
Public

SMART CONTRACT AUDIT REPORT

for

WHITEHEART

Prepared By: Shuxiao Wang

PeckShield
03/03/2021

1/25 PeckShield Audit Report #: 2021-056

sxwang@peckshield.com

Public

Document Properties

Client Hegic
Title Smart Contract Audit Report
Target Whiteheart
Version 1.0
Author Xuxian Jiang
Auditors Huaguo Shi, Jeff Liu, Xuxian Jiang
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 03/03/2021 Xuxian Jiang Final Release
1.0-rc 03/02/2021 Xuxian Jiang Release Candidate #1
0.2 03/01/2021 Xuxian Jiang Additional Findings
0.1 02/25/2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/25 PeckShield Audit Report #: 2021-056

Public

Contents

1 Introduction 4
1.1 About Whiteheart Protocol . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Suggested SafeMath Usage . 11
3.2 Uninitialized autoUnwrapDisabled . 12
3.3 No Slippage Control in _createHedge() . 13
3.4 Improved Logic in _receiveAsset() . 15
3.5 Admin Key Trust on USDC Pool Owner . 16
3.6 Lockup-Free WhiteStaking::withdraw() . 18
3.7 Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom() 19
3.8 Incompatibility with Deflationary/Rebasing Tokens 21

4 Conclusion 23

References 24

3/25 PeckShield Audit Report #: 2021-056

Public

1 | Introduction

Given the opportunity to review the Whiteheart Protocol design document and related smart
contract source code, we in the report outline our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Whiteheart Protocol

Whiteheart is an on-chain hedging protocol built on top of the Hegic protocol. The core part of the
hedging protocol is a new financial primitive called hedge contract that can automatically conduct
the process of hedging users’ holdings’ market value. Hedge contracts utilize liquidity which is pooled
by liquidity providers on non-custodial smart contracts to act as the value downside insurance sellers
and earn fees paid by hedge contract buyers in case the value of assets will not decrease.

The basic information of Whiteheart is as follows:

Table 1.1: Basic Information of Whiteheart

Item Description
Issuer Hegic

Website https://www.whiteheart.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report 03/03/2021

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

4/25 PeckShield Audit Report #: 2021-056

Public

• https://github.com/jmonteer/whiteheart-v1.git (bf7759c)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/jmonteer/whiteheart-v1.git (d1a0187)

1.2 About PeckShield

PeckShield Inc. [12] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/25 PeckShield Audit Report #: 2021-056

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/25 PeckShield Audit Report #: 2021-056

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/25 PeckShield Audit Report #: 2021-056

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/25 PeckShield Audit Report #: 2021-056

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Whiteheart Protocol design and implementation.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 4

Informational 2

Total 8

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/25 PeckShield Audit Report #: 2021-056

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 4 low-severity vulnerabilities and 2 informational recommendations.

Table 2.1: Key Whiteheart Audit Findings

ID Severity Title Category Status
PVE-001 Low Suggested SafeMath Usage Coding Practices Fixed
PVE-002 Low Uninitialized autoUnwrapDisabled Business Logic Fixed
PVE-003 Low No Slippage Control in _createHedge() Time And State Fixed
PVE-004 Informational Improved Logic in _receiveAsset() Business Logic Fixed
PVE-005 Medium Admin Key Trust on USDC Pool Owner Security Features Fixed
PVE-006 Medium Lockup-Free WhiteStaking::withdraw() Business Logic Fixed
PVE-007 Low Safe-Version Replacement With safeAp-

prove(), safeTransfer() And safeTrans-
ferFrom()

Coding Practices Fixed

PVE-008 Informational Incompatibility with Deflationary/Re-
basing Tokens

Business Logic Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/25 PeckShield Audit Report #: 2021-056

Public

3 | Detailed Results

3.1 Suggested SafeMath Usage

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: WHAssetv2

• Category: Coding Practices [8]

• CWE subcategory: CWE-1041 [1]

Description

SafeMath is a Solidity math library that is designed to support safe math operations by preventing
common overflow or underflow issues when working with uint256 operands. While it indeed blocks
common overflow or underflow issues, the lack of float support in Solidity may introduce another
subtle, but troublesome issue: precision loss. While examining current math operations, we notice an
occasion that can benefit from the use of SafeMath.

