
Public

SMART CONTRACT AUDIT REPORT

for

RIBBON FINANCE

Prepared By: Shuxiao Wang

PeckShield
March 31, 2021

1/24 PeckShield Audit Report #: 2021-077

sxwang@peckshield.com

Public

Document Properties

Client Ribbon Finance
Title Smart Contract Audit Report
Target Ribbon Finance
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Huaguo Shi
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 March 31, 2021 Xuxian Jiang Final Release
1.0-rc1 March 30, 2021 Xuxian Jiang Release Candidate #1
0.3 March 26, 2021 Xuxian Jiang Add More Findings #2
0.2 March 19, 2021 Xuxian Jiang Add More Findings #1
0.1 March 15, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/24 PeckShield Audit Report #: 2021-077

Public

Contents

1 Introduction 4
1.1 About Ribbon Finance . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Asset Consistency Check Between Instrument And Option 11
3.2 Possible Costly Pool Tokens From Improper Initialization 12
3.3 Improved Sanity Checks For System Parameters . 13
3.4 Possible Sandwich/MEV Attacks To Collect Most Profits 14
3.5 Hardcoded Decimal Assumption in purchaseWithZeroEx() 16
3.6 Accommodation of approve() Idiosyncrasies . 18

4 Conclusion 22

References 23

3/24 PeckShield Audit Report #: 2021-077

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Ribbon Finance protocol, we outline in the report our systematic approach to evaluate potential se-
curity issues in the smart contract implementation, expose possible semantic inconsistencies between
smart contract code and design document, and provide additional suggestions or recommendations
for improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Ribbon Finance

Ribbon Finance is building on-chain option vaults that use smart contracts to automate various options
strategies. Users can simply deposit their assets into a smart contract and will automatically start
running a specific options strategy. The first product that Ribbon is creating is called a Theta Vault,
which is a yield-generating strategy on ETH. Theta Vaults run a covered call strategy, which earns
yield on a weekly basis through writing out of the money covered calls and collecting the premiums.

The basic information of Ribbon Finance is as follows:

Table 1.1: Basic Information of Ribbon Finance

Item Description
Issuer Ribbon Finance

Website https://ribbon.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report March 31, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

4/24 PeckShield Audit Report #: 2021-077

Public

• https://github.com/ribbon-finance/audit.git (93ef69f)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/ribbon-finance/audit.git (5311c6f)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/24 PeckShield Audit Report #: 2021-077

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/24 PeckShield Audit Report #: 2021-077

Public

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/24 PeckShield Audit Report #: 2021-077

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/24 PeckShield Audit Report #: 2021-077

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Ribbon Finance protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 2

Informational 2

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/24 PeckShield Audit Report #: 2021-077

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerabilities, 2 low-severity vulnerabilities, and 2 informational recommendation.

Table 2.1: Key Ribbon Finance Audit Findings

ID Severity Title Category Status
PVE-001 Informational Asset Consistency Check Between Instrument

And Option
Coding Practices Fixed

PVE-002 Medium Possible Costly Pool Tokens From Improper
Initialization

Time and State Fixed

PVE-003 Low Improved Sanity Checks For System Parame-
ters

Coding Practices Fixed

PVE-004 High Possible Sandwich/MEV Attacks To Collect
Most Profits

Time And State Fixed

PVE-005 Informational Hardcoded Decimal Assumption in purchase-
WithZeroEx()

Coding Practices Fixed

PVE-006 Low Accommodation of approve() Idiosyncrasies Business Logic Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/24 PeckShield Audit Report #: 2021-077

Public

3 | Detailed Results

3.1 Asset Consistency Check Between Instrument And Option

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: RibbonCoveredCall

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [2]

Description

The Ribbon Finance protocol develops new on-chain option vaults that allow for automating various
options strategies. At the core of the protocol are the provided instruments (e.g., RibbonCoveredCall)
that provide the main interaction with protocol users.

In the following, we elaborate one specific function from the RibbonCoveredCall contract. This
function setNextOption() can be used to set the next option against which a short can be opened.
This function takes a single argument, i.e., optionTerms, then queries and records the corresponding
option address (lines 244 − 246), and next updates the timestamp for the option to be eligible for
activation (line 247).

