HegicRewards . 16
3.4 Improved Precision With Division Avoidance . 18
3.5 Improved Precision With Ceiling Division . 19
3.6 Less Friction For Option Creation . 21
3.7 Wrong Reward Rate in HegicWBTCRewards . 24
3.8 Suggested Reservation of The First enum Element 25
3.9 Enhanced Business Logic of lock() in HegicETHPool 27
3.10 Redundant lockupFree Verification . 29
3.11 Denial-of-Service in getReward() . 30
3.12 Option Pool Draining With Invalid optionType . 31

4 Conclusion 34

5 Appendix 35
5.1 Basic Coding Bugs . 35

5.1.1 Constructor Mismatch . 35
5.1.2 Ownership Takeover . 35

3/41 PeckShield Audit Report #: 2020-43

Public

5.1.3 Redundant Fallback Function . 35
5.1.4 Overflows & Underflows . 35
5.1.5 Reentrancy . 36
5.1.6 Money-Giving Bug . 36
5.1.7 Blackhole . 36
5.1.8 Unauthorized Self-Destruct . 36
5.1.9 Revert DoS . 36
5.1.10 Unchecked External Call . 37
5.1.11 Gasless Send . 37
5.1.12 Send Instead Of Transfer . 37
5.1.13 Costly Loop . 37
5.1.14 (Unsafe) Use Of Untrusted Libraries . 37
5.1.15 (Unsafe) Use Of Predictable Variables . 38
5.1.16 Transaction Ordering Dependence . 38
5.1.17 Deprecated Uses . 38

5.2 Semantic Consistency Checks . 38
5.3 Additional Recommendations . 38

5.3.1 Avoid Use of Variadic Byte Array . 38
5.3.2 Make Visibility Level Explicit . 39
5.3.3 Make Type Inference Explicit . 39
5.3.4 Adhere To Function Declaration Strictly . 39

References 40

4/41 PeckShield Audit Report #: 2020-43

Public

1 | Introduction

Given the opportunity to review the Hegic Protocol design document and related smart contract
source code, we in the report outline our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Hegic Protocol

Hegic is a protocol for trustless creation, maintenance, and settlement of hedge contracts. A hedge
contract is an options-like on-chain contract that gives the holder (buyer) a right to buy or to sell
an asset at a certain price as well as imposes the obligation on the writer (seller) to buy or to sell
an asset during a certain time period. The Hegic Protocol plays the role of the Options Clearing
Corporation (OCC) in traditional financial markets, but in a trustless, non-custodial manner. It
can be useful for participants who want to protect their assets from the price downside and for the
liquidity providers who might find the returns on writing hedge contracts attractive. Hegic provides
a valuable instrument to hedge risks and control excessive exposure from market fluctuation and
dynamics, therefore presenting a unique contribution to current DeFi ecosystem.

The basic information of Hegic is as follows:

Table 1.1: Basic Information of Hegic

Item Description
Issuer Hegic

Website https://www.hegic.co/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report October 1, 2020

5/41 PeckShield Audit Report #: 2020-43

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/hegic/contracts (2943e24)

1.2 About PeckShield

PeckShield Inc. [15] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

6/41 PeckShield Audit Report #: 2020-43

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/41 PeckShield Audit Report #: 2020-43

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/41 PeckShield Audit Report #: 2020-43

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/41 PeckShield Audit Report #: 2020-43

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Hegic Protocol design and implementation.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 1

High 0

Medium 4

Low 2

Informational 5

Total 12

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/41 PeckShield Audit Report #: 2020-43

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 critical-severity
vulnerability, 4 medium-severity vulnerabilities, 2 low-severity vulnerabilities and 5 informational rec-
ommendations.

Table 2.1: Key Hegic Audit Findings

ID Severity Title Category Status
PVE-001 Medium Non-Functional Lockup Periods in Hegic-

Staking
Business Logics Fixed

PVE-002 Low Possible Front-Running Against Pool
Withdrawals And Staking

Business Logics Partially Fixed

PVE-003 Medium Bypass of Daily Reward Limit in HegicRe-
wards

Business Logics Fixed

PVE-004 Informational Improved Precision With Division Avoid-
ance

Coding Practices Fixed

PVE-005 Informational Improved Precision With Ceiling Division Numeric Errors Fixed
PVE-006 Informational Less Friction For Option Creation Coding Practices Fixed
PVE-007 Medium Wrong Reward Rate in HegicWBTCRe-

wards
Business Logics Fixed

PVE-008 Informational Suggested Reservation of The First enum
Element

Coding Practices Fixed

PVE-009 Low Enhanced Business Logic of lock() in
HegicETHPool

Business Logics Fixed

PVE-010 Informational Redundant lockupFree Verification Business Logics Fixed
PVE-011 Medium Denial-of-Service in getReward() Business Logics Fixed
PVE-012 Critical Option Pool Draining With Invalid option-

Type
Business Logics Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/41 PeckShield Audit Report #: 2020-43

Public

3 | Detailed Results

3.1 Non-Functional Lockup Periods in HegicStaking

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: HegicStakingETH/HegicStakingWBTC

• Category: Business Logics [7]

• CWE subcategory: CWE-841 [5]

Description

By design, the Hegic protocol will generate and collect settlement fees (in ETH and WBTC) paid every
time when a hegic option contract is purchased. The HEGIC token holders can stake their tokens to
receive pro-rata staking rewards. For example, if there will be 10 active staking lots, each of them
will be receiving 10% of rewards; and if there will be 100 active staking lots, each of them will be
receiving 1% of rewards.

The staking logic is implemented in two contracts: HegicStakingETH and HegicStakingWBTC. As the
names indicate, they are pool-specific. In order to prevent possible flashloan-assisted front-running
attacks that may claim the majority of rewards, the staking logic is designed to have a lockup period
for staked assets. For each account, the associated lockup period is recorded as [lastBoughtTimestamp
[account], lastBoughtTimestamp[account].add(lockupPeriod)].

66 f unc t i on buy (u in t amount) ex te rna l o v e r r i d e {
67 r equ i r e (amount > 0 , "Amount is zero") ;
68 r equ i r e (t o t a l S u p p l y () + amount <= MAX_SUPPLY) ;
69 _mint (msg . sender , amount) ;
70 HEGIC . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , amount . mul (LOT_PRICE)) ;
71 }

Listing 3.1: HegicStaking. sol

However, it comes to our attention that the staking function, i.e., buy(), does not record the
lastBoughtTimestamp of the buyer. As a result, the protocol keeps the default lastBoughtTimestamp of 0

12/41 PeckShield Audit Report #: 2020-43

Public

for the buyer. When any transfer() or transferFrom() action occurs, the lockup verification routine,
i.e., _beforeTokenTransfer(), always gives a green light even when the transferred staking pool tokens
are just bought! In other words, despite the fact the receiver may have explicitly requested for not
accepting any funds in the lockup period: _revertTransfersInLockUpPeriod[receiver] == true (line
108), the transfer will not be blocked.