To elaborate, we show below the constructor() of the WHAssetv2 contract. The internal re-
sult of _DECIMALS is computed as 10 ** (IToken(_token).decimals()- IToken(_stablecoin).decimals()

)* PRICE_DECIMALS, which may overflow if the given _token has a smaller decimal than the given
_stablecoin.

50 cons t ruc to r (
51 IUniswapV2Router02 _swapRouter ,
52 IToken _s tab l e co in ,
53 IToken _token ,
54 Agg r e g a t o rV3 I n t e r f a c e _pr i c eP rov i d e r ,
55 IWhiteUSDCPool _pool ,
56 IWh i t eOp t i o n sP r i c e r _wh i t eOpt i onsPr i c e r ,
57 s t r i n g memory _name ,
58 s t r i n g memory _symbol) pub l i c ERC721(_name , _symbol)
59 {
60 u in t _DECIMALS = 10 ∗∗ (IToken (_token) . d e c ima l s () − IToken (_s t ab l e c o i n) . d e c ima l s

()) ∗ PRICE_DECIMALS ;
61 DECIMALS = _DECIMALS ;

11/25 PeckShield Audit Report #: 2021-056

Public

62
63 address [] memory _under ly ingToStab leSwapPath = new address [] (2) ;
64 _under ly ingToStab leSwapPath [0] = address (_token) ;
65 _under ly ingToStab leSwapPath [1] = address (_s t ab l e c o i n) ;
66
67 under l y ingToStab l eSwapPath = _under ly ingToStab leSwapPath ;
68
69 swapRouter = _swapRouter ;
70 wh i t eOp t i o n sP r i c e r = _wh i t eOpt i on sP r i c e r ;
71 p r i c e P r o v i d e r = _p r i c eP r o v i d e r ;
72 s t a b l e c o i n = _s t ab l e c o i n ;
73 poo l = _pool ;
74 }

Listing 3.1: WHAssetv2::constructor()

Recommendation Revise the above logic by using the SafeMath library.

Status This issue has been fixed in the commit: 671283e.

3.2 Uninitialized autoUnwrapDisabled

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: WHAssetv2

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

The Whiteheart protocol provides helper routines to facilitate the wrapping of principal into a hedge

contract as well as the reverse operation of unwrapping. The wrapped principal amount is therefore
insured or protected against sudden price drop. While examining the unwrapping support, we notice
the internal state that allows for users to disable the automatic unwrapping is uninitialized before
the use.

To elaborate, we show below the affected isAutoUnwrapable() routine. As the name indicates,
this routine aims to answer the question on whether the hedge contract is auto-unwrappable. And
it is part of the current logic to query internal state of autoUnwrapDisabled[_underlying.owner] (line
205), which unfortunately is not initialized. In other words, the check at line 205 is simply a no-op.

198 /**
199 * @notice Answer the question: is this hedge contract Auto unwrappable?
200 * @param tokenId HedgeContract to be unwrapped
201 * @return answer to the question: is this hedge contract Auto unwrappable
202 */

12/25 PeckShield Audit Report #: 2021-056

https://github.com/jmonteer/whiteheart-v1/commit/671283eb138a50fa76fc045c351144b3392a5fb0

Public

203 f unc t i on i sAutoUnwrapab le (u in t t ok en I d) pub l i c view re tu rn s (bool) {
204 Unde r l y i n g memory _unde r l y i ng = und e r l y i n g [t ok en I d] ;
205 i f (autoUnwrapDisab led [_unde r l y i ng . owner]) re tu rn f a l s e ;
206 i f (! _unde r l y i ng . a c t i v e) re tu rn f a l s e ;
207
208 bool ITM = f a l s e ;
209 u in t c u r r e n t P r i c e = _cu r r en tP r i c e () ;
210
211 ITM = cu r r e n t P r i c e < _unde r l y i ng . s t r i k e ;
212
213 // if option is In The Money and the option is going to expire in the next

minutes
214 i f (ITM && ((_unde r l y i ng . e x p i r a t i o n . sub (30 minutes) <= block . timestamp) && (

_unde r l y i ng . e x p i r a t i o n >= block . timestamp))) {
215 re tu rn t rue ;
216 }
217
218 re tu rn f a l s e ;
219 }

Listing 3.2: WHAssetv2::isAutoUnwrapable()

Recommendation Add necessary Setters to allow for the initialization of autoUnwrapDisabled.