237 /**
238 * @notice Sets the next option address and the timestamp at which the admin can

call ‘rollToNextOption ‘ to open a short for the option
239 * @param optionTerms is the terms of the option contract
240 */
241 f unc t i on s e tNex tOpt i on (
242 Protoco lAdapte rTypes . OptionTerms c a l l d a t a opt ionTerms
243) ex te rna l onlyManager nonReent rant {
244 address op t i on = adap t e r . g e tOpt i on sAdd r e s s (opt ionTerms) ;
245 r equ i r e (op t i on != address (0) , "!option") ;
246 nextOpt ion = op t i on ;
247 nextOpt ionReadyAt = block . timestamp . add (d e l a y) ;
248 }

Listing 3.1: RibbonCoveredCall::setNextOption()

11/24 PeckShield Audit Report #: 2021-077

Public

Based on the protocol design, there is a consistency in terms of the underlying assets between the
instrument and the supported option. Specifically, to properly link a new option with the instrument,
it is natural for the two to operate on the same underlying asset. With that, we suggest to improve
the setNextOption() routine by enforcing the implied consistency so that they operate on the same
underlying asset and strike asset with the validity of option expiry at nextOptionReadyAt (line 247).

Recommendation Add necessary consistency checks on the same sets between the instrument
And supported options.

Status The issue has been fixed by this commit: 3254263.

3.2 Possible Costly Pool Tokens From Improper Initialization

• ID: PVE-002

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: RibbonCoveredCall

• Category: Time and State [5]

• CWE subcategory: CWE-362 [3]

Description

The Ribbon Finance protocol allows users to deposit supported assets and get in return rETH-THETA

pool tokens to represent the pool share. While examining the share calculation with the given
deposits, we notice an issue that may unnecessarily make the pool token, i.e., rETH-THETA, extremely
expensive and bring hurdles (or even causes loss) for later depositors.

To elaborate, we show below the deposit() routine. This routine is used for participating users to
deposit the supported assets (e.g., WETH) and get respective pool tokens in return. The issue occurs
when the pool is being initialized under the assumption that the current pool is empty.

178 /**
179 * @notice Mints the vault shares to the msg.sender
180 * @param amount is the amount of ‘asset ‘ deposited
181 */
182 f unc t i on _depos i t (uint256 amount) p r i v a t e {
183 uint256 tota lWithDepos i tedAmount = t o t a l B a l a n c e () ;
184 r equ i r e (tota lWithDepos i tedAmount < cap , "Cap exceeded") ;
185
186 // amount needs to be subtracted from totalBalance because it has already been
187 // added to it from either IWETH.deposit and IERC20.safeTransferFrom
188 uint256 t o t a l = tota lWithDepos i tedAmount . sub (amount) ;
189
190 // Following the pool share calculation from Alpha Homora: https :// github.com/

AlphaFinanceLab/alphahomora/blob /340653 c8ac1e9b4f23d5b81e61307bf7d02a26e8/
contracts /5/ Bank.sol#L104

12/24 PeckShield Audit Report #: 2021-077

https://github.com/ribbon-finance/audit/commit/3254263

Public

191 uint256 s ha r e =
192 t o t a l == 0 ? amount : amount . mul (t o t a l S u p p l y ()) . d i v (t o t a l) ;
193
194 emit Depos i t (msg . sender , amount , s h a r e) ;
195
196 _mint (msg . sender , s h a r e) ;
197 }

Listing 3.2: RibbonCoveredCall::_deposit()

Specifically, when the pool is being initialized (line 191), the share value directly takes the value
of amount (line 192), which is manipulatable by the malicious actor. As this is the first deposit, the
current total supply equals the calculated share = amount = 1 WEI. With that, the actor can further
deposit a huge amount of WETH assets with the goal of making the pool token extremely expensive.

An extremely expensive pool token can be very inconvenient to use as a small number of 1WEI
may denote a large value. Furthermore, it can lead to precision issue in truncating the computed pool
tokens for deposited assets. If truncated to be zero, the deposited assets are essentially considered
dust and kept by the pool without returning any pool tokens.