100 f unc t i on _befo reTokenTrans fe r (address from , address to , uint256) i n t e r n a l o v e r r i d e {
101 i f (from != address (0)) s a v e P r o f i t (from) ;
102 i f (to != address (0)) s a v e P r o f i t (to) ;
103 i f (
104 l astBoughtTimestamp [from] . add (l o c kupPe r i o d) > block . timestamp &&
105 l astBoughtTimestamp [from] > lastBoughtTimestamp [to]
106) {
107 r equ i r e (
108 ! _ r e v e r tT r an s f e r s I nLockUpPe r i od [to] ,
109 "the recipient does not accept blocked funds"
110) ;
111 l astBoughtTimestamp [to] = lastBoughtTimestamp [from] ;
112 }
113 }

Listing 3.2: HegicStaking. sol

Similarly, since the protocol always keeps the default _beforeTokenTransfer() value for any ac-
count, the lockupFreemodifier () require(lastBoughtTimestamp[msg.sender].add(lockupPeriod)<= block

.timestamp)) is always satisfied, meaning any stakers can immediately sell without being locked.

73 f unc t i on s e l l (u in t amount) ex te rna l o v e r r i d e l o ckupF r e e {
74 _burn (msg . sender , amount) ;
75 HEGIC . s a f eT r a n s f e r (msg . sender , amount . mul (LOT_PRICE)) ;
76 }

Listing 3.3: HegicStaking. sol

Recommendation Properly record the lastBoughtTimestamp when a HEGIC holder stakes the
assets as follows:

66 f unc t i on buy (u in t amount) ex te rna l o v e r r i d e {
67 r equ i r e (amount > 0 , "Amount is zero") ;
68 r equ i r e (t o t a l S u p p l y () + amount <= MAX_SUPPLY) ;
69 l astBoughtTimestamp [msg . sender] = block . timestamp ;
70 _mint (msg . sender , amount) ;
71 HEGIC . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , amount . mul (LOT_PRICE)) ;
72 }

Listing 3.4: HegicStaking. sol

Status This issue has been fixed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.

13/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c

Public

3.2 Possible Front-Running Against Pool Withdrawals And
Staking

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: HegicETHPool/HegicERCPool

• Category: Business Logics [7]

• CWE subcategory: CWE-841 [5]

Description

Hegic is an on-chain peer-to-pool options trading protocol built on Ethereum. The pool has well-
defined APIs that allow for liquidity providers (“writers”) to efficiently add or remove funds. By doing
so, funds from liquidity providers can be distributed among many hedge contracts simultaneously. It
not only diversifies the liquidity allocation and makes efficient use of funds in the pool, but collectively
shares the associated risks from one particular writer to all active liquidity providers.

The defined APIs for pool management mainly include provide() and withdraw(). The provide()

routine is used to add funds into the pool while the withdraw() routine is used to withdraw funds
from the pool. Similar to the management of staked assets (Section 3.1), the pool supports a lockup
period for new funds into the pool. Specifically, for each liquidity provider, the associated lockup pe-
riod is recorded as [lastProvideTimestamp[account], lastProvideTimestamp[account].add(lockupPeriod

)]. Moreover, when any transfer() or transferFrom() action occurs, there is an accompanying lockup
verification routine, i.e., _beforeTokenTransfer(). In the following, we outline the code logic of the
three related functions: provide(), withdraw(), and _beforeTokenTransfer().

67 f unc t i on withdraw (uint256 amount , uint256 maxBurn) ex te rna l r e tu rn s (uint256 burn) {
68 r equ i r e (
69 l a s tP rov ideT imes tamp [msg . sender] . add (l o c kupPe r i o d) <= block . timestamp ,
70 "Pool: Withdrawal is locked up"
71) ;
72 r equ i r e (
73 amount <= a v a i l a b l e B a l a n c e () ,
74 "Pool Error: Not enough funds on the pool contract. Please lower the amount.

"
75) ;
76 burn = amount . mul (t o t a l S u p p l y ()) . d i v (t o t a l B a l a n c e ()) ;
77
78 r equ i r e (burn <= maxBurn , "Pool: Burn limit is too small") ;
79 r equ i r e (burn <= ba lanceOf (msg . sender) , "Pool: Amount is too large") ;
80 r equ i r e (burn > 0 , "Pool: Amount is too small") ;
81
82 _burn (msg . sender , burn) ;
83 emit Withdraw (msg . sender , amount , burn) ;
84 msg . sender . t r a n s f e r (amount) ;

14/41 PeckShield Audit Report #: 2020-43

Public

85 }

Listing 3.5: HegicETHPool.sol

88 f unc t i on withdraw (uint256 amount , uint256 maxBurn) ex te rna l r e tu rn s (uint256 burn) {
89 r equ i r e (
90 l a s tP rov ideT imes tamp [msg . sender] . add (l o c kupPe r i o d) <= block . timestamp ,
91 "Pool: Withdrawal is locked up"
92) ;
93 r equ i r e (
94 amount <= a v a i l a b l e B a l a n c e () ,
95 "Pool Error: Not enough funds on the pool contract. Please lower the amount.

"
96) ;
97 burn = amount . mul (t o t a l S u p p l y ()) . d i v (t o t a l B a l a n c e ()) ;
98
99 r equ i r e (burn <= maxBurn , "Pool: Burn limit is too small") ;

100 r equ i r e (burn <= ba lanceOf (msg . sender) , "Pool: Amount is too large") ;
101 r equ i r e (burn > 0 , "Pool: Amount is too small") ;
102
103 _burn (msg . sender , burn) ;
104 emit Withdraw (msg . sender , amount , burn) ;
105 msg . sender . t r a n s f e r (amount) ;
106 }

Listing 3.6: HegicETHPool.sol

194 f unc t i on _befo reTokenTrans fe r (address from , address to , uint256) i n t e r n a l o v e r r i d e {
195 i f (
196 l a s tP rov ideT imes tamp [from] . add (l o c kupPe r i od) > block . timestamp &&
197 l a s tP rov ideT imes tamp [from] > la s tP rov ideT imes tamp [to]
198) {
199 r equ i r e (
200 ! _ r e v e r tT r an s f e r s I nLockUpPe r i od [to] ,
201 "the recipient does not accept blocked funds"
202) ;
203 l a s tP rov ideT imes tamp [to] = la s tProv ideT imes tamp [from] ;
204 }
205 }

Listing 3.7: HegicETHPool.sol

By examining these three routines, we identify a possible front-running attack that may block
an ongoing withdrawal attempt. Specifically, when a transfer() or transferFrom() action occurs,
the lockup period of the receiver, i.e.,lastProvideTimestamp[to], might be accordingly updated (line
203). Therefore, upon the observation of a withdraw() attempt from a victim, a malicious actor
could intentionally transfer 1 WEI to the victim. By doing so, the lastProvideTimestamp of the victim
is updated with the lastProvideTimestamp of the malicious actor. As a result, the specific withdraw()

attempt is blocked as it occurs in the lockup period (line 90). We emphasize this attack will not

15/41 PeckShield Audit Report #: 2020-43

Public

work for those victims who do turn on the lastProvideTimestamp flag. However, most victims likely
will not turn the flag on since it requires an extra transaction to achieve that.

