
Public

SMART CONTRACT AUDIT REPORT

for

Tranchess Protocol

Prepared By: Yiqun Chen

PeckShield
June 28, 2021

1/23 PeckShield Audit Report #: 2021-154

sxwang@peckshield.com

Public

Document Properties

Client Tranchess Protocol
Title Smart Contract Audit Report
Target Tranchess
Version 1.0
Author Xuxian Jiang
Auditors Stephen Bie, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 June 28, 2021 Xuxian Jiang Final Release
1.0-rc1 June 18, 2021 Xuxian Jiang Release Candidate #1
0.3 June 11, 2021 Xuxian Jiang Add More Findings #2
0.2 June 10, 2021 Xuxian Jiang Add More Findings #1
0.1 May 29, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/23 PeckShield Audit Report #: 2021-154

Public

Contents

1 Introduction 4
1.1 About Tranchess . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom() 12
3.2 Suggested Mint/Burn Events in Fund . 14
3.3 Suggested Adherence Of Checks-Effects-Interactions Pattern 15
3.4 Improved Sanity Checks For System/Function Parameters 16
3.5 Reliable Validation of _assertNotContract() . 18
3.6 Trust Issue of Admin Keys . 19

4 Conclusion 21

References 22

3/23 PeckShield Audit Report #: 2021-154

Public

1 | Introduction

Given the opportunity to review the Tranchess design document and related smart contract source
code, we outline in the report our systematic approach to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistencies between smart contract code
and design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Tranchess

Tranchess Protocol is a tokenized asset management and derivatives trading protocol. Inspired by
tranches fund that caters investors with different risk appetite, Tranchess aims to provide different
risk/return matrix out of a single main fund that tracks a specific underlying asset (e.g. BTC).
Meanwhile, it also shares some of the popular DeFi features such as: single-asset yield farming,
borrowing and lending, trading, etc. Tranchess consists of three tranche tokens (M, aka QUEEN; A, aka
BISHOP; and B, aka ROOK) and its governance token CHESS. Each of the three tranches is designed to
solve the need of a different group of users: stable return yielding (Tranche A), leveraged crypto-asset
trading (Tranche B), and long-term crypto-asset holding (Tranche M).

The basic information of Tranchess is as follows:

Table 1.1: Basic Information of Tranchess

Item Description
Name Tranchess Protocol

Website https://tranchess.com/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 28, 2021

4/23 PeckShield Audit Report #: 2021-154

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/tranchess/contract-core.git (5ac3d99)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/tranchess/contract-core.git (c60e62a)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/23 PeckShield Audit Report #: 2021-154

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/23 PeckShield Audit Report #: 2021-154

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/23 PeckShield Audit Report #: 2021-154

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/23 PeckShield Audit Report #: 2021-154

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/23 PeckShield Audit Report #: 2021-154

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Tranchess protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 4

Informational 0

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/23 PeckShield Audit Report #: 2021-154

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, and 4 low-severity vulnerabilities.

Table 2.1: Key Tranchess Audit Findings

ID Severity Title Category Status
PVE-001 Low Safe-Version Replacement With safeAp-

prove(), safeTransfer() And safeTrans-
ferFrom()

Coding Practices Fixed

PVE-002 Low Suggested Mint/Burn Events in Fund Coding Practices Resolved
PVE-003 Low Suggested Adherence Of Checks-

Effects-Interactions Pattern
Time and State Fixed

PVE-004 Low Improved Sanity Checks Of System/-
Function Parameters

Coding Practices Fixed

PVE-005 Medium Reliable Validation of _assertNotCon-
tract()

Coding Practices Fixed

PVE-006 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/23 PeckShield Audit Report #: 2021-154

Public

3 | Detailed Results

3.1 Safe-Version Replacement With safeApprove(),
safeTransfer() And safeTransferFrom()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 f unc t i on t r a n s f e r (address _to , u in t _value) r e tu rn s (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 i f (b a l a n c e s [msg . sender] >= _value && ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
67 ba l a n c e s [msg . sender] −= _value ;
68 ba l a n c e s [_to] += _value ;
69 Transfer (msg . sender , _to , _value) ;
70 re tu rn t rue ;
71 } e l s e { re tu rn f a l s e ; }
72 }

12/23 PeckShield Audit Report #: 2021-154

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

74 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) r e tu rn s (bool) {
75 i f (b a l a n c e s [_from] >= _value && a l l owed [_from] [msg . sender] >= _value &&

ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
76 ba l a n c e s [_to] += _value ;
77 ba l a n c e s [_from] −= _value ;
78 a l l owed [_from] [msg . sender] −= _value ;
79 Transfer (_from , _to , _value) ;
80 re tu rn t rue ;
81 } e l s e { re tu rn f a l s e ; }
82 }

Listing 3.1: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful. To
use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
transferFrom() as well, i.e., safeTransferFrom().