This is a known issue that has been mitigated in popular UniswapV2. When providing the initial
liquidity to the contract (i.e. when totalSupply is 0), the liquidity provider must sacrifice 1000 LP
tokens (by sending them to address(0)). By doing so, we can ensure the granularity of the LP tokens
is always at least 1000 and the malicious actor is not the sole holder. This approach may bring an
additional cost for the initial liquidity provider, but this cost is expected to be low and acceptable.

Recommendation Revise current execution logic of deposit() to defensively calculate the
share amount when the pool is being initialized. An alternative solution is to ensure a guarded
launch process that safeguards the first deposit to avoid being manipulated.

Status The issue has been fixed by the following commits: c46afd2c and 5311c6f2.

3.3 Improved Sanity Checks For System Parameters

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RibbonCoveredCall

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [2]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Ribbon Finance protocol is no exception. Specifically, if we examine the BaseVault

13/24 PeckShield Audit Report #: 2021-077

https://github.com/ribbon-finance/audit/commit/c46afd2c
https://github.com/ribbon-finance/audit/commit/5311c6f2

Public

contract, it has defined a number of protocol-wide risk parameters, e.g., instantWithdrawalFee and
cap. In the following, we show the corresponding routines that allow for their changes.

150 /**
151 * @notice Sets the new withdrawal fee
152 * @param withdrawalFee is the fee paid in tokens when withdrawing
153 */
154 f unc t i on s e tWi thd rawa lFee (uint256 wi thd rawa lFee) ex te rna l onlyManager {
155 i n s t an tWi thd r awa lFe e = wi thd rawa lFee ;
156 }

Listing 3.3: setWithdrawalFee()

Our result shows the update logic on these fee parameters can be improved by applying more
rigorous sanity checks. Based on the current implementation, certain corner cases may lead to an
undesirable consequence. For example, an unlikely mis-configuration of a large fee parameter (say
more than 100%) will revert any withdrawal() operation, effectively locking down user assets in the
contract.

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range. Also, consider emitting related events for external monitoring and
analytics tools.

Status The issue has been fixed by this commit: 3254263.

3.4 Possible Sandwich/MEV Attacks To Collect Most Profits

• ID: PVE-004

• Severity: High

• Likelihood: High

• Impact: High

• Target: GammaAdapter

• Category: Time and State [8]

• CWE subcategory: CWE-682 [4]

Description

As mentioned in Section 3.1, the Ribbon Finance protocol develops new on-chain option vaults that
allow for automating various options strategies. The strategy involves adapters to interact with
different yield-generating protocols. Specifically, if we examine the GammaAdapter implementation,
there is a swapExercisedProfitsToUnderlying() routine that is part of exercise() function so that an
expired option can be exercised to claim the option profits, if any.

330 /**
331 * @notice Swaps the exercised profit (originally in the collateral token) into the

‘underlying ‘ token.

14/24 PeckShield Audit Report #: 2021-077

https://github.com/ribbon-finance/audit/commit/3254263

Public

332 * This simplifies the payout of an option. Put options pay out in USDC , so
we swap USDC back

333 * into WETH and transfer it to the recipient.
334 * @param otokenAddress is the otoken ’s address
335 * @param profitInCollateral is the profit after exercising denominated in the

collateral - this could be a token with different decimals
336 * @param recipient is the recipient of the underlying tokens after the swap
337 */
338 f unc t i on swapEx e r c i s e dP r o f i t sToUnd e r l y i n g (
339 address otokenAddress ,
340 uint256 p r o f i t I n C o l l a t e r a l ,
341 address r e c i p i e n t
342) p r i v a t e r e tu rn s (uint256 p r o f i t I n U n d e r l y i n g) {
343 Otok en I n t e r f a c e otoken = Otok en I n t e r f a c e (o tokenAddre s s) ;
344 address c o l l a t e r a l = otoken . c o l l a t e r a l A s s e t () ;
345 IERC20 c o l l a t e r a l T o k e n = IERC20 (c o l l a t e r a l) ;

347 r equ i r e (
348 c o l l a t e r a l T o k e n . ba lanceOf (address (t h i s)) >= p r o f i t I n C o l l a t e r a l ,
349 "Not enough collateral from exercising"
350) ;