Status This issue has been fixed in the commit: 671283e.

3.3 No Slippage Control in _createHedge()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: WHAssetv2

• Category: Time and State [7]

• CWE subcategory: CWE-362 [4]

Description

Whiteheart is an on-chain hedging protocol that automatically buys an at-the-money (ATM) put option
contract. A put option is a right but not an obligation to sell an asset at a fixed price during a certain
period of time. Hedging with at-the-money (ATM) put options means that the strike price of an option
at the moment of protecting an asset’s value will be equal to the market price of the asset.

To elaborate, we show below the _createHedge() routine that actually instantiates a hedge con-
tract. We notice this routine internally makes use of the swapRouter to swap the token to the
underlying stablecoin (lines 274 − 280).

261 f unc t i on _createHedge (u in t token Id , u in t t o t a l F e e , u in t s e t t l emen tFee , u in t pe r i od ,
u in t amount , u in t s t r i k e , address owner) i n t e r n a l {

13/25 PeckShield Audit Report #: 2021-056

https://github.com/jmonteer/whiteheart-v1/commit/671283eb138a50fa76fc045c351144b3392a5fb0

Public

262 u in t c o l l a t e r a l = amount . mul (s t r i k e) . mul (o p t i o n C o l l a t e r a l i z a t i o n R a t i o) . d i v (100) .
d i v (DECIMALS) ;

263
264 Unde r l y i n g memory _newUnder ly ing = Unde r l y i n g (
265 bool (t rue) ,
266 address (owner) ,
267 uint88 (amount) ,
268 uint48 (block . timestamp + pe r i o d) ,
269 uint48 (s t r i k e)
270) ;
271 u n d e r l y i n g [t ok en I d] = _newUnder ly ing ;
272
273 u in t premiumPercentage = t o t a l F e e . sub (s e t t l emen tFe e) . mul (1000) . d i v (t o t a l F e e) ;
274 u in t [] memory amounts = swapRouter . swapExactTokensForTokens (
275 t o t a l F e e ,
276 0 ,
277 under ly ingToStab leSwapPath ,
278 address (poo l) ,
279 block . timestamp
280) ;
281 u in t t o t a l S t a b l e c o i n = amounts [amounts . l ength − 1] ;
282 u in t premiumStab l eco in = premiumPercentage . mul (t o t a l S t a b l e c o i n) . d i v (1000) ;
283 u in t s e t t l em en t F e e S t a b l e c o i n = t o t a l S t a b l e c o i n . sub (p remiumStab l eco in) ;
284
285 poo l . l o c k (token Id , c o l l a t e r a l , p remiumStab leco in , s e t t l em en t F e e S t a b l e c o i n) ;
286 }

Listing 3.3: WHAssetv2::_createHedge()

We observe that there is no slippage control in place, which opens up the possibility for front-
running and potentially results in a smaller converted amount. Note that this is a common issue
plaguing current AMM-based DEX solutions. Specifically, a large trade may be sandwiched by a
preceding sell to reduce the market price, and a tailgating buy-back of the same amount plus the
trade amount. Such sandwiching behavior unfortunately causes a loss and brings a smaller return as
expected to the trading user. As a mitigation, we may consider specifying the restriction on possible
slippage caused by the trade or referencing the TWAP or time-weighted average price of UniswapV2.
Nevertheless, we need to acknowledge that this is largely inherent to current blockchain infrastructure
and there is still a need to continue the search efforts for an effective defense.

Recommendation Develop an effective mitigation to the above sandwich arbitrage to better
protect the interests of users.

Status This issue has been fixed in the commit: 671283e.

