
Public

SMART CONTRACT AUDIT REPORT

for

PancakeSwap Prediction V2

Prepared By: Yiqun Chen

Hangzhou, China
August 20, 2021

1/17 PeckShield Audit Report #: 2021-236

contact@peckshield.com

Public

Document Properties

Client PancakeSwap
Title Smart Contract Audit Report
Target PancakeSwap Prediction V2
Version 1.0
Author Shulin Bie
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 August 20, 2021 Shulin Bie Final Release
1.0-rc August 19, 2021 Shulin Bie Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2021-236

Public

Contents

1 Introduction 4
1.1 About PancakeSwap Prediction V2 . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Trust Issue Of Admin Keys . 11
3.2 Improved Gas Efficiency In betBear()/betBull() . 12
3.3 Redundant State/Code Removal . 14

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2021-236

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
PancakeSwap Prediction V2 protocol, we outline in the report our systematic approach to evaluate
potential security issues in the smart contract implementation, expose possible semantic inconsis-
tencies between smart contract code and design document, and provide additional suggestions or
recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About PancakeSwap Prediction V2

PancakeSwap is the leading decentralized exchange on Binance Smart Chain, with very high trading
volumes in the market. The PancakeSwap Prediction V2 protocol is one of the core functions of
PancakeSwap, which is designed as a decentralized BNB price prediction platform. It allows the user
to profit from the BNB price rises and falls. The PancakeSwap Prediction V2 protocol enriches the
PancakeSwap ecosystem and also presents a unique contribution to current DeFi ecosystem.

The basic information of PancakeSwap Prediction V2 is as follows:

Table 1.1: Basic Information of PancakeSwap Prediction V2

Item Description
Target PancakeSwap Prediction V2

Website https://pancakeswap.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report August 20, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

4/17 PeckShield Audit Report #: 2021-236

Public

• https://github.com/pancakeswap/pancake-contracts/tree/master/projects/predictions/v2 (4c3c76d)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/pancakeswap/pancake-contracts/tree/master/projects/predictions/v2 (c564432)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/17 PeckShield Audit Report #: 2021-236

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2021-236

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2021-236

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2021-236

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the PancakeSwap Prediction V2 implementation.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 1

Informational 2

Undetermined 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2021-236

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 low-severity vulnerability,
and 2 informational recommendations.

Table 2.1: Key PancakeSwap Prediction V2 Audit Findings

ID Severity Title Category Status
PVE-001 Low Trust Issue Of Admin Keys Security Features Confirmed
PVE-002 Informational Improved Gas Efficiency In

betBear()/betBull()
Coding Practices Fixed

PVE-003 Informational Redundant State/Code Removal Coding Practices Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/17 PeckShield Audit Report #: 2021-236

Public

3 | Detailed Results

3.1 Trust Issue Of Admin Keys

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PancakePredictionV2

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In the PancakeSwap Prediction V2 protocol, there is a privileged account that plays a critical role in
governing and regulating the protocol-wide operations (e.g., configuring various system parameters).
In the following, we show the representative functions potentially affected by the privilege of the
account.

372 /**
373 * @notice Set Oracle address
374 * @dev Callable by admin
375 */
376 function setOracle(address _oracle) external whenPaused onlyAdmin {
377 require(_oracle != address (0), "Cannot be zero address");
378 oracleLatestRoundId = 0;
379 oracle = AggregatorV3Interface(_oracle);
380
381 // Dummy check to make sure the interface implements this function properly
382 oracle.latestRoundData ();
383
384 emit NewOracle(_oracle);
385 }
386
387 ...
388
389 /**
390 * @notice Set reward and treasury rates
391 * @dev Callable by admin
392 */

11/17 PeckShield Audit Report #: 2021-236

Public

393 function setRewardAndTreasuryRates(uint256 _rewardRate , uint256 _treasuryRate)
external whenPaused onlyAdmin {

394 require(_rewardRate + _treasuryRate == 10000, "Must equal 10000 (100 * 1e2)");
395 rewardRate = _rewardRate;
396 treasuryRate = _treasuryRate;
397
398 emit NewRewardAndTreasuryRates(currentEpoch , rewardRate , treasuryRate);
399 }

Listing 3.1: PancakePredictionV2::setOracle()&&setRewardAndTreasuryRates()

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a DAO-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system
parameters, which directly undermines the assumption of the PancakeSwap Prediction V2 design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed by the team. The privileged account will be managed by
a multi-sig account.

3.2 Improved Gas Efficiency In betBear()/betBull()

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: PancakePredictionV2

• Category: Coding Practices [4]

• CWE subcategory: CWE-287 [1]

Description

In the PancakeSwap Prediction V2 protocol, the betBear() function is designed to bet bear position by
the user. While examining the logic of the betBear() function, we notice the currentEpoch storage
variable that indicates the current active prediction round is read repeatedly in the function, which
lends to unnecessary gas cost.

To elaborate, we show below the related code snippet of the betBear() function. In the betBear()

function, the require(epoch == currentEpoch, "Bet is too early/late") is called to make sure the
user can only bet bear position for the current active prediction round specified by the currentEpoch

storage variable. In other words, the epoch parameter will be equal to the currentEpoch storage

12/17 PeckShield Audit Report #: 2021-236

Public

variable, otherwise the transaction will be reverted. In the subsequent implementation of the betBear

()function, we observe the currentEpoch storage variable is read repeatedly. Since the currentEpoch

storage variable is equal to the input epoch parameter, we suggest to replace currentEpoch with epoch

to improve gas efficiency.

