
Public

SMART CONTRACT AUDIT REPORT

for

Venus MintBehalf

Prepared By: Yiqun Chen

PeckShield
June 14, 2021

1/16 PeckShield Audit Report #: 2021-150

sxwang@peckshield.com

Public

Document Properties

Client Venus
Title Smart Contract Audit Report
Target Venus MintBehalf
Version 1.0
Author Shulin Bie
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 June 14, 2021 Shulin Bie Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/16 PeckShield Audit Report #: 2021-150

Public

Contents

1 Introduction 4
1.1 About Venus MintBehalf . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Suggested Address Validity Check . 12
3.2 Non ERC20-Compliance Of VToken . 13
3.3 Inconsistency Between Document And Implementation 14

4 Conclusion 15

References 16

3/16 PeckShield Audit Report #: 2021-150

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Venus MintBehalf feature, we outline in the report our systematic approach to evaluate potential se-
curity issues in the smart contract implementation, expose possible semantic inconsistencies between
smart contract code and design document, and provide additional suggestions or recommendations
for improvement. Our results show that the given version of smart contracts is well designed and
engineered, though it can be further improved by addressing our suggestions. This document outlines
our audit results.

1.1 About Venus MintBehalf

The Venus protocol is designed to enable a complete algorithmic money market protocol on Binance

Smart Chain (BSC). Venus enables users to utilize their cryptocurrencies by supplying collateral to
the protocol that may be borrowed by pledging over-collateralized cryptocurrencies. It also features
a synthetic stablecoin (VAI) that is not backed by a basket of fiat currencies but by a basket of
cryptocurrencies. Venus utilizes the BSC for fast, low-cost transactions while accessing a deep network
of wrapped tokens and liquidity. The audited Venus MintBehalf support allows the user mints VTokens

on behalf of others, which brings more flexibility for the Venus protocol.
The basic information of the Venus MintBehalf feature is as follows:

Table 1.1: Basic Information of Venus MintBehalf

Item Description
Name Venus

Website https://venus.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 14, 2021

4/16 PeckShield Audit Report #: 2021-150

https://venus.io/

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/VenusProtocol/venus-protocol/pull/51/commits/d4b53e0 (d4b53e0)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/VenusProtocol/venus-protocol/pull/51/commits/128fc1d (128fc1d)

1.2 About PeckShield

PeckShield Inc. [8] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [7]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/16 PeckShield Audit Report #: 2021-150

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [6], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

6/16 PeckShield Audit Report #: 2021-150

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/16 PeckShield Audit Report #: 2021-150

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/16 PeckShield Audit Report #: 2021-150

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/16 PeckShield Audit Report #: 2021-150

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Venus MintBehalf support.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 1

Informational 2

Total 3

We have previously audited the main Venus protocol. In this report, we exclusively focus on the
specific pull request d4b53e0, we determine three issues that need to be brought up and paid more
attention to, which are categorized in the above table. More information can be found in the next
subsection, and the detailed discussion of the issues are in Section 3.

10/16 PeckShield Audit Report #: 2021-150

https://github.com/VenusProtocol/venus-protocol/pull/51/commits/d4b53e0

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 low-severity vulnerability,
and 2 informational recommendations.

Table 2.1: Key Venus MintBehalf Audit Findings

ID Severity Title Category Status
PVE-001 Low Suggested Address Validity Check Coding Practices Fixed
PVE-002 Informational Non ERC20-Compliance Of VToken Coding Practices Confirmed
PVE-003 Informational Inconsistency Between Document

And Implementation
Coding Practices Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/16 PeckShield Audit Report #: 2021-150

Public

3 | Detailed Results

3.1 Suggested Address Validity Check

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: VToken

• Category: Coding Practices [5]

• CWE subcategory: CWE-628 [4]

Description

In the VToken contract, we notice there is a lack of parameter validity check in the mintBehalfFresh()

function. To elaborate, we show below the related code snippet of this contract. We observe there is
no address validity check for the second input argument receiver(line 588) inside the mintBehalfFresh

() function. It may unnecessarily cause the loss of user’s asset if the user accidently sets the receiver

to address(0). It is suggested to apply a rigorous address validity check to avoid this specific case.
588 function mintBehalfFresh(address payer , address receiver , uint mintAmount) internal

returns (uint , uint) {
589 /* Fail if mint not allowed */
590 uint allowed = comptroller.mintAllowed(address(this), receiver , mintAmount);
591 if (allowed != 0) {
592 return (failOpaque(Error.COMPTROLLER_REJECTION , FailureInfo.

MINT_COMPTROLLER_REJECTION , allowed), 0);
593 }
594
595 ...
596
597 }

Listing 3.1: VToken::mintBehalfFresh()

Recommendation Validate the input address receiver at the beginning of the mintBehalfFresh()

function.

Status The issue has been addressed by the following commit: 128fc1d.