14/25 PeckShield Audit Report #: 2021-056

https://github.com/jmonteer/whiteheart-v1/commit/671283eb138a50fa76fc045c351144b3392a5fb0

Public

3.4 Improved Logic in _receiveAsset()

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: WHERC20v2

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

As mentioned in Section 3.3, Whiteheart is an on-chain hedging protocol that automatically buys an
at-the-money (ATM) put option contract. The option contract buyers will need to pay associated fee.
Using the WHAssetv2 contract as an example, the _wrap() routine is given the principal amount and
option period and the purpose here is to wrap the insured principal to a hedge contract.

230 f unc t i on _wrap (u in t amount , u in t pe r i od , address to , bool r e c e i v eA s s e t , bool
_mintToken) i n t e r n a l r e tu rn s (u in t newTokenId) {

231 // new tokenId
232 _tokenIds . i n c r ement () ;
233 newTokenId = _tokenIds . c u r r e n t () ;
234
235 // get cost of option
236 u in t s t r i k e = _cu r r en tP r i c e () ;
237
238 (u in t t o t a l , u in t s e t t l emen tFee , ,) = wh i t eOp t i o n sP r i c e r . g e tOp t i o nP r i c e (pe r i od ,

amount , s t r i k e) ;
239
240 // receive asset + cost of hedge
241 i f (r e c e i v e A s s e t) _ r e c e i v eA s s e t (msg . sender , amount , t o t a l) ;
242 // buy option
243 _createHedge (newTokenId , t o t a l , s e t t l emen tFee , pe r i od , amount , s t r i k e , to) ;
244
245 // mint ERC721 token
246 i f (_mintToken) _mint (to , newTokenId) ;
247
248 emit Wrap(to , uint32 (newTokenId) , uint88 (t o t a l) , uint88 (amount) , uint48 (s t r i k e) ,

uint32 (block . timestamp+pe r i o d)) ;
249 }

Listing 3.4: WHAssetv2::_wrap()

When evaluating the fund movement, we notice there is an internal helper routine _receiveAsset

() that is designed to transfer the cost, i.e., principal+hedge, from the buyer to the contract itself.
It comes to our attention that the given buyer information, i.e., the first argument from of the helper
routine, is not used in the actual asset transfer (line 57). It is more natural to simply use the function
argument from instead of restricting the source as msg.sender.

15/25 PeckShield Audit Report #: 2021-056

Public

50 /**
51 * @notice internal function that supports the receival of principal+hedge cost to

be sent
52 * @param from address sender
53 * @param amount principal to receive
54 * @param toUsdc hedgeCost
55 */
56 f unc t i on _rec e i v eA s s e t (address from , u in t amount , u in t toUsdc) i n t e r n a l o v e r r i d e {
57 token . s a f eT ran s f e rF rom (msg . sender , address (t h i s) , amount . add (toUsdc)) ;
58 }

Listing 3.5: _receiveAsset()

Recommendation Revise the _receiveAsset() logic to use its own arguments, instead of msg.
sender. An example revision is shown below:

50 /**
51 * @notice internal function that supports the receival of principal+hedge cost to

be sent
52 * @param from address sender
53 * @param amount principal to receive
54 * @param toUsdc hedgeCost
55 */
56 f unc t i on _rec e i v eA s s e t (address from , u in t amount , u in t toUsdc) i n t e r n a l o v e r r i d e {
57 token . s a f eT ran s f e rF rom (from , address (t h i s) , amount . add (toUsdc)) ;
58 }

Listing 3.6: _receiveAsset()

Status This issue has been fixed in the commit: 671283e.

3.5 Admin Key Trust on USDC Pool Owner

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: WHAssetv2

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the Whiteheart protocol, there is a privileged account that plays a critical role in governing and
regulating the system-wide operations (e.g., parameter settings). Specifically, our analysis with the
USDC pool shows that there is an owner account that can set up the lockup period as well as whitelist
specific whAsset addresses to open positions using the USDC pool.