352 IUniswapV2Router02 r o u t e r = IUniswapV2Router02 (UNISWAP_ROUTER) ;

354 IWETH weth = IWETH(WETH) ;

356 i f (c o l l a t e r a l == address (weth)) {
357 p r o f i t I n U n d e r l y i n g = p r o f i t I n C o l l a t e r a l ;
358 weth . withdraw (p r o f i t I n C o l l a t e r a l) ;
359 (bool succ e s s ,) = r e c i p i e n t . c a l l { va lue : p r o f i t I n C o l l a t e r a l }("") ;
360 r equ i r e (succe s s , "Failed to transfer exercise profit") ;
361 } e l s e {
362 address [] memory path = new address [] (2) ;
363 path [0] = c o l l a t e r a l ;
364 path [1] = address (weth) ;

366 uint256 [] memory amountsOut =
367 r o u t e r . getAmountsOut (p r o f i t I n C o l l a t e r a l , path) ;
368 p r o f i t I n U n d e r l y i n g = amountsOut [1] ;
369 r equ i r e (p r o f i t I n U n d e r l y i n g > 0 , "Swap is unprofitable") ;

371 r o u t e r . swapExactTokensForETH (
372 p r o f i t I n C o l l a t e r a l ,
373 p r o f i t I nU n d e r l y i n g ,
374 path ,
375 r e c i p i e n t ,
376 block . timestamp + SWAP_WINDOW
377) ;
378 }
379 }

Listing 3.4: GammaAdapter::swapExercisedProfitsToUnderlying()

15/24 PeckShield Audit Report #: 2021-077

Public

We notice the collected profits are routed to UniswapV2 in order to swap them to WETH. And
the swap operation essentially does not specify any restriction on possible slippage and is therefore
vulnerable to possible front-running attacks, resulting in a smaller gain for this round of yielding.

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a
large trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-
back of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes
a loss and brings a smaller return as expected to the trading user or the GammaAdapter contract in
our case because the swap rate is lowered by the preceding sell. As a mitigation, we may consider
specifying the restriction on possible slippage caused by the trade or referencing the TWAP or time

-weighted average price of UniswapV2. Nevertheless, we need to acknowledge that this is largely
inherent to current blockchain infrastructure and there is still a need to continue the search efforts
for an effective defense.

Recommendation Develop an effective mitigation to the above front-running attack to better
protect the interests of farming users.

Status The issue has been fixed by this commit: 3254263.

3.5 Hardcoded Decimal Assumption in purchaseWithZeroEx()

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GammaAdapter

• Category: Coding Practices [6]

• CWE subcategory: CWE-1041 [1]

Description

In Section 3.4, we have examined the GammaAdapter contract that allows protocol users to directly
buy Opyn-based options. In the following, we further examine the same contract, but on a different
function, i.e., purchaseWithZeroEx().

To elaborate, we show below the function implementation. This function is designed to allow for
buying otokens using a 0x order. Our analysis shows that this function makes an implicit assumption
that may not always hold. In particular, the amount of soldETH is calculated by the following equa-
tion: zeroExOrder.takerAssetAmount.mul(uint256(latestPrice)).div(10**6), which somehow implies
the sellTokenAddress has the decimal of 6. With that, the calculation can then compute soldETH to
be properly denominated at WETH.

209 /**
210 * @notice Purchases otokens using a 0x order struct

16/24 PeckShield Audit Report #: 2021-077

https://github.com/ribbon-finance/audit/commit/3254263

Public

211 * @param optionTerms is the terms of the option contract
212 * @param zeroExOrder is the 0x order struct constructed using the 0x API response