In addition, the staking support in Hegic (implemented in HegicStakingETH and HegicStakingWBTC)
shares a similar issue as the address(0) could be contaminated, hence blocking all buy() attempts
from legitimate stakers who turn on the _revertTransfersInLockUpPeriod flag. Note this attack does
not work for victims who have not turned the flag on, which is contrary to the pool case.

Last, we observe similar front-running attacks in other settings, such as front-running the swapToWBTC
() routine of the HegicWBTCOptions contract (when a WBTC option is being created) or the send() routine
of the HegicWBTCPool contract (when a pool loss is forthcoming).

Recommendation A mitigation to the above front-running attacks need to turn on (the pool
front-running) or off (the stake front-running) the victim’s flag, i.e., _revertTransfersInLockUpPeriod.
By doing so, we can prevent the lastProvideTimestamp flag from being manipulated by others.

Status This issue has been addressed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.
In the meantime, we acknowledge that front-running attacks are inherent in current DEXes and there
is still a need to search for more effective countermeasures.

3.3 Bypass of Daily Reward Limit in HegicRewards

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: HegicRewards

• Category: Business Logics [7]

• CWE subcategory: CWE-841 [5]

Description

Hegic provides an incentivization mechanism to encourage early adoption. Specifically, certain HEGIC

tokens will be distributed pro-rata on a daily basis among options holders. The logic has been
implemented in the HegicRewards contract. The current implementation sets the maximum daily
reward as MAX_DAILY_REWARD = 165_000e18.

Each option holder is eligible to claim the rewards via the getReward() routine. The logic is rather
straightforward in firstly determining the reward amount, next marking the option’s reward-claiming
status, then ensuring the rewarded amount still falls within the daily rewarding limit, and finally
transferring the reward.

Our analysis shows that the above logic forgets to update the daily rewarded amount that has
been claimed so far. Therefore, the above checking of daily rewarding limit translates into that each
individual option reward is no more than the daily limit.

16/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c

Public

53 f unc t i on getReward (u in t o p t i o n I d) ex te rna l {
54 u in t amount = rewardAmount (o p t i o n I d) ;
55 u in t today = block . timestamp / 1 days ;
56 (, address ho lde r , , , , , ,) = heg i cOp t i on s . o p t i o n s (o p t i o n I d) ;
57 r equ i r e (! r ewardedOpt ions [o p t i o n I d] , "The option was rewarded") ;
58 r equ i r e (
59 amount . add (da i l yReward [today]) < MAX_DAILY_REWARD,
60 "Exceeds daily limits"
61) ;
62 r ewardedOpt ions [o p t i o n I d] = t rue ;
63 heg i c . s a f eT r a n s f e r (ho lde r , amount) ;
64 }

Listing 3.8: HegicRewards.sol

Recommendation Revise the logic to properly implement the daily reward limit. An example
revision is shown below:

53 f unc t i on getReward (u in t o p t i o n I d) ex te rna l {
54 u in t amount = rewardAmount (o p t i o n I d) ;
55 u in t today = block . timestamp / 1 days ;
56 (, address ho lde r , , , , , ,) = heg i cOp t i on s . o p t i o n s (o p t i o n I d) ;
57 r equ i r e (! r ewardedOpt ions [o p t i o n I d] , "The option was rewarded") ;
58 r equ i r e (
59 amount . add (da i l yReward [today]) < MAX_DAILY_REWARD,
60 "Exceeds daily limits"
61) ;
62 r ewardedOpt ions [o p t i o n I d] = t rue ;
63 da i l yReward [today] = da i l yReward [today] . add (amount) ;
64 heg i c . s a f eT r a n s f e r (ho lde r , amount) ;
65 }

Listing 3.9: HegicRewards.sol

Status This issue has been fixed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.

17/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c

Public

3.4 Improved Precision With Division Avoidance

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: HegicETHPool/HegicERCPool

• Category: Coding Practices [6]

• CWE subcategory: CWE-1041 [2]

Description

As mentioned in Section 3.2, Hegic is an on-chain peer-to-pool options trading protocol. For each
option being purchased, the pool will lock certain amount of funds to meet the need in case the
option will be exercised (at the agreed strike price) within the option’s validity period. Internally, a
local variable named lockedAmount keeps track of total locked amount of funds in current pool for
active options.

The Hegic protocol takes a rather prudent approach in maintaining a threshold of 80% of locked
funds above which no new option will be created. This restriction is enforced when a new option
always needs to lock certain amount of funds in the pool (in the lock() routine as shown below),
i.e., require(lockedAmount.add(amount).mul(10).div(totalBalance())< 8) (line 115).

108 /*
109 * @nonce calls by HegicCallOptions to lock the funds
110 * @param amount Amount of funds that should be locked in an option
111 */
112 f unc t i on l o c k (u in t id , uint256 amount) ex te rna l o v e r r i d e onlyOwner payable {
113 r equ i r e (i d == l o c k e d L i q u i d i t y . length , "Wrong id") ;
114 r equ i r e (
115 lockedAmount . add (amount) . mul (10) . d i v (t o t a l B a l a n c e ()) < 8 ,
116 "Pool Error: Amount is too large."
117) ;
118
119 l o c k e d L i q u i d i t y . push (L o c k e dL i q u i d i t y (amount , msg . value , t rue)) ;
120 lockedPremium = lockedPremium . add (msg . va lue) ;
121 lockedAmount = lockedAmount . add (amount) ;
122 }

Listing 3.10: HegicETHPool.sol

The use of division in line 115 may inevitably introduce a (small) precision loss. To remedy that,
a better approach is to change the requirement into the following one: require(lockedAmount.add(

amount).mul(10))< totalBalance().mul(8)). By doing so, we can ensure there is no precision loss in
this particular case.

Recommendation Revise the threshold enforcement of locked amount in the pool to avoid
any unnecessary precision loss.