16/25 PeckShield Audit Report #: 2021-056

https://github.com/jmonteer/whiteheart-v1/commit/671283eb138a50fa76fc045c351144b3392a5fb0

Public

To elaborate, we show below the _exercise() routine that is responsible for exercising the put

options. The exercise operation involves the unlocking of pool assets after option expiration (line
312) or the profit payment (line 315) before expiration.

307 f unc t i on _exe r c i s e (u in t token Id , address owner) i n t e r n a l r e tu rn s (u in t o p t i o nP r o f i t ,
u in t amount) {

308 Unde r l y i n g s torage _unde r l y i ng = und e r l y i n g [t ok en I d] ;
309 amount = _unde r l y i ng . amount ;
310
311 i f (_unde r l y i ng . e x p i r a t i o n < block . timestamp) {
312 poo l . un l ock (t oken I d) ;
313 o p t i o n P r o f i t = 0 ;
314 } e l s e {
315 o p t i o n P r o f i t = _payPro f i t (owner , token Id , _unde r l y i ng . s t r i k e , _unde r l y i ng .

amount) ;
316 }
317 }

Listing 3.7: WHAssetv2::_exercise()

However, both unlocking (via pool.unlock()) and profit payment (via pool.send()) are guarded
with a modifier, i.e,. onlyWHAssets. This modifier is regulated by the powerful owner account. In
other words, the funds from option buys may be locked in the contract if the owner account somehow
remove the whAsset addresses from being whitelisted to open a position.

111 f unc t i on un lock (uint256 i d) ex te rna l o v e r r i d e onlyWHAssets {
112 Lo c k e dL i q u i d i t y storage l l = l o c k e d L i q u i d i t y [msg . sender] [i d] ;
113 r equ i r e (l l . l ocked , "LockedLiquidity with such id has already unlocked") ;
114 l l . l o c k ed = f a l s e ;
115 lockedPremium = lockedPremium . sub (l l . premium) ;
116 lockedAmount = lockedAmount . sub (l l . amount) ;
117 emit P r o f i t (id , l l . premium) ;
118 }

Listing 3.8: WhiteUSDCPool::unlock()

120 f unc t i on send (u in t id , address payable to , uint256 amount , u in t _payKeep3r)
121 ex te rna l o v e r r i d e onlyWHAssets
122 {
123 Lo c k e dL i q u i d i t y storage l l = l o c k e d L i q u i d i t y [msg . sender] [i d] ;
124 r equ i r e (l l . l ocked , "LockedLiquidity with such id has already unlocked") ;
125 r equ i r e (to != address (0)) ;
126
127 l l . l o c k ed = f a l s e ;
128 lockedPremium = lockedPremium . sub (l l . premium) ;
129 lockedAmount = lockedAmount . sub (l l . amount) ;
130
131 u in t t rans f e rAmount = amount > l l . amount ? l l . amount : amount ;
132 token . s a f eT r a n s f e r (to , t rans f e rAmount . sub (_payKeep3r)) ;
133
134 i f (_payKeep3r > 0) owedToKeep3r = owedToKeep3r . add (_payKeep3r) ;

17/25 PeckShield Audit Report #: 2021-056

Public

135
136 i f (t rans f e rAmount <= l l . premium)
137 emit P r o f i t (id , l l . premium − trans f e rAmount) ;
138 e l s e
139 emit Loss (id , t r ans f e rAmount − l l . premium) ;
140 }

Listing 3.9: WhiteUSDCPool::send()

Recommendation While it is appropriate to have a whitelist capability to open a position, the
close operation should not be blocked. In other words, the above two functions, i.e., unlock() and
send(), do not need the onlyWHAssets modifier.

Status This issue has been fixed by removing the onlyWHAssets modifier from unlock() and
send() functions.

3.6 Lockup-Free WhiteStaking::withdraw()

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: WhiteStaking

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

By design, the Whiteheart protocol will generate and collect settlement fees paid every time when
an ATM put option contract is purchased. To encourage the protocol adoption, the protocol has a
built-in staking-based incentivizer mechanism as demonstrated in the WhiteStakingUSDC contract.