12/16 PeckShield Audit Report #: 2021-150

https://github.com/VenusProtocol/venus-protocol/pull/51/commits/128fc1d

Public

3.2 Non ERC20-Compliance Of VToken

• ID: PVE-002

• Severity: Informational

• Likelihood: None

• Impact: None

• Target: VToken

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [3]

Description

Each asset supported by the Venus protocol is integrated through a so-called VToken contract, which
is an ERC20 compliant representation of balances supplied to the protocol. By minting VTokens,
users can earn interest through the VToken’s exchange rate, which increases in value relative to the
underlying asset, and further gain the ability to use VTokens as collateral.

The implementation of Venus MintBehalf extends the original VToken contract and allows to mint
VTokens on behalf of others. It also needs to follow the ERC20 standard. When analyzing this feature,
we notice there is an ERC20-compliance issue in its implementation.

To elaborate, we show below the related code snippet of this contract. The ERC20 standard
specifies that “a token contract which creates new tokens SHOULD trigger a Transfer event with
the _from address set to 0x0 when tokens are created.” [1] However, current mintBehalfFresh() logic
emits the Transfer event by specifying the contract itself as the _from. For better ERC20 compliance,
it is suggested to strictly follow the ERC20 standard.

588 function mintBehalfFresh(address payer , address receiver , uint mintAmount) internal
returns (uint , uint) {

589 /* Fail if mint not allowed */
590 uint allowed = comptroller.mintAllowed(address(this), receiver , mintAmount);
591 if (allowed != 0) {
592 return (failOpaque(Error.COMPTROLLER_REJECTION , FailureInfo.

MINT_COMPTROLLER_REJECTION , allowed), 0);
593 }
594
595 ...
596
597 /* We emit a MintBehalf event , and a Transfer event */
598 emit MintBehalf(payer , receiver , vars.actualMintAmount , vars.mintTokens);
599 emit Transfer(address(this), receiver , vars.mintTokens);
600
601 /* We call the defense hook */
602 comptroller.mintVerify(address(this), receiver , vars.actualMintAmount , vars.

mintTokens);
603
604 return (uint(Error.NO_ERROR), vars.actualMintAmount);
605 }

Listing 3.2: VToken::mintBehalfFresh()

13/16 PeckShield Audit Report #: 2021-150

Public

Recommendation Revise the VToken implementation to ensure its ERC20-compliance.

Status This issue has been confirmed. The team decides to leave it to keep consistency with the
implementation of mint and reduce the risk of introducing bugs as a result of changing the behavior.

3.3 Inconsistency Between Document And Implementation

• ID: PVE-003

• Severity: Informational

• Likelihood: None

• Impact: None

• Target: VToken

• Category: Coding Practices [5]

• CWE subcategory: CWE-841 [2]

Description

In the implementation of MintBehalf feature, we notice there is a misleading comment embedded
among lines of the mintBehalfInternal() function, which brings unnecessary hurdles to understand
and/or maintain the software.

To elaborate, we show below the related code snippet of this contract. The mintBehalfInternal()

function is used to mint VTokens on behalf of the receiver. But we notice the comment (line 573) is
“we still want to log the fact that an attempted borrow failed” when the accrueInterest() function
returns an error. It will bring unnecessary hurdles to understand the function as this is related to
mint, not borrow.

569 function mintBehalfInternal(address receiver , uint mintAmount) internal nonReentrant
returns (uint , uint) {

570 uint error = accrueInterest ();
571 if (error != uint(Error.NO_ERROR)) {
572 // accrueInterest emits logs on errors , but we still want to log the fact

that an attempted mintBehalf failed
573 return (fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED), 0);
574 }
575 // mintBelahfFresh emits the actual Mint event if successful and logs on errors ,

so we don’t need to
576 return mintBehalfFresh(msg.sender , receiver , mintAmount);
577 }

Listing 3.3: VToken::mintBehalfInternal()

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status The issue has been addressed by the following commit: 128fc1d.

14/16 PeckShield Audit Report #: 2021-150

https://github.com/VenusProtocol/venus-protocol/pull/51/commits/128fc1d

Public

4 | Conclusion

In this audit, we have analyzed the Venus MintBehalf design and implementation. The system presents
a unique, robust offering as a decentralized money market protocol with both secure lending and
synthetic stablecoins. The audited Venus MintBehalf support allows for minting VTokens on behalf of
others. The current code base is well structured and neatly organized. Those identified issues are
promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

15/16 PeckShield Audit Report #: 2021-150

Public

References

[1] Fabian Vogelsteller And Vitalik Buterin. EIP-20: ERC-20 Token Standard. https://eips.ethereum.

org/EIPS/eip-20.

[2] MITRE. CWE-1068: Inconsistency Between Implementation and Documented Design. https:

//cwe.mitre.org/data/definitions/1068.html.

[3] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[4] MITRE. CWE-628: Function Call with Incorrectly Specified Arguments. https://cwe.mitre.org/

data/definitions/628.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[7] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[8] PeckShield. PeckShield Inc. https://www.peckshield.com.

16/16 PeckShield Audit Report #: 2021-150

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://cwe.mitre.org/data/definitions/1068.html
https://cwe.mitre.org/data/definitions/1068.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Venus MintBehalf
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested Address Validity Check
	Non ERC20-Compliance Of VToken
	Inconsistency Between Document And Implementation

	Conclusion
	References