159 function betBear(uint256 epoch) external payable whenNotPaused nonReentrant
notContract {

160 require(epoch == currentEpoch , "Bet is too early/late");
161 require(_bettable(currentEpoch), "Round not bettable");
162 require(msg.value >= minBetAmount , "Bet amount must be greater than minBetAmount

");
163 require(ledger[currentEpoch][msg.sender]. amount == 0, "Can only bet once per

round");
164
165 // Update round data
166 uint256 amount = msg.value;
167 Round storage round = rounds[currentEpoch];
168 round.totalAmount = round.totalAmount + amount;
169 round.bearAmount = round.bearAmount + amount;
170
171 // Update user data
172 BetInfo storage betInfo = ledger[currentEpoch][msg.sender];
173 betInfo.position = Position.Bear;
174 betInfo.amount = amount;
175 userRounds[msg.sender].push(currentEpoch);
176
177 emit BetBear(msg.sender , currentEpoch , amount);
178 }

Listing 3.2: PancakePredictionV2::betBear()

Note the betBull() routine can be similarly improved.

Recommendation Replace the usage of the currentEpoch storage variable with the input epoch
parameter in the betBear()/betBull() routines.

Status The issue has been addressed by the following commit: c564432.

13/17 PeckShield Audit Report #: 2021-236

https://github.com/pancakeswap/pancake-contracts/commit/c564432

Public

3.3 Redundant State/Code Removal

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: PancakePredictionV2

• Category: Coding Practices [4]

• CWE subcategory: CWE-563 [2]

Description

In the PancakeSwap Prediction V2 protocol, the genesisLockRound() function is designed to lock the
genesis prediction round. After the prediction round is locked, the transactions for the prediction
round will be denied. According to the current design, the prediction round should be locked between
the start lock time specified by the lockTimestamp and the end lock time specified by the lockTimestamp

plus the bufferSeconds. Once the prediction round is not locked in the given period of time, the
prediction round will never be locked. While examining the logic of the genesisLockRound() function,
we notice there are some redundant codes that can be safely removed.

To elaborate, we show below the related code snippet of the PancakePredictionV2 contract. In the
genesisLockRound() function, the require(block.timestamp <= rounds[currentEpoch].lockTimestamp +

bufferSeconds, "Can only lock round within bufferSeconds") is called (line 579 - line 582) to ensure
the prediction round can only be locked in the given period of time. It comes to our attention that
there is the same protection logic in the _safeLockRound() function, which will be subsequently called
(line 281) in the genesisLockRound() function. We may intend to remove the redundant protection
(line 579 - line 582) in the genesisLockRound() function.

269 function genesisLockRound () external whenNotPaused onlyOperator {
270 require(genesisStartOnce , "Can only run after genesisStartRound is triggered");
271 require (! genesisLockOnce , "Can only run genesisLockRound once");
272 require(
273 block.timestamp <= rounds[currentEpoch]. lockTimestamp + bufferSeconds ,
274 "Can only lock round within bufferSeconds"
275);
276
277 (uint80 currentRoundId , int256 currentPrice) = _getPriceFromOracle ();
278
279 oracleLatestRoundId = uint256(currentRoundId);
280
281 _safeLockRound(currentEpoch , currentRoundId , currentPrice);
282
283 currentEpoch = currentEpoch + 1;
284 _startRound(currentEpoch);
285 genesisLockOnce = true;
286 }
287

14/17 PeckShield Audit Report #: 2021-236

Public

288 ...
289
290 function _safeLockRound(
291 uint256 epoch ,
292 uint256 roundId ,
293 int256 price
294) internal {
295 require(rounds[epoch]. startTimestamp != 0, "Can only lock round after round has

started");
296 require(block.timestamp >= rounds[epoch]. lockTimestamp , "Can only lock round

after lockTimestamp");
297 require(
298 block.timestamp <= rounds[epoch]. lockTimestamp + bufferSeconds ,
299 "Can only lock round within bufferSeconds"
300);
301 Round storage round = rounds[epoch];
302 round.closeTimestamp = block.timestamp + intervalSeconds;
303 round.lockPrice = price;
304 round.lockOracleId = roundId;
305
306 emit LockRound(epoch , roundId , round.lockPrice);
307 }

Listing 3.3: PancakePredictionV2::genesisLockRound()&&_safeLockRound()

Recommendation Consider the removal of the redundant code.
Status The issue has been addressed by the following commit: c564432.

15/17 PeckShield Audit Report #: 2021-236

https://github.com/pancakeswap/pancake-contracts/commit/c564432

Public

4 | Conclusion

In this audit, we have analyzed the PancakeSwap Prediction V2 design and implementation. PancakeSwap

is the leading decentralized exchange on Binance Smart Chain, with very high trading volumes in the
market. The PancakeSwap Prediction V2 protocol is one of the core functions of PancakeSwap, which is
designed as a decentralized BNB price prediction platform. It allows the user to profit from the BNB
price rises and falls. The PancakeSwap Prediction V2 protocol enriches the PancakeSwap ecosystem
and also presents a unique contribution to current DeFi ecosystem. The current code base is well
structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

16/17 PeckShield Audit Report #: 2021-236

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2021-236

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About PancakeSwap Prediction V2
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Trust Issue Of Admin Keys
	Improved Gas Efficiency In betBear()/betBull()
	Redundant State/Code Removal

	Conclusion
	References