In the following, we show the initialize() routine in the LiquidityStaking contract. If the USDT

token is supported as rewardToken, the unsafe version of IERC20(rewardToken).transferFrom(msg.sender
, address(this), amount) (line 48) may revert as there is no return value in the USDT token contract’s
transfer() implementation (but the IERC20 interface expects a return value)!

42 function initialize(uint256 rate_) external {
43 require(rate == 0 && rate_ != 0, "Should not initialize twice");
44 require(startTimestamp >= block.timestamp , "Start cannot be in the past");
45
46 uint256 amount = rate_.mul(endTimestamp.sub(startTimestamp));
47 require(
48 IERC20(rewardToken).transferFrom(msg.sender , address(this), amount),
49 "Reward transferFrom failed"
50);
51
52 rate = rate_;
53 }

Listing 3.2: LiquidityStaking::initialize()

Note that this issue is present in a number of contracts, including LiquidityStaking, VestingEscrow,
Staking, etc.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been fixed by this commit: c60e62a.

13/23 PeckShield Audit Report #: 2021-154

https://github.com/tranchess/contract-core/commit/c60e62a

Public

3.2 Suggested Mint/Burn Events in Fund

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Fund

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the Fund contract as an example. This contract is designed to enable
tokenized asset management. The tokenized tranche tokens can therefore be minted, transferred,
or burned. While examining the events that reflect the tranche token dynamics, we notice there
is a lack of emitting important events that reflect important state changes. Specifically, when the
tranche tokens are being minted or burned, there are no respective events being emitted to reflect
the dynamics.

691 function _mint(
692 uint256 tranche ,
693 address account ,
694 uint256 amount
695) private {
696 require(account != address (0), "ERC20: mint to the zero address");
697
698 _totalSupplies[tranche] = _totalSupplies[tranche].add(amount);
699 _balances[account][tranche] = _balances[account][tranche].add(amount);
700 }
701
702 function _burn(
703 uint256 tranche ,
704 address account ,
705 uint256 amount
706) private {
707 require(account != address (0), "ERC20: burn from the zero address");
708
709 _balances[account][tranche] = _balances[account][tranche].sub(
710 amount ,
711 "ERC20: burn amount exceeds balance"
712);
713 _totalSupplies[tranche] = _totalSupplies[tranche].sub(amount);

14/23 PeckShield Audit Report #: 2021-154

Public

714 }

Listing 3.3: Fund::_mint()/_burn()

Recommendation Properly emit the Mint/Burn events with accurate information to timely
reflect state changes. This is very helpful for external analytics and reporting tools.

Status The team clarifies that fund is not an instance of ERC20, and thus there is no obligation
to comply with the ERC20 standard.

3.3 Suggested Adherence Of Checks-Effects-Interactions
Pattern

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Time and State [6]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [11] exploit, and the recent Uniswap/Lendf.Me hack [10].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the LiquidityStaking as an example, the deposit() function (see the code snippet below) is provided
to externally call a token contract to transfer assets. However, the invocation of an external contract
requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 64) starts before effecting the update
on internal states (lines 67− 68), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the same entry
function.

60 function deposit(uint256 amount) external {
61 userCheckpoint(msg.sender);
62
63 require(

15/23 PeckShield Audit Report #: 2021-154

Public

64 IERC20(stakedToken).transferFrom(msg.sender , address(this), amount),
65 "Staked transferFrom failed"
66);
67 totalStakes = totalStakes.add(amount);
68 stakes[msg.sender] = stakes[msg.sender].add(amount);
69 }

Listing 3.4: LiquidityStaking::deposit()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy. However, it is important to take precautions in making use of nonReentrant to block
possible re-entrancy. Note similar issues exist in other functions, including withdraw()/claimRewards

()/exit() and the adherence of checks-effects-interactions best practice is strongly recommended.

Recommendation Apply necessary reentrancy prevention by utilizing the nonReentrant modifier
to block possible re-entrancy.