passed by the frontend.
213 */
214 f unc t i on purchaseWithZeroEx (
215 Protoco lAdapte rTypes . OptionTerms c a l l d a t a opt ionTerms ,
216 Protoco lAdapte rTypes . ZeroExOrder c a l l d a t a ze roExOrder
217) ex te rna l payable {
218 r equ i r e (
219 msg . va lue >= zeroExOrder . p r o toco lFee ,
220 "Value cannot cover protocolFee"
221) ;
222
223 IUniswapV2Router02 r o u t e r = IUniswapV2Router02 (UNISWAP_ROUTER) ;
224
225 address [] memory path = new address [] (2) ;
226 path [0] = WETH;
227 path [1] = zeroExOrder . s e l lTok enAdd r e s s ;
228
229 (, int256 l a t e s t P r i c e , , ,) = USDCETHPriceFeed . l a t e s tRoundData () ;
230
231 uint256 soldETH =
232 ze roExOrder . takerAssetAmount . mul (uint256 (l a t e s t P r i c e)) . d i v (10∗∗6) ;
233
234 r o u t e r . swapETHForExactTokens{ va lue : soldETH }(
235 ze roExOrder . takerAssetAmount ,
236 path ,
237 address (t h i s) ,
238 block . timestamp + SWAP_WINDOW
239) ;
240
241 r equ i r e (
242 IERC20 (ze roExOrder . s e l lTok enAdd r e s s) . ba lanceOf (address (t h i s)) >=
243 ze roExOrder . takerAssetAmount ,
244 "Not enough takerAsset balance"
245) ;
246
247 IERC20 (ze roExOrder . s e l lTok enAdd r e s s) . s a f eApprove (
248 ze roExOrder . a l l owanceTarge t ,
249 ze roExOrder . takerAssetAmount
250) ;
251
252 r equ i r e (
253 address (t h i s) . balance >= zeroExOrder . p ro toco lFee ,
254 "Not enough balance for protocol fee"
255) ;
256
257 (bool succ e s s ,) =
258 ZERO_EX_EXCHANGE_V3. c a l l { va lue : ze roExOrder . p r o t o c o l F e e }(
259 ze roExOrder . swapData
260) ;
261

17/24 PeckShield Audit Report #: 2021-077

Public

262 r equ i r e (succe s s , "0x swap failed") ;
263
264 r equ i r e (
265 IERC20 (ze roExOrder . buyTokenAddress) . ba lanceOf (address (t h i s)) >=
266 ze roExOrder . makerAssetAmount ,
267 "Not enough buyToken balance"
268) ;
269
270 emit Purchased (
271 msg . sender ,
272 _name ,
273 opt ionTerms . und e r l y i n g ,
274 soldETH . add (ze roExOrder . p r o t o c o l F e e) ,
275 0
276) ;
277 }

Listing 3.5: GammaAdapter::purchaseWithZeroEx()

Since the 0x order structure is provided by the user, it is strongly suggested to enforce the
assumption will always hold in all cases.

Recommendation Make the implicit assumption of sellTokenAddress’s decimal explicit.

Status The issue has been fixed by this commit: 3254263.

3.6 Accommodation of approve() Idiosyncrasies

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GammaAdapter

• Category: Business Logic [7]

• CWE subcategory: N/A

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

18/24 PeckShield Audit Report #: 2021-077

https://github.com/ribbon-finance/audit/commit/3254263

Public

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.6: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. For
example, the GammaAdapter::createShort() routine is designed to allow the MARGIN_POOL to pull funds
from itself. To accommodate the specific idiosyncrasy, there is a need to approve() twice: the first
one reduces the allowance to 0; and the second one sets the new allowance.

263 f u n c t i o n c r e a t e Sh o r t (
264 Protoco lAdapte rTypes . OptionTerms c a l l d a t a opt ionTerms ,
265 u in t256 depos i tAmount
266) e x t e r n a l o v e r r i d e r e t u r n s (u i n t256) {
267 I C o n t r o l l e r c o n t r o l l e r = I C o n t r o l l e r (gammaContro l l e r) ;
268 u in t256 newVault ID =
269 (c o n t r o l l e r . ge tAccountVau l tCounte r (add r e s s (t h i s))) . add (1) ;

271 add r e s s oToken = lookupOToken (opt ionTerms) ;
272 r e q u i r e (oToken != add r e s s (0) , "Invalid oToken") ;

274 add r e s s c o l l a t e r a l A s s e t = opt ionTerms . c o l l a t e r a l A s s e t ;
275 i f (c o l l a t e r a l A s s e t == add r e s s (0)) {
276 c o l l a t e r a l A s s e t = WETH;
277 }
278 IERC20 c o l l a t e r a l T o k e n = IERC20 (c o l l a t e r a l A s s e t) ;

280 u in t256 c o l l a t e r a l D e c i m a l s = a s s e tDe c ima l s (c o l l a t e r a l A s s e t) ;
281 u in t256 mintAmount ;