18/41 PeckShield Audit Report #: 2020-43

Public

108 /*
109 * @nonce calls by HegicCallOptions to lock the funds
110 * @param amount Amount of funds that should be locked in an option
111 */
112 f unc t i on l o c k (u in t id , uint256 amount) ex te rna l o v e r r i d e onlyOwner payable {
113 r equ i r e (i d == l o c k e d L i q u i d i t y . length , "Wrong id") ;
114 r equ i r e (
115 lockedAmount . add (amount) . mul (10) < t o t a l B a l a n c e () . mul (8) ,
116 "Pool Error: Amount is too large."
117) ;
118
119 l o c k e d L i q u i d i t y . push (L o c k e dL i q u i d i t y (amount , msg . value , t rue)) ;
120 lockedPremium = lockedPremium . add (msg . va lue) ;
121 lockedAmount = lockedAmount . add (amount) ;
122 }

Listing 3.11: HegicETHPool.sol

Status This issue has been fixed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.

3.5 Improved Precision With Ceiling Division

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: HegicETHPool/HegicERCPool

• Category: Numeric Errors [8]

• CWE subcategory: CWE-190 [3]

Description

SafeMath is a Solidity math library that is designed to support safe math operations by preventing
common overflow or underflow issues when working with uint256 operands. While it indeed blocks
common overflow or underflow issues, the lack of float support in Solidity may introduce another
subtle, but troublesome issue: precision loss. In this section, we examine one possible precision loss
source that stems from the default division behavior, i.e., the floor division.

Conceptually, the floor division is a normal division operation except it returns the largest possible
integer that is either less than or equal to the normal division result. In SafeMath, floor(x) or simply
div takes as input an integer number x and gives as output the greatest integer less than or equal to
x, denoted floor(x) = ⌊x⌋. Its counterpart is the ceiling division that maps x to the least integer
greater than or equal to x, denoted as ceil(x) = ⌈x⌉. In essence, the ceiling division is rounding
up the result of the division, instead of rounding down in the floor division.

19/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c

Public

As examined in Section 3.2, a Hegic pool has defined two main APIs for its management: provide

() and withdraw(). The provide() routine is used to add funds into the pool while the withdraw()

routine is used to withdraw funds from the pool.
During the analysis of withdraw(), we notice the burn amount calculation results in (small)

precision loss. For elaboration, we show the related code snippet below.

83 /*
84 * @nonce Provider burns writeETH and receives ETH from the pool
85 * @param amount Amount of ETH to receive
86 * @return burn Amount of tokens to be burnt
87 */
88 f unc t i on withdraw (uint256 amount , uint256 maxBurn) ex te rna l r e tu rn s (uint256 burn) {
89 r equ i r e (
90 l a s tP rov ideT imes tamp [msg . sender] . add (l o c kupPe r i o d) <= block . timestamp ,
91 "Pool: Withdrawal is locked up"
92) ;
93 r equ i r e (
94 amount <= a v a i l a b l e B a l a n c e () ,
95 "Pool Error: Not enough funds on the pool contract. Please lower the amount.

"
96) ;
97 burn = amount . mul (t o t a l S u p p l y ()) . d i v (t o t a l B a l a n c e ()) ;
98
99 r equ i r e (burn <= maxBurn , "Pool: Burn limit is too small") ;

100 r equ i r e (burn <= ba lanceOf (msg . sender) , "Pool: Amount is too large") ;
101 r equ i r e (burn > 0 , "Pool: Amount is too small") ;
102
103 _burn (msg . sender , burn) ;
104 emit Withdraw (msg . sender , amount , burn) ;
105 msg . sender . t r a n s f e r (amount) ;
106 }

Listing 3.12: HegicETHPool.sol

Specifically, the burn amount is calculated as burn = amount.mul(totalSupply()).div(totalBalance

())) (line 97). Apparently, it is a standard floor() operation that rounds down the calculation result.
Note that in a pool scenario where a liquidity provider wants to withdraw previous deposits, if there is
a rounding issue, it is always preferable to calculate the trading amount in a way towards the liquidity
pool. Therefore, depending on specific cases, the calculation may often needs to replace the normal
floor division with ceiling division. In other words, the burn amount calculation is better revised as
burn = amount.mul(totalSupply()).sub(1).div(totalBalance()).add(1), a ceiling division.

Recommendation Revise the logic accordingly to round-up the burn amount calculation. Note
both pool contracts (HegicETHPool and HegicERCPool) share the same issue.

83 /*
84 * @nonce Provider burns writeETH and receives ETH from the pool
85 * @param amount Amount of ETH to receive
86 * @return burn Amount of tokens to be burnt

20/41 PeckShield Audit Report #: 2020-43

Public

87 */
88 f unc t i on withdraw (uint256 amount , uint256 maxBurn) ex te rna l r e tu rn s (uint256 burn) {
89 r equ i r e (
90 l a s tP rov ideT imes tamp [msg . sender] . add (l o c kupPe r i o d) <= block . timestamp ,
91 "Pool: Withdrawal is locked up"
92) ;
93 r equ i r e (
94 amount <= a v a i l a b l e B a l a n c e () ,
95 "Pool Error: Not enough funds on the pool contract. Please lower the amount.

"
96) ;
97 burn = amount . mul (t o t a l S u p p l y ()) . sub (1) . d i v (t o t a l B a l a n c e ()) . add (1) ;
98
99 r equ i r e (burn <= maxBurn , "Pool: Burn limit is too small") ;

100 r equ i r e (burn <= ba lanceOf (msg . sender) , "Pool: Amount is too large") ;
101 r equ i r e (burn > 0 , "Pool: Amount is too small") ;
102
103 _burn (msg . sender , burn) ;
104 emit Withdraw (msg . sender , amount , burn) ;
105 msg . sender . t r a n s f e r (amount) ;
106 }

Listing 3.13: HegicETHPool.sol

Status This issue has been fixed in the commit: 1289891a39e06a865ec7d932c006e466afbed006.

3.6 Less Friction For Option Creation

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: HegicETHOptions

• Category: Coding Practices [6]

• CWE subcategory: CWE-1041 [2]

Description

Hegic has a number of components that not only depend on each other, but also interact with external
DeFi protocols. Because of that, it is often necessary to introduce as little friction as possible to avoid
sudden disruption of an ongoing transaction. Note that the disruption can be caused by imposed
requirements on the related execution paths. Certainly, essential requirements need to be satisfied
while others need to gauge specific application situations or logics to avoid unnecessary or sudden
revert.

In the following, we show a specific case in the HegicETHOptions contract. The specific function is
create() that is used to create a new option. Note this routine performs a number of sanity checks,

21/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/1289891a39e06a865ec7d932c006e466afbed006

Public

including the option periods as well as related fee requirements. The particular statement of require
(msg.value == total, "Wrong value") (line 117) asks for the exact ETH amount being transferred in.
This requirement will unnecessarily revert the ongoing transaction even if the routine receives enough
payment.