Status The issue has been fixed by this commit: faf10a1.

3.4 Improved Sanity Checks For System/Function Parameters

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Tranchess protocol is no exception. Specifically, if we examine the PrimaryMarket

contract, it has defined a number of protocol-wide risk parameters, such as redemptionFeeRate and
splitFeeRate. In the following, we show the corresponding routines that allow for their changes.

345 function updateRedemptionFeeRate(uint256 newRedemptionFeeRate) external onlyOwner {
346 require(newRedemptionFeeRate <= MAX_REDEMPTION_FEE_RATE , "Exceed max redemption

fee rate");
347 redemptionFeeRate = newRedemptionFeeRate;
348 }
349
350 function updateSplitFeeRate(uint256 newSplitFeeRate) external onlyOwner {
351 require(newSplitFeeRate <= MAX_SPLIT_FEE_RATE , "Exceed max split fee rate");
352 splitFeeRate = newSplitFeeRate;
353 }

16/23 PeckShield Audit Report #: 2021-154

https://github.com/tranchess/contract-core/commit/faf10a1

Public

354
355 function updateMergeFeeRate(uint256 newMergeFeeRate) external onlyOwner {
356 require(newMergeFeeRate <= MAX_MERGE_FEE_RATE , "Exceed max split fee rate");
357 mergeFeeRate = newMergeFeeRate;
358 }
359
360 function updateMinCreationUnderlying(uint256 newMinCreationUnderlying) external

onlyOwner {
361 minCreationUnderlying = newMinCreationUnderlying;
362 }

Listing 3.5: A number of representative setters in PrimaryMarket

77 constructor(
78 address fund_ ,
79 uint256 guardedLaunchStart_ ,
80 uint256 redemptionFeeRate_ ,
81 uint256 splitFeeRate_ ,
82 uint256 mergeFeeRate_ ,
83 uint256 minCreationUnderlying_
84) public Ownable () {
85 fund = IFund(fund_);
86 guardedLaunchStart = guardedLaunchStart_;
87 redemptionFeeRate = redemptionFeeRate_;
88 splitFeeRate = splitFeeRate_;
89 mergeFeeRate = mergeFeeRate_;
90 minCreationUnderlying = minCreationUnderlying_;
91 currentDay = fund.currentDay ();
92 }

Listing 3.6: PrimaryMarket::constructor()

These parameters define various aspects of the protocol operation and maintenance and need to
exercise extra care when configuring or updating them. Our analysis shows the initialization logic
(see the above constructor()) on these parameters can be improved by applying more rigorous san-
ity checks. Based on the current implementation, certain corner cases may lead to an undesirable
consequence. For example, an unlikely mis-configuration of redemptionFeeRate may charge unreason-
ably high fee in the redeem() operation, hence incurring cost to users or hurting the adoption of the
protocol.

Similarly, the placeBid()/placeAsk() functions in Exchange can also be improved by validating the
given tranche to be one of three tranche tokens (M, A, and B).

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.

Status The issue has been fixed by this commit: aff6eb0.

17/23 PeckShield Audit Report #: 2021-154

https://github.com/tranchess/contract-core/commit/aff6eb0

Public

3.5 Reliable Validation of _assertNotContract()

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: VotingEscrow

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

The Tranchess protocol has a voting escrow contract i.e., VotingEscrow, that is used to accept com-
munity voting and measure voting powers/weights for various protocol-wide operations. In the
meantime, to mitigate possible flashloan-based manipulation, the protocol is designed to ensure only
whitelisted contract-based accounts as well as EOA-based accounts to create voting locks.

99 function createLock(uint256 amount , uint256 unlockTime) external nonReentrant {
100 _assertNotContract(msg.sender);

102 unlockTime = (unlockTime / 1 weeks) * 1 weeks; // Locktime is rounded down to
weeks

103 LockedBalance memory lockedBalance = locked[msg.sender];

105 require(amount > 0, "Zero value");
106 require(lockedBalance.amount == 0, "Withdraw old tokens first");
107 require(unlockTime > block.timestamp , "Can only lock until time in the future");
108 require(unlockTime <= block.timestamp + maxTime , "Voting lock cannot exceed max

lock time");

110 scheduledUnlock[unlockTime] = scheduledUnlock[unlockTime].add(amount);
111 locked[msg.sender]. unlockTime = unlockTime;
112 locked[msg.sender]. amount = amount;

114 IERC20(token).transferFrom(msg.sender , address(this), amount);

116 emit LockCreated(msg.sender , amount , unlockTime);
117 }

Listing 3.7: VotingEscrow::createLock()

To elaborate, we show above the createLock() routine. This routine explicitly ensures the lock
owner to be an EOA account (line 100). The detection logic is implemented in a helper routine
_assertNotContract(). It comes to our attention that this detection logic relies on the detection
of the extcodesize primitive, which returns 0 for contracts in construction, since the code is only
stored at the end of the constructor execution. A more reliable approach is to validate the EOA by
if (msg.sender != tx.origin).