In order to prevent possible flashloan-assisted sandwich-style arbitrages that may claim the ma-
jority of rewards, the staking logic is designed to have a lockup period for staked assets. For each ac-
count, the associated lockup period is recorded as [lastBoughtTimestamp[account], lastBoughtTimestamp

[account].add(lockupPeriod)].

60 f unc t i on d e p o s i t (u in t amount) ex te rna l o v e r r i d e {
61 l astBoughtTimestamp [msg . sender] = block . timestamp ;
62 r equ i r e (amount > 0 , "!amount") ;
63 WHITE. s a f eT ran s f e rF rom (msg . sender , address (t h i s) , amount) ;
64
65 _mint (msg . sender , amount) ;
66 }
67
68 f unc t i on withdraw (u in t amount) ex te rna l o v e r r i d e {
69 _burn (msg . sender , amount) ;

18/25 PeckShield Audit Report #: 2021-056

Public

70
71 WHITE. s a f eT r a n s f e r (msg . sender , amount) ;
72 }

Listing 3.10: WhiteStaking:: deposit () and WhiteStaking::withdraw()

However, it comes to our attention that the unstaking function, i.e., withdraw(), does not honor
the lockup period, which completely defeat the purpose of the lockup period design. To mitigate,
we suggest to use the lockupFree modifier with the withdraw() routine.

Recommendation Properly enforce the lastBoughtTimestamp when a staking user attempts to
withdraw the staked assets.

Status This issue has been fixed in the commit: 671283e.

3.7 Safe-Version Replacement With safeApprove(),
safeTransfer() And safeTransferFrom()

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: WHAssetv2

• Category: Coding Practices [8]

• CWE subcategory: CWE-1126 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related code
snippet below.

121 /**
122 * @dev transfer token for a specified address
123 * @param _to The address to transfer to.
124 * @param _value The amount to be transferred.
125 */
126 f unc t i on t r a n s f e r (address _to , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {
127 u in t f e e = (_value . mul (b a s i s P o i n t sR a t e)) . d i v (10000) ;
128 i f (f e e > maximumFee) {
129 f e e = maximumFee ;
130 }
131 u in t sendAmount = _value . sub (f e e) ;
132 ba l a n c e s [msg . sender] = ba l a n c e s [msg . sender] . sub (_value) ;
133 ba l a n c e s [_to] = ba l a n c e s [_to] . add (sendAmount) ;

19/25 PeckShield Audit Report #: 2021-056

https://github.com/jmonteer/whiteheart-v1/commit/671283eb138a50fa76fc045c351144b3392a5fb0

Public

134 i f (f e e > 0) {
135 ba l a n c e s [owner] = ba l a n c e s [owner] . add (f e e) ;
136 Transfer (msg . sender , owner , f e e) ;
137 }
138 Transfer (msg . sender , _to , sendAmount) ;
139 }

Listing 3.11: USDT Token Contract

It is important to note the transfer() function does not have a return value. However, the IERC20

interface has defined the following transfer() interface with a bool return value: function transfer(

address recipient, uint256 amount)external returns (bool). As a result, the call to transfer() may
expect a return value. With the lack of return value of USDT’s transfer(), the call will be unfortunately
reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful. To
use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

In the following, we show the provide() routine in the WhiteUSDCPool contract. If USDT is given as
token, the unsafe version of token.transferFrom(msg.sender, address(this), amount) (line 171) may
revert as there is no return value in the USDT token contract’s transferFrom() implementation (but
the IERC20 interface expects a return value)!

150 /**
151 * @notice A provider supplies USDC to the pool and receives writeUSDC tokens
152 * @param amount Amount to send to the contract
153 * @param minMint minimum amount of writeUSDC tokens to be minted
154 * @return mint amount of writeUSDC minted to provider
155 */
156 f unc t i on p r o v i d e (uint256 amount , uint256 minMint) ex te rna l r e tu rn s (uint256 mint) {
157 l a s tP rov ideT imes tamp [msg . sender] = block . timestamp ;
158 u in t s upp l y = t o t a l S u p p l y () ;
159 u in t balance = to t a lB a l a n c e () ;
160 i f (s upp l y > 0 && balance > 0)
161 mint = amount . mul (s upp l y) . d i v (balance) ;
162 e l s e
163 mint = amount . mul (INITIAL_RATE) ;