98 f unc t i on c r e a t e (
99 uint256 pe r i od ,

100 uint256 amount ,
101 uint256 s t r i k e ,
102 OptionType opt ionType
103)
104 ex te rna l
105 payable
106 r e tu rn s (uint256 opt i on ID)
107 {
108 (uint256 t o t a l , uint256 s e t t l emen tFee , uint256 s t r i k e F e e ,) = f e e s (
109 pe r i od ,
110 amount ,
111 s t r i k e ,
112 opt ionType
113) ;
114 r equ i r e (p e r i o d >= 1 days , "Period is too short") ;
115 r equ i r e (p e r i o d <= 4 weeks , "Period is too long") ;
116 r equ i r e (amount > s t r i k e F e e , "Price difference is too large") ;
117 r equ i r e (msg . va lue == to t a l , "Wrong value") ;
118
119 uint256 s t r i keAmount = amount . sub (s t r i k e F e e) ;
120 opt i on ID = op t i o n s . l ength ;
121 Option memory op t i on = Option (
122 Sta t e . Act i ve ,
123 msg . sender ,
124 s t r i k e ,
125 amount ,
126 s t r i keAmount . mul (o p t i o n C o l l a t e r a l i z a t i o n R a t i o) . d i v (100) . add (s t r i k e F e e) ,
127 t o t a l . sub (s e t t l emen tFe e) ,
128 block . timestamp + per i od ,
129 opt ionType
130) ;
131
132 op t i o n s . push (op t i on) ;
133 s e t t l emen t F e eR e c i p i e n t . s e n dP r o f i t { va lue : s e t t l emen tFe e } () ;
134 poo l . l o c k { va lue : o p t i on . premium} (opt ion ID , op t i on . lockedAmount) ;
135 emit Crea te (opt ion ID , msg . sender , s e t t l emen tFee , t o t a l) ;
136 }

Listing 3.14: HegicETHOptions.sol

A more graceful approach is to allow for a larger payment, but only take the needed amount and
then return extra back to the sender. By doing so, we avoid introducing unnecessary frictions.

Recommendation Introduce as little friction as possible by revising the create() routine

22/41 PeckShield Audit Report #: 2020-43

Public

accordingly.

98 f unc t i on c r e a t e (
99 uint256 pe r i od ,

100 uint256 amount ,
101 uint256 s t r i k e ,
102 OptionType opt ionType
103)
104 ex te rna l
105 payable
106 r e tu rn s (uint256 opt i on ID)
107 {
108 (uint256 t o t a l , uint256 s e t t l emen tFee , uint256 s t r i k e F e e ,) = f e e s (
109 pe r i od ,
110 amount ,
111 s t r i k e ,
112 opt ionType
113) ;
114 r equ i r e (p e r i o d >= 1 days , "Period is too short") ;
115 r equ i r e (p e r i o d <= 4 weeks , "Period is too long") ;
116 r equ i r e (amount > s t r i k e F e e , "Price difference is too large") ;
117 r equ i r e (msg . va lue >= to t a l , "Wrong value") ;
118 i f (msg . va lue > t o t a l)
119 msg . sender . t r a n s f e r (msg . va lue − t o t a l) ;
120
121 uint256 s t r i keAmount = amount . sub (s t r i k e F e e) ;
122 opt i on ID = op t i o n s . l ength ;
123 Option memory op t i on = Option (
124 Sta t e . Act i ve ,
125 msg . sender ,
126 s t r i k e ,
127 amount ,
128 s t r i keAmount . mul (o p t i o n C o l l a t e r a l i z a t i o n R a t i o) . d i v (100) . add (s t r i k e F e e) ,
129 t o t a l . sub (s e t t l emen tFe e) ,
130 block . timestamp + per i od ,
131 opt ionType
132) ;
133
134 op t i o n s . push (op t i on) ;
135 s e t t l emen t F e eR e c i p i e n t . s e n dP r o f i t { va lue : s e t t l emen tFe e } () ;
136 poo l . l o c k { va lue : o p t i on . premium} (opt ion ID , op t i on . lockedAmount) ;
137 emit Crea te (opt ion ID , msg . sender , s e t t l emen tFee , t o t a l) ;
138 }

Listing 3.15: HegicETHOptions.sol

Status This issue has been fixed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.
While reviewing this particular commit, we notice the related overpayment is returned twice and this
has been accordingly fixed in this commit: 1f344462d1f3a501ec20fbcecc7ae697bc43c2a0.

23/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c
https://github.com/hegic/contracts/commit/1f344462d1f3a501ec20fbcecc7ae697bc43c2a0

Public

3.7 Wrong Reward Rate in HegicWBTCRewards

• ID: PVE-007

• Severity: Medium

• Likelihood: Medium

• Impact:Medium

• Target: HegicWBTCRewards

• Category: Numeric Errors [8]

• CWE subcategory: CWE-190 [3]

Description

The Hegic protocol has defined two reward contracts, i.e., HegicETHRewards and HegicWBTCRewards.
Both inherit from the base contract of HegicETHRewards which has the following constructor and
variables.

25 a b s t r a c t
26 cont ract HegicRewards i s Ownable {
27 us ing SafeMath f o r u in t ;
28 us ing SafeERC20 f o r IERC20 ;
29
30 IHeg i cOp t i on s pub l i c immutable h eg i cOp t i on s ;
31 IERC20 pub l i c immutable h eg i c ;
32 mapping (u in t => bool) pub l i c r ewardedOpt ions ;
33 mapping (u in t => u in t) pub l i c da i l yReward ;
34 u in t i n t e r n a l constant MAX_DAILY_REWARD = 165_000e18 ;
35 u in t i n t e r n a l constant REWARD_RATE_ACCURACY = 1e8 ;
36 u in t i n t e r n a l immutable MAX_REWARDS_RATE;
37 u in t i n t e r n a l immutable MIN_REWARDS_RATE;
38 u in t pub l i c r ewardsRate ;
39
40 cons t ruc to r (
41 IHeg i cOp t i on s _hegicOpt ions ,
42 IERC20 _hegic ,
43 u in t maxRewardsRate ,
44 u in t minRewardsRate
45) pub l i c {
46 heg i cOp t i on s = _heg icOpt ions ;
47 heg i c = _hegic ;
48 MAX_REWARDS_RATE = maxRewardsRate ;
49 MIN_REWARDS_RATE = minRewardsRate ;
50 r ewardsRate = maxRewardsRate ;
51 }

Listing 3.16: The HegicRewards Contract

We notice the REWARD_RATE_ACCURACY = 1e8, which implies that reward rate has the decimal of
8. However, when the HegicWBTCRewards contract instantiates HegicRewards, we observe the following
instantiation.

