
Public

SMART CONTRACT AUDIT REPORT

for

HARVEST FINANCE

Prepared By: Shuxiao Wang

Hangzhou, China
October 1, 2020

1/53 PeckShield Audit Report #: 2020-52

sxwang@peckshield.com

Public

Document Properties

Client Harvest Finance
Title Smart Contract Audit Report
Target Harvest
Version 1.0
Author Xuxiang Jiang
Auditors Xuxian Jiang, Huaguo Shi, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 October 1, 2020 Xuxiang Jiang Final Release
1.0-rc2 September 30, 2020 Xuxian Jiang Final Release (Release Candidate #2)
1.0-rc1 September 28, 2020 Xuxian Jiang Final Release (Release Candidate #1)
0.5 September 22, 2020 Xuxian Jiang Additional Findings #4
0.4 September 20, 2020 Xuxian Jiang Additional Findings #3
0.3 September 18, 2020 Xuxian Jiang Additional Findings #2
0.2 September 16, 2020 Xuxian Jiang Additional Findings #1
0.1 September 14, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/53 PeckShield Audit Report #: 2020-52

Public

Contents

1 Introduction 5
1.1 About Harvest Finance . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 13
3.1 Improved Sanity Checks And Less Friction in NotifyHelper 13
3.2 Suggested Adherence of Checks-Effects-Interactions Pattern in HardRewards and Vaults 15
3.3 Incompatibility with Deflationary/Rebasing Tokens 16
3.4 Improved Event Generation . 18
3.5 Unused Import Removal in RewardToken . 20
3.6 Simplified Logic in getReward() . 21
3.7 Consistent Handling of Vault Investment Fraction 23
3.8 Possible Revert in withdrawToVault() . 24
3.9 Logic Error in CRVStrategyStable::depositArbCheck() 26
3.10 Inconsistent/Misplaced Comments Among Multiple Contracts 27
3.11 Improved Asset Consistency Between Vaults and Strategies 29
3.12 Possible Partial Withdrawal With withdrawAllToVault() 32
3.13 Authenticated salvage() From onlyGovernance . 35
3.14 Gas Optimization in withdrawToVault() . 36
3.15 Possible Front-Running For Reduced Return . 38
3.16 Optimized claimAndLiquidateCrv() For Improved Investment 40
3.17 Overly-Privileged Governance-Controlling EOA . 42

4 Conclusion 45

3/53 PeckShield Audit Report #: 2020-52

Public

5 Appendix 46
5.1 Basic Coding Bugs . 46

5.1.1 Constructor Mismatch . 46
5.1.2 Ownership Takeover . 46
5.1.3 Redundant Fallback Function . 46
5.1.4 Overflows & Underflows . 46
5.1.5 Reentrancy . 47
5.1.6 Money-Giving Bug . 47
5.1.7 Blackhole . 47
5.1.8 Unauthorized Self-Destruct . 47
5.1.9 Revert DoS . 47
5.1.10 Unchecked External Call . 48
5.1.11 Gasless Send . 48
5.1.12 Send Instead Of Transfer . 48
5.1.13 Costly Loop . 48
5.1.14 (Unsafe) Use Of Untrusted Libraries . 48
5.1.15 (Unsafe) Use Of Predictable Variables . 49
5.1.16 Transaction Ordering Dependence . 49
5.1.17 Deprecated Uses . 49

5.2 Semantic Consistency Checks . 49
5.3 Additional Recommendations . 49

5.3.1 Avoid Use of Variadic Byte Array . 49
5.3.2 Make Visibility Level Explicit . 50
5.3.3 Make Type Inference Explicit . 50
5.3.4 Adhere To Function Declaration Strictly . 50

References 51

4/53 PeckShield Audit Report #: 2020-52

Public

1 | Introduction

Given the opportunity to review the Harvest Protocol design document and related smart contract
source code, we in the report outline our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Harvest Finance

Similar to YFI, the Harvest Protocol helps farmers of all shapes and sizes get automatic exposure
to the highest yield available across a selection of decentralized finance protocols. The harvesting
strategies are flexible and designed to be compatible with current and upcoming assets. A variety
of strategies can be developed for adoption. In addition to the yields from harvesting, the protocol
provides incentives to its depositing users with additional FARM tokens. Protocol profits are distributed
to the FARM holders so that the interests and incentives are better aligned for Harvest users to govern
and hold a stake.