165 r equ i r e (mint >= minMint , "Pool: Mint limit is too large") ;
166 r equ i r e (mint > 0 , "Pool: Amount is too small") ;
167 _mint (msg . sender , mint) ;
168 emit Prov i d e (msg . sender , amount , mint) ;

170 r equ i r e (
171 token . t r a n s f e rF r om (msg . sender , address (t h i s) , amount) ,

20/25 PeckShield Audit Report #: 2021-056

Public

172 "Token transfer error: Please lower the amount of premiums that you want to
send."

173) ;
174 }

Listing 3.12: WhiteUSDCPool::provide()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status This issue has been fixed in the commit: 671283e.

3.8 Incompatibility with Deflationary/Rebasing Tokens

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: WhiteStaking

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

In the Whiteheart protocol, the WhiteStaking contract is designed to be the main entry for interaction
with staking users. In particular, one entry routine, i.e., deposit(), accepts user deposits of supported
assets (e.g., DAI). Naturally, the contract implements a number of low-level helper routines to transfer
assets in or out of the WhiteStaking contract. These asset-transferring routines work as expected with
standard ERC20 tokens: namely the vault’s internal asset balances are always consistent with actual
token balances maintained in individual ERC20 token contract.

60 f unc t i on d e p o s i t (u in t amount) ex te rna l o v e r r i d e {
61 l astBoughtTimestamp [msg . sender] = block . timestamp ;
62 r equ i r e (amount > 0 , "!amount") ;
63 WHITE. s a f eT ran s f e rF rom (msg . sender , address (t h i s) , amount) ;
64
65 _mint (msg . sender , amount) ;
66 }
67
68 f unc t i on withdraw (u in t amount) ex te rna l o v e r r i d e {
69 _burn (msg . sender , amount) ;
70
71 WHITE. s a f eT r a n s f e r (msg . sender , amount) ;
72 }

Listing 3.13: WhiteStaking:: deposit () and WhiteStaking::withdraw()

21/25 PeckShield Audit Report #: 2021-056

https://github.com/jmonteer/whiteheart-v1/commit/671283eb138a50fa76fc045c351144b3392a5fb0

Public

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge a certain fee for every transfer

() or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet
the assumption behind these low-level asset-transferring routines.

One possible mitigation is to regulate the set of ERC20 tokens that are permitted into the
WhiteStaking. In our case, it is indeed possible to effectively regulate the set of tokens that can be
supported. Keep in mind that there exist certain assets (e.g., USDT) that may have control switches
that can be dynamically exercised to suddenly become one.

Recommendation If current codebase needs to support possible deflationary tokens, it is better
to check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Also, keep in mind that certain
tokens may not be deflationary for the time being. However, they could have a control switch that
can be exercised to turn them into deflationary tokens. One example is the widely-adopted USDT.

Status This issue has been confirmed. However, considering the fact that this specific issue
does not affect the normal operation, the team decides to address it when the need of supporting
deflationary/rebasing tokens arises.

22/25 PeckShield Audit Report #: 2021-056

Public

4 | Conclusion

In this audit, we have analyzed the Whiteheart design and implementation. The system presents
a unique offering in current DeFi ecosystem in automatically conducting the process of hedging
users’ holdings’ market value. The current code base is well organized and those identified issues are
promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

23/25 PeckShield Audit Report #: 2021-056

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

24/25 PeckShield Audit Report #: 2021-056

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] PeckShield. PeckShield Inc. https://www.peckshield.com.

25/25 PeckShield Audit Report #: 2021-056

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Whiteheart Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Suggested SafeMath Usage
	Uninitialized autoUnwrapDisabled
	No Slippage Control in _createHedge()
	Improved Logic in _receiveAsset()
	Admin Key Trust on USDC Pool Owner
	Lockup-Free WhiteStaking::withdraw()
	Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom()
	Incompatibility with Deflationary/Rebasing Tokens

	Conclusion
	References