25 cont ract HegicWBTCRewards i s HegicRewards {

24/41 PeckShield Audit Report #: 2020-43

Public

26 cons t ruc to r (
27 IHeg i cOp t i on s _hegicOpt ions ,
28 IERC20 _hegic
29) pub l i c HegicRewards (
30 _hegicOpt ions ,
31 _hegic ,
32 1_000_000e18 ,
33 10 e18
34) {}
35 }

Listing 3.17: The HegicWBTCRewards Contract

In particular, maxRewardsRate and minRewardsRate are initialized as 1_000_000e18 and 10e18, respec-
tively. Apparently, they are assuming the decimal of 18, not 8. The decimal mismatch could result
in immediate depletion of available rewards for distribution.

Recommendation Correct the above-mentioned decimal mismatch in HegicWBTCRewards. Note
that HegicETHRewards is not affected.

25 cont ract HegicWBTCRewards i s HegicRewards {
26 cons t ruc to r (
27 IHeg i cOp t i on s _hegicOpt ions ,
28 IERC20 _hegic
29) pub l i c HegicRewards (
30 _hegicOpt ions ,
31 _hegic ,
32 1_000_000e8 ,
33 10 e8
34) {}
35 }

Listing 3.18: The HegicWBTCRewards Contract

Status This issue has been fixed in the commit: 1f344462d1f3a501ec20fbcecc7ae697bc43c2a0.

3.8 Suggested Reservation of The First enum Element

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: IHegicOptions

• Category: Coding Practices [6]

• CWE subcategory: CWE-1041 [2]

Description

The Solidity language supports that enum type that allows to create a user-defined type. They are
explicitly convertible to and from all integer types, but implicit conversion is not allowed. The explicit

25/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/1f344462d1f3a501ec20fbcecc7ae697bc43c2a0

Public

conversions check the value ranges at runtime and a failure causes an exception. The enum type needs
at least one member and all members are represented by subsequent unsigned integer values starting
from 0, in the order they are defined.

If we examine the option state and type defined in IHegicOptions, there are three option states,
i.e., Active, Exercised, and Expired. and two option types, i.e., Put and Call. Note that the first
enum member equals the number 0, which coincidentally is the same as the default or uninitialized
integer. Because of that, we strongly suggest to have the first enum member as a placeholder member
to avoid any unnecessary misinterpretation.

74 i n t e r f a c e IHeg i cOp t i on s {
75 event Crea te (
76 uint256 indexed id ,
77 address indexed account ,
78 uint256 s e t t l emen tFee ,
79 uint256 t o t a l F e e
80) ;
81
82 event E x e r c i s e (uint256 indexed id , uint256 p r o f i t) ;
83 event Exp i r e (uint256 indexed id , uint256 premium) ;
84 enum Sta t e { Act i ve , Ex e r c i s e d , Exp i r ed }
85 enum OptionType {Put , Ca l l }
86
87 . . .
88
89 }

Listing 3.19: IHegicOptions. sol

Using the enum State as an example, if we consider the public unlock() function, we may provide
an arbitrary large optionID. This corresponding option does not exist. However, it can successfully
pass the sanity checks performed in lines 221-222. The fact that the specific check option.state

== State.Active is met should be alarming for an non-exist option! Fortunately, the compiler will
generate an implicit bound-check for an array so that the option index stays within the array range
[0, options.length-1]. Nevertheless, the misinterpretation of the first enum member as 0 needs to be
avoided as much as possible.

215 /**
216 * @notice Unlock funds locked in the expired options
217 * @param optionID ID of the option
218 */
219 f unc t i on un lock (uint256 opt i on ID) pub l i c {
220 Option s torage op t i on = op t i o n s [op t i on ID] ;
221 r equ i r e (op t i on . e x p i r a t i o n < block . timestamp , "Option has not expired yet") ;
222 r equ i r e (op t i on . s t a t e == Sta t e . Act i ve , "Option is not active") ;
223 op t i on . s t a t e = Sta t e . Exp i r ed ;
224 poo l . un l ock (op t i on ID) ;
225 emit Exp i r e (opt ion ID , op t i on . premium) ;

26/41 PeckShield Audit Report #: 2020-43

Public

226 }

Listing 3.20: HegicETHOptions.sol

Recommendation Revised the defined enum members as the following:

74 i n t e r f a c e IHeg i cOp t i on s {
75 event Crea te (
76 uint256 indexed id ,
77 address indexed account ,
78 uint256 s e t t l emen tFee ,
79 uint256 t o t a l F e e
80) ;
81
82 event E x e r c i s e (uint256 indexed id , uint256 p r o f i t) ;
83 event Exp i r e (uint256 indexed id , uint256 premium) ;
84 enum Sta t e { I n a c t i v e , Act i ve , Ex e r c i s e d , Exp i r ed }
85 enum OptionType { I n v a l i d , Put , Ca l l }
86
87 . . .
88
89 }

Listing 3.21: IHegicOptions. sol

Status This issue has been fixed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.

3.9 Enhanced Business Logic of lock() in HegicETHPool

• ID: PVE-009

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: HegicETHPool

• Category: Business Logics [7]

• CWE subcategory: CWE-841 [5]

Description

As discussed in Section 3.4, the Hegic protocol takes a rather prudent approach in maintaining a
threshold of 80% of locked funds above which no new option will be created. This restriction is
enforced when a new option always needs to lock certain amount of funds in the pool (in the lock

() routine as shown below), i.e., require(lockedAmount.add(amount).mul(10).div(totalBalance())< 8)

(line 115).
108 /*
109 * @nonce calls by HegicCallOptions to lock the funds

27/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c

Public

110 * @param amount Amount of funds that should be locked in an option
111 */
112 f unc t i on l o c k (u in t id , uint256 amount) ex te rna l o v e r r i d e onlyOwner payable {
113 r equ i r e (i d == l o c k e d L i q u i d i t y . length , "Wrong id") ;
114 r equ i r e (
115 lockedAmount . add (amount) . mul (10) . d i v (t o t a l B a l a n c e ()) < 8 ,
116 "Pool Error: Amount is too large."
117) ;
118
119 l o c k e d L i q u i d i t y . push (L o c k e dL i q u i d i t y (amount , msg . value , t rue)) ;
120 lockedPremium = lockedPremium . add (msg . va lue) ;
121 lockedAmount = lockedAmount . add (amount) ;
122 }

Listing 3.22: HegicETHPool.sol

We have taken a further analysis on the threshold calculation and our result shows that the
calculation of HegicETHPool can be more precise. Specifically, the current denominator is totalBalance
(), which is essentially calculated as address(this).balance.sub(lockedPremium) (line 191).

In HegicETHPool, the lock() routine is defined as payable, which means the totalBalance() in
the equation has already taken into account the accompanying msg.value that is just transferred in.
With the further consideration of PVE-004, we need to revise the threshold as follows: require(

lockedAmount.add(amount).mul(10))< totalBalance().sub(msg.value).mul(8)).

Recommendation Revise the threshold enforcement of locked amount in HegicETHPool for
improved accuracy.