The basic information of Harvest protocol is as follows:

Table 1.1: Basic Information of Harvest

Item Description
Issuer Harvest Finance

Website https://harvest.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report October 1, 2020

In the following, we show the Git repository of reviewed files and the commit hash value used in

5/53 PeckShield Audit Report #: 2020-52

Public

this audit:

• https://github.com/harvest-finance/harvest (037d6e3)

1.2 About PeckShield

PeckShield Inc. [23] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [18]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the

6/53 PeckShield Audit Report #: 2020-52

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/53 PeckShield Audit Report #: 2020-52

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [17], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/53 PeckShield Audit Report #: 2020-52

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/53 PeckShield Audit Report #: 2020-52

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Harvest Protocol implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 2

Low 3

Informational 11

Total 17

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/53 PeckShield Audit Report #: 2020-52

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
2 medium-severity vulnerabilities, 3 low-severity vulnerabilities, and 11 informational recommenda-
tions.

Table 2.1: Key Audit Findings of Harvest Protocol

ID Severity Title Category Status
PVE-001 Low Improved Sanity Checks And Less Friction

in NotifyHelper
Coding Practices Fixed

PVE-002 Informational Suggested Adherence of
Checks-Effects-Interactions Pattern
in HardRewards and Vaults

Business Logics Confirmed

PVE-003 Low Incompatibility with
Deflationary/Rebasing Tokens

Business Logics Fixed

PVE-004 Informational Improved Event Generation
Error Conditions, Return
Values, Status Codes

Fixed

PVE-005 Informational Unused Import Removal in RewardToken Coding Practices Fixed
PVE-006 Informational Simplified Logic in getReward() Business Logics Confirmed
PVE-007 Informational Consistent Handling of Vault Investment

Fraction
Business Logics Fixed

PVE-008 Informational Possible Revert in withdrawToVault() Business Logics Confirmed
PVE-009 Medium Logic Error in

CRVStrategyStable::depositArbCheck()
Business Logics Fixed

PVE-010 Informational Inconsistent/Misplaced Comments
Among Multiple Contracts

Coding Practices Fixed

PVE-011 Informational Improved Asset Consistency Between
Vaults and Strategies

Coding Practices Confirmed

PVE-012 Medium Possible Partial Withdrawal With
withdrawAllToVault()

Business Logics Confirmed

PVE-013 Informational Authenticated salvage() From
onlyGovernance

Security Features Confirmed

PVE-014 Informational Gas Optimization in withdrawToVault() Coding Practices Confirmed
PVE-015 Low Possible Front-Running For Reduced

Return
Time and State Confirmed

PVE-016 Informational Optimized claimAndLiquidateCrv() For
Improved Investment

Business Logics Confirmed

PVE-017 High Overly-Privileged Governance-Controlling
EOA

Security Features Partially Fixed

11/53 PeckShield Audit Report #: 2020-52

Public

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

12/53 PeckShield Audit Report #: 2020-52

Public

3 | Detailed Results

3.1 Improved Sanity Checks And Less Friction in NotifyHelper

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact:Low

• Target: NotifyHelper

• Category: Coding Practices [14]

• CWE subcategory: CWE-1050 [2]

Description

The Harvest protocol defines unique incentive mechanisms to encourage early adoption. To facilitate
the distribution of the inherent protocol token, i.e., FARM, across multiple pools in a secure manner,
Harvest introduces a new contract named NotifyHelper, which defines the main notifier routine of
reward amounts to incentivized pools, i.e., notifyPools().

11 /**
12 * Notifies all the pools , safe guarding the notification amount.
13 */
14 f unc t i on n o t i f y P o o l s (uint256 [] memory amounts , address [] memory poo l s) pub l i c

on lyGove rnance {
15 r equ i r e (amounts . l ength == poo l s . length , "Amounts and pools lengths mismatch") ;
16 f o r (u in t i = 0 ; i < poo l s . l ength ; i++) {
17 r equ i r e (amounts [i] > 0 , "Notify zero") ;
18 NoMintRewardPool poo l = NoMintRewardPool (p oo l s [i]) ;
19 IERC20 token = IERC20 (poo l . rewardToken ()) ;
20 uint256 l i m i t = token . ba lanceOf (poo l s [i]) ;
21 r equ i r e (amounts [i] <= l im i t , "Notify limit hit") ;
22 NoMintRewardPool (p oo l s [i]) . not i fyRewardAmount (amounts [i]) ;
23 }
24 }