174 function _assertNotContract(address account) private view {

18/23 PeckShield Audit Report #: 2021-154

Public

175 if (Address.isContract(account)) {
176 if (
177 addressWhitelist != address (0) && IAddressWhitelist(addressWhitelist).

check(account)
178) {
179 return;
180 }
181 revert("Smart contract depositors not allowed");
182 }
183 }

Listing 3.8: VotingEscrow::_assertNotContract()

26 function isContract(address account) internal view returns (bool) {
27 // This method relies on extcodesize , which returns 0 for contracts in
28 // construction , since the code is only stored at the end of the
29 // constructor execution.

31 uint256 size;
32 // solhint -disable -next -line no-inline -assembly
33 assembly { size := extcodesize(account) }
34 return size > 0;
35 }

Listing 3.9: Address::isContract()

Recommendation Revise the EOA detection logic via if (msg.sender != tx.origin).

Status The issue has been fixed by this commit: a333750.

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Fund

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the Tranchess protocol, there is a privileged owner account that plays a critical role in governing
and regulating the protocol-wide operations (e.g., configuring various system parameters). In the
following, we show representative privileged operations in the protocol’s core Fund contract.

345 function updateRedemptionFeeRate(uint256 newRedemptionFeeRate) external onlyOwner {
346 require(newRedemptionFeeRate <= MAX_REDEMPTION_FEE_RATE , "Exceed max redemption

fee rate");

19/23 PeckShield Audit Report #: 2021-154

https://github.com/tranchess/contract-core/commit/a333750

Public

347 redemptionFeeRate = newRedemptionFeeRate;
348 }
349
350 function updateSplitFeeRate(uint256 newSplitFeeRate) external onlyOwner {
351 require(newSplitFeeRate <= MAX_SPLIT_FEE_RATE , "Exceed max split fee rate");
352 splitFeeRate = newSplitFeeRate;
353 }
354
355 function updateMergeFeeRate(uint256 newMergeFeeRate) external onlyOwner {
356 require(newMergeFeeRate <= MAX_MERGE_FEE_RATE , "Exceed max split fee rate");
357 mergeFeeRate = newMergeFeeRate;
358 }
359
360 function updateMinCreationUnderlying(uint256 newMinCreationUnderlying) external

onlyOwner {
361 minCreationUnderlying = newMinCreationUnderlying;
362 }

Listing 3.10: A number of representative setters in PrimaryMarket

We emphasize that the privilege assignment is necessary and consistent with the token design.
However, it is worrisome if the owner is not governed by a DAO-like structure. The discussion with
the team has confirmed that this privileged account will be managed by a multi-sig account. Note
that a compromised owner account would allow the attacker to modify a number of sensitive system
parameters, which directly undermines the assumption of the Tranchess protocol.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed and partially mitigated. Especially, for all admin-level
operations, the current mitigation is to adopt the standard Timelock with multi-sig Tranchess account
as the proposer, and a minimum delay of 1 days. In the future, the team further plans to transfer
the proposer role to DAO with transparent governance process similar to Compound.

20/23 PeckShield Audit Report #: 2021-154

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Tranchess protocol. The system
presents a unique, robust offering as a decentralized non-custodial tokenized asset management and
derivatives trading protocol that caters investors with different risk appetite. The current code base
is well structured and neatly organized. Those identified issues are promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

21/23 PeckShield Audit Report #: 2021-154

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

[10] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

22/23 PeckShield Audit Report #: 2021-154

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09

Public

[11] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

23/23 PeckShield Audit Report #: 2021-154

https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Tranchess
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom()
	Suggested Mint/Burn Events in Fund
	Suggested Adherence Of Checks-Effects-Interactions Pattern
	Improved Sanity Checks For System/Function Parameters
	Reliable Validation of _assertNotContract()
	Trust Issue of Admin Keys

	Conclusion
	References