108 /*
109 * @nonce calls by HegicCallOptions to lock the funds
110 * @param amount Amount of funds that should be locked in an option
111 */
112 f unc t i on l o c k (u in t id , uint256 amount) ex te rna l o v e r r i d e onlyOwner payable {
113 r equ i r e (i d == l o c k e d L i q u i d i t y . length , "Wrong id") ;
114 r equ i r e (
115 lockedAmount . add (amount) . mul (10)) < t o t a l B a l a n c e () . sub (msg . va lue) . mul (8) ,
116 "Pool Error: Amount is too large."
117) ;
118
119 l o c k e d L i q u i d i t y . push (L o c k e dL i q u i d i t y (amount , msg . value , t rue)) ;
120 lockedPremium = lockedPremium . add (msg . va lue) ;
121 lockedAmount = lockedAmount . add (amount) ;
122 }

Listing 3.23: HegicETHPool.sol

Status This issue has been fixed in the commit: 83499168bbbf622cae53527e49576e340d06be8c.

28/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/83499168bbbf622cae53527e49576e340d06be8c

Public

3.10 Redundant lockupFree Verification

• ID: PVE-010

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: HegicStaking

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [4]

Description

As mentioned in Section 3.1, the Hegic protocol will generate and collect settlement fees (in ETH

and WBTC) paid every time when a hegic option contract is purchased. The HEGIC token holders can
stake their tokens to receive pro-rata staking rewards. In order to prevent possible flashloan-assisted
front-running attacks that may claim the majority of rewards, the staking logic is designed to have
a lockup period for staked assets. For each account, the associated lockup period is recorded as
[lastBoughtTimestamp[account], lastBoughtTimestamp[account].add(lockupPeriod)].

When analyzing the unlocking logic of staked assets, we notice there is a redundant validity check
on the lockup period. Specifically, we show below the sell() logic behind the unlocking logic. The
modifier lockupFree essentially enforces the same requirement as specified at line 76. With that, we
can safely remove one without weakening the needed enforcement.

74 f unc t i on s e l l (u in t amount) ex te rna l o v e r r i d e l o ckupF r e e {
75 r equ i r e (
76 l astBoughtTimestamp [msg . sender] . add (l o c kupPe r i o d) <= block . timestamp
77) ;
78 _burn (msg . sender , amount) ;
79 HEGIC . s a f eT r a n s f e r (msg . sender , amount . mul (LOT_PRICE)) ;
80 }

Listing 3.24: HegicStaking. sol

Recommendation Consider the removal of the redundant verification as follows:

74 f unc t i on s e l l (u in t amount) ex te rna l o v e r r i d e l o ckupF r e e {
75 _burn (msg . sender , amount) ;
76 HEGIC . s a f eT r a n s f e r (msg . sender , amount . mul (LOT_PRICE)) ;
77 }

Listing 3.25: HegicStaking. sol

Status This issue has been fixed in the commit: a11349afc3585377dd02910f0a2ff8d34b926385.

29/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/a11349afc3585377dd02910f0a2ff8d34b926385

Public

3.11 Denial-of-Service in getReward()

• ID: PVE-011

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: HegicRewards

• Category: Business Logics [7]

• CWE subcategory: CWE-841 [5]

Description

Following the discussions of Section 3.3, we further examine the incentivization mechanism to encour-
age early adoption. Specifically, each option holder is eligible to claim the rewards via the getReward()

routine. The logic is rather straightforward in firstly determining the reward amount, next marking
the option’s reward-claiming status, then ensuring the rewarded amount still falls within the daily
rewarding limit, and finally transferring the reward.

Our analysis shows that the above logic does not validate the given optionID. Because of that,
a malicious actor may submit a getReward() request with an optionID that has not been created yet
(but is expected to be created soon). Considering the current algorithm for optionID assignment,
any one can reliably guess the next optionID to be created. Consequently, the owner of new optionID

will be unable to receive the reward.

53 f unc t i on getReward (u in t o p t i o n I d) ex te rna l {
54 u in t amount = rewardAmount (o p t i o n I d) ;
55 u in t today = block . timestamp / 1 days ;
56 (, address ho lde r , , , , , ,) = heg i cOp t i on s . o p t i o n s (o p t i o n I d) ;
57 r equ i r e (! r ewardedOpt ions [o p t i o n I d] , "The option was rewarded") ;
58 r equ i r e (
59 amount . add (da i l yReward [today]) < MAX_DAILY_REWARD,
60 "Exceeds daily limits"
61) ;
62 r ewardedOpt ions [o p t i o n I d] = t rue ;
63 heg i c . s a f eT r a n s f e r (ho lde r , amount) ;
64 }

Listing 3.26: HegicRewards.sol

Recommendation Apply necessary sanity checks in getReward() to prevent invalid options from
claiming rewards. An example revision is shown in the following:

53 f unc t i on getReward (u in t o p t i o n I d) ex te rna l {
54 u in t amount = rewardAmount (o p t i o n I d) ;
55 u in t today = block . timestamp / 1 days ;
56 (IHeg i cOp t i on s . S ta t e s t a t e , address ho lde r , , , , , ,) = heg i cOp t i on s . o p t i o n s (

o p t i o n I d) ;
57 r equ i r e (s t a t e != IHeg i cOp t i on s . S t a t e . I n a c t i v e , "The option is inactive") ;
58 r equ i r e (! r ewardedOpt ions [o p t i o n I d] , "The option was rewarded") ;

30/41 PeckShield Audit Report #: 2020-43

Public

59 r equ i r e (
60 amount . add (da i l yReward [today]) < MAX_DAILY_REWARD,
61 "Exceeds daily limits"
62) ;
63 r ewardedOpt ions [o p t i o n I d] = t rue ;
64 da i l yReward [today] = da i l yReward [today] . add (amount) ;
65 heg i c . s a f eT r a n s f e r (ho lde r , amount) ;
66 }

Listing 3.27: HegicRewards.sol

Status This issue has been fixed in the commit: 1f344462d1f3a501ec20fbcecc7ae697bc43c2a0.

3.12 Option Pool Draining With Invalid optionType

• ID: PVE-012

• Severity: Critical

• Likelihood: High

• Impact: High

• Target: HegicETHOptions/HegicWBTCOptions

• Category: Business Logics [7]

• CWE subcategory: CWE-841 [5]

Description

Hegic options are created with four required elements, i.e., period, amount, strike, and optionType.
These four elements are essential in calculating respective fees (e.g., premium, locked assets, and
settlement fee) and then introducing a new option into the protocol.

To elaborate, we show below the create() routine of the HegicETHOptions contract. Note this
routine performs a number of sanity checks, including the option periods as well as related fee
requirements. However, it does not validate the last parameter optionType. With that, a malicious
actor could potentially craft a new option with an invalid optionType to drain all available funds in
the pool.