Listing 3.1: NotifyHelper . sol

To elaborate, we show the notifier logic above. This logic is restricted to governance only (with
the onlyGovernance modifier enforcement) and takes two arguments: amounts and pools. Apparently,

13/53 PeckShield Audit Report #: 2020-52

Public

it intends to conveniently notify a number of pools with respective reward amounts. For safety, the
notified reward amount is no larger than the pool balance. By doing so, it can greatly alleviate the
concern on the potential bug that may lock user stakes if the notified reward amount is larger enough
to always trigger the RewardPool SafeMath issue [26] and thus cause revert!

Specifically, this issue stems from the calculation of rewardPerToken() function (lines 701 − 707).
If a large number of reward amount is being notified, we will obtain a large rewardRate, which causes
the following math lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(1e18).div(

_totalSupply) to overflow. Since rewardPerToken() is always invoked when stakers attempt to retrieve
back their stakes, the always-reverted execution effectively blocks the attempt and thus locks the
funds.

696 f unc t i on rewardPerToken () pub l i c view re tu rn s (uint256) {
697 i f (t o t a l S u p p l y () == 0) {
698 re tu rn rewardPerTokenStored ;
699 }
700 re tu rn
701 rewardPerTokenStored . add (
702 l a s tT imeRewa rdApp l i c ab l e ()
703 . sub (la s tUpdateTime)
704 . mul (rewardRate)
705 . mul (1 e18)
706 . d i v (t o t a l S u p p l y ())
707) ;
708 }

Listing 3.2: RewardPool.sol

As a solution, the proposed notifyPools reward notifier ensures the reward amount stays within
a normal range. In particular, this amount will be required to be no greater than the remaining
balance of the reward token in the pool contract. However, it should be noted that the current
implementation does not check for any duplicates. As a result, it is theoretically possible to craft the
function inputs in a way to notify the same pool multiple times. Each time, the reward amount is
no larger than the pool, but multiple notifications to the same pool could bypass this restriction.

In the meantime, to avoid introducing unnecessary frictions, we suggest to revise the current
logic in not reverting the transaction when a pools’ reward amount is 0 (line 17).

Recommendation Remove possible duplicates in the given inputs and avoid unnecessary reverts
for less friction. A more fundamental approach is to apply the latest patch [26].

Status This issue has been confirmed.

14/53 PeckShield Audit Report #: 2020-52

Public

3.2 Suggested Adherence of Checks-Effects-Interactions
Pattern in HardRewards and Vaults

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: HardRewards, Vaults, DelayMinter

• Category: Business Logics [15]

• CWE subcategory: CWE-841 [11]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [27] exploit, and the recent Uniswap/Lendf.Me hack [24].

We notice there is a few occasions the checks-effects-interactions principle is violated. Using
rewardMe() function in the HardRewards contract (see the code snippet below) is provided to externally
call a token contract to transfer assets. However, the invocation of an external contract requires
extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 53) starts before effecting the update
on internal states (lines 59), hence violating the principle. In this particular case, if the lastReward

[vault] has not been timely updated and the external contract has some hidden logic that may be
capable of launching re-entrancy, a bad actor could continue to reward the given recipient multiple
times, even draining all funds loaded into the contract.

33 f unc t i on rewardMe (address r e c i p i e n t , address v a u l t) ex te rna l o n l y C o n t r o l l e r {
34 i f (address (token) == address (0) b lockReward == 0) {
35 // no rewards now
36 emit Rewarded (r e c i p i e n t , v au l t , 0) ;
37 re tu rn ;
38 }

40 i f (l a s tReward [v a u l t] == 0) {
41 // vault does not exist
42 emit Rewarded (r e c i p i e n t , v au l t , 0) ;
43 re tu rn ;
44 }

46 uint256 span = block . number . sub (l a s tReward [v a u l t]) ;

15/53 PeckShield Audit Report #: 2020-52

Public

47 uint256 reward = blockReward . mul (span) ;