283 i f (opt ionTerms . opt ionType == Protoco lAdapte rTypes . OptionType . C a l l) {
284 mintAmount = depos i tAmount ;
285 i f (c o l l a t e r a l D e c i m a l s >= 8) {
286 u in t256 s ca l eBy = 10∗∗(c o l l a t e r a l D e c i m a l s − 8) ; // oTokens have 8

decimals
287 mintAmount = depos i tAmount . d i v (s c a l eBy) ; // scale down from 10**18 to

10**8

19/24 PeckShield Audit Report #: 2021-077

Public

288 r e q u i r e (
289 mintAmount > 0 ,
290 "Must deposit more than 10**8 collateral"
291) ;
292 }
293 } e l s e {
294 mintAmount = wdiv (depositAmount , opt ionTerms . s t r i k e P r i c e)
295 . mul (OTOKEN_DECIMALS)
296 . d i v (10∗∗ c o l l a t e r a l D e c i m a l s) ;
297 }

299 c o l l a t e r a l T o k e n . sa f eApprove (MARGIN_POOL, depos i tAmount) ;

301 I C o n t r o l l e r . Ac t i onArgs [] memory a c t i o n s =
302 new I C o n t r o l l e r . Ac t i onArgs [] (3) ;

304 a c t i o n s [0] = I C o n t r o l l e r . Ac t i onArgs (
305 I C o n t r o l l e r . Act ionType . OpenVault ,
306 add r e s s (t h i s) , // owner
307 add r e s s (t h i s) , // receiver - we need this contract to receive so we can

swap at the end
308 add r e s s (0) , // asset , otoken
309 newVaultID , // vaultId
310 0 , // amount
311 0 , //index
312 "" //data
313) ;

315 a c t i o n s [1] = I C o n t r o l l e r . Ac t i onArgs (
316 I C o n t r o l l e r . Act ionType . D e p o s i t C o l l a t e r a l ,
317 add r e s s (t h i s) , // owner
318 add r e s s (t h i s) , // address to transfer from
319 c o l l a t e r a l A s s e t , // deposited asset
320 newVaultID , // vaultId
321 depositAmount , // amount
322 0 , //index
323 "" //data
324) ;

326 a c t i o n s [2] = I C o n t r o l l e r . Ac t i onArgs (
327 I C o n t r o l l e r . Act ionType . MintShortOpt ion ,
328 add r e s s (t h i s) , // owner
329 add r e s s (t h i s) , // address to transfer to
330 oToken , // deposited asset
331 newVaultID , // vaultId
332 mintAmount , // amount
333 0 , //index
334 "" //data
335) ;

337 c o n t r o l l e r . o p e r a t e (a c t i o n s) ;

20/24 PeckShield Audit Report #: 2021-077

Public

339 re tu rn mintAmount ;
340 }

Listing 3.7: GammaAdapter::createShort()

Meanwhile, it is important to highlight that the current implementation is safe as far as the one-
time safeApprove() is always followed by the full transfer of the approved amount, which effectively
reduces the approved amount back to zero. However, to accommodate various situations, it is always
suggested to follow the convention of applying the approve() call twice to ensure the operation always
runs smoothly.

Recommendation Accommodate the above-mentioned idiosyncrasy of approve().

Status The issue has been fixed by this commit: 3254263.

21/24 PeckShield Audit Report #: 2021-077

https://github.com/ribbon-finance/audit/commit/3254263

Public

4 | Conclusion

In this audit, we have analyzed the Ribbon Finance design and implementation. The system presents
a unique, robust offering as a decentralized protocol for automating various options strategies. The
current code base is well structured and neatly organized. Those identified issues are promptly
confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

22/24 PeckShield Audit Report #: 2021-077

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[4] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[5] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

23/24 PeckShield Audit Report #: 2021-077

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

24/24 PeckShield Audit Report #: 2021-077

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Ribbon Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Asset Consistency Check Between Instrument And Option
	Possible Costly Pool Tokens From Improper Initialization
	Improved Sanity Checks For System Parameters
	Possible Sandwich/MEV Attacks To Collect Most Profits
	Hardcoded Decimal Assumption in purchaseWithZeroEx()
	Accommodation of approve() Idiosyncrasies

	Conclusion
	References