98 f unc t i on c r e a t e (
99 uint256 pe r i od ,

100 uint256 amount ,
101 uint256 s t r i k e ,
102 OptionType opt ionType
103)
104 ex te rna l
105 payable
106 r e tu rn s (uint256 opt i on ID)
107 {
108 (uint256 t o t a l , uint256 s e t t l emen tFee , uint256 s t r i k e F e e ,) = f e e s (
109 pe r i od ,

31/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/1f344462d1f3a501ec20fbcecc7ae697bc43c2a0

Public

110 amount ,
111 s t r i k e ,
112 opt ionType
113) ;
114 r equ i r e (p e r i o d >= 1 days , "Period is too short") ;
115 r equ i r e (p e r i o d <= 4 weeks , "Period is too long") ;
116 r equ i r e (amount > s t r i k e F e e , "Price difference is too large") ;
117 r equ i r e (msg . va lue == to t a l , "Wrong value") ;
118
119 uint256 s t r i keAmount = amount . sub (s t r i k e F e e) ;
120 opt i on ID = op t i o n s . l ength ;
121 Option memory op t i on = Option (
122 Sta t e . Act i ve ,
123 msg . sender ,
124 s t r i k e ,
125 amount ,
126 s t r i keAmount . mul (o p t i o n C o l l a t e r a l i z a t i o n R a t i o) . d i v (100) . add (s t r i k e F e e) ,
127 t o t a l . sub (s e t t l emen tFe e) ,
128 block . timestamp + per i od ,
129 opt ionType
130) ;
131
132 op t i o n s . push (op t i on) ;
133 s e t t l emen t F e eR e c i p i e n t . s e n dP r o f i t { va lue : s e t t l emen tFe e } () ;
134 poo l . l o c k { va lue : o p t i on . premium} (opt ion ID , op t i on . lockedAmount) ;
135 emit Crea te (opt ion ID , msg . sender , s e t t l emen tFee , t o t a l) ;
136 }

Listing 3.28: HegicETHOptions.sol

Specifically, a malicious actor requests a new option with the four required elements: period

= 1 days, amount = 1 eth, strike = latestPrice*10**18, and optionType = 100. These elements can
successfully pass current sanity checks and result in a new option creation with the following re-
spective fees: settlementFee = 0.1 eth, strikeFee = 0 eth and protocolFee = amount*sqrt(period)*

impliedVolRate/10**26 ~= 0.
After the creation, the crafted option can be immediately exercised and the main logic is im-

plemented in the payProfit() routine (shown below). As the option’s optionType is crafted, which
is not OptionType.Call, the routine takes the else branch in lines 314 − 317. Also, since the strike

price is significantly larger than the latestPrice, the resulting profit (line 316) becomes significantly
larger than the option’s locked amount. As a result, the malicious actor can immediately exercise
the crafted option to get back the the option’s locked amount (line 320).

300 /**
301 * @notice Sends profits in ETH from the ETH pool to an option holder ’s address
302 * @param optionID A specific option contract id
303 */
304 f unc t i on p a yP r o f i t (u in t opt i on ID)
305 i n t e r n a l
306 r e tu rn s (u in t p r o f i t)

32/41 PeckShield Audit Report #: 2020-43

Public

307 {
308 Option memory op t i on = op t i o n s [op t i on ID] ;
309 (, i n t l a t e s t P r i c e , , ,) = p r i c e P r o v i d e r . l a t e s tRoundData () ;
310 uint256 c u r r e n t P r i c e = uint256 (l a t e s t P r i c e) ;
311 i f (op t i on . opt ionType == OptionType . Ca l l) {
312 r equ i r e (op t i on . s t r i k e <= cu r r e n tP r i c e , "Current price is too low") ;
313 p r o f i t = c u r r e n t P r i c e . sub (op t i on . s t r i k e) . mul (op t i on . amount) . d i v (c u r r e n t P r i c e

) ;
314 } e l s e {
315 r equ i r e (op t i on . s t r i k e >= cu r r e n tP r i c e , "Current price is too high") ;
316 p r o f i t = op t i on . s t r i k e . sub (c u r r e n t P r i c e) . mul (op t i on . amount) . d i v (c u r r e n t P r i c e

) ;
317 }
318 i f (p r o f i t > op t i on . lockedAmount)
319 p r o f i t = op t i on . lockedAmount ;
320 poo l . send (opt ion ID , op t i on . ho lde r , p r o f i t) ;
321 }

Listing 3.29: HegicETHOptions.sol

To summarize, the actor essentially invests 1% * amount into the option creation, but immediately
gets back the corresponding locked amount, i.e., amount.mul(optionCollateralizationRatio).div(100)
= 50% * amount. By continuing the above process, the actor can drain all funds available in the
current pool. Note both HegicETHOptions and HegicWBTCOptions are affected.

Recommendation Validate the given optionType in both pools and prevent invalid ones from
entering the option creation.

Status This issue has been fixed in the commit: a11349afc3585377dd02910f0a2ff8d34b926385.

33/41 PeckShield Audit Report #: 2020-43

https://github.com/hegic/contracts/commit/a11349afc3585377dd02910f0a2ff8d34b926385

Public

4 | Conclusion

In this audit, we thoroughly analyzed the Hegic design and implementation. The system presents
a unique offering in current DeFi ecosystem in allowing for trustless, non-custodial creation, main-
tenance, and settlement of hedge contracts. The current code base is well organized and those
identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

34/41 PeckShield Audit Report #: 2020-43

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [11, 12,
13, 14, 16].

• Result: Not found

• Severity: Critical

35/41 PeckShield Audit Report #: 2020-43

Public

5.1.5 Reentrancy

• Description: Reentrancy [17] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

36/41 PeckShield Audit Report #: 2020-43

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

37/41 PeckShield Audit Report #: 2020-43

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

38/41 PeckShield Audit Report #: 2020-43

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

39/41 PeckShield Audit Report #: 2020-43

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[3] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[4] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

40/41 PeckShield Audit Report #: 2020-43

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[12] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[13] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[14] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[15] PeckShield. PeckShield Inc. https://www.peckshield.com.

[16] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[17] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

41/41 PeckShield Audit Report #: 2020-43

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Hegic Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Non-Functional Lockup Periods in HegicStaking
	Possible Front-Running Against Pool Withdrawals And Staking
	Bypass of Daily Reward Limit in HegicRewards
	Improved Precision With Division Avoidance
	Improved Precision With Ceiling Division
	Less Friction For Option Creation
	Wrong Reward Rate in HegicWBTCRewards
	Suggested Reservation of The First enum Element
	Enhanced Business Logic of lock() in HegicETHPool
	Redundant lockupFree Verification
	Denial-of-Service in getReward()
	Option Pool Draining With Invalid optionType

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