49 i f (reward > 0) {
50 uint256 balance = token . ba lanceOf (address (t h i s)) ;
51 uint256 r ea lReward = balance >= reward ? reward : balance ;
52 i f (r ea lReward > 0) {
53 token . s a f eT r a n s f e r (r e c i p i e n t , r ea lReward) ;
54 }
55 emit Rewarded (r e c i p i e n t , v au l t , r ea lReward) ;
56 } e l s e {
57 emit Rewarded (r e c i p i e n t , v au l t , 0) ;
58 }
59 l a s tReward [v a u l t] = block . number ;
60 }

Listing 3.3: HardRewards.sol

Specifically, in the case that the reward token is an ERC777 token, a malicious actor could hijack
the token.safeTransfer() call (line 53) with a callback function. Within the callback function, they
could call the rewardMe() function again to withdraw additional amount. The bad actor could do
it again and again until all funds in HardRewards are drained. Fortunately, this particular case is
protected with a onlyController modifier and the related token is not an ERC777 token.

Meanwhile, we observe similar pattern violations in other contracts, including deposit() and
withdraw() in Vaults, executeMint() in DelayMinter, and others. The associated reentrancy risks and
the notorious history bring up the necessity to implement effective reentrancy prevention in current
codebase.

Recommendation Follow the known checks-effects-interactions best practice or apply nec-
essary reentrancy prevention by adding the noReentrancy-like modifier to affected functions.

Status This issue has been confirmed.

3.3 Incompatibility with Deflationary/Rebasing Tokens

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: DepositHelper, Vault, ...

• Category: Business Logics [15]

• CWE subcategory: CWE-841 [11]

Description

In Harvest, the Vault contract is designed to be the main entry for interaction with farming users. In
particular, one entry routine, i.e., deposit(), accepts deposits of assets (e.g., DAI) and returns with

16/53 PeckShield Audit Report #: 2020-52

Public

wrapped counterparts (e.g., fDAI). Naturally, the contract implements a number of low-level helper
routines to transfer assets into or out of the Harvest protocol. These asset-transferring routines
work as expected with standard ERC20 tokens: namely the vault’s internal asset balances are always
consistent with actual token balances maintained in individual ERC20 token contracts.

230 f unc t i on _depos i t (uint256 amount , address sender , address b e n e f i c i a r y) i n t e r n a l {
231 r equ i r e (amount > 0 , "Cannot deposit 0") ;
232 r equ i r e (b e n e f i c i a r y != address (0) , "holder must be defined") ;

234 i f (address (s t r a t e g y) != address (0)) {
235 r equ i r e (s t r a t e g y . depos i tArbCheck () , "Too much arb") ;
236 }

238 uint256 toMint = t o t a l S u p p l y () == 0
239 ? amount
240 : amount . mul (t o t a l S u p p l y ()) . d i v (unde r l y i n gBa l an c eWi th I n v e s tmen t ()) ;
241 _mint (b e n e f i c i a r y , toMint) ;

243 u n d e r l y i n g . s a f eT ran s f e rF rom (sender , address (t h i s) , amount) ;

245 // update the contribution amount for the beneficiary
246 c o n t r i b u t i o n s [b e n e f i c i a r y] = c o n t r i b u t i o n s [b e n e f i c i a r y] . add (amount) ;
247 emit Depos i t (b e n e f i c i a r y , amount) ;
248 }

Listing 3.4: Vault. sol

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge certain fee for every transfer()

or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these low-level asset-transferring routines. In other words, the above operations,
such as deposit() and withdraw(), may introduce unexpected balance inconsistencies when comparing
internal asset records with external ERC20 token contracts. Apparently, these balance inconsistencies
are damaging to accurate and precise portfolio management of Harvest and affects protocol-wide
operation and maintenance. A similar issue can also be found in DepositHelper, FeeRewardForwarder,
and LPTokenWrapper.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of bluntly assuming the amount parameter in transfer() or
transferFrom() will always result in full transfer, we need to ensure the increased or decreased amount
in the pool before and after the transfer() or transferFrom() is expected and aligned well with our
operation. Though these additional checks cost additional gas usage, we consider they are necessary
to deal with deflationary tokens or other customized ones if their support is deemed necessary.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into Harvest. In
Harvest, it is indeed possible to effectively regulate the set of tokens that can be supported. Keep
in mind that there exist certain assets (e.g., USDT) that may have control switches that can be

17/53 PeckShield Audit Report #: 2020-52

Public

dynamically exercised to suddenly become one.

Recommendation To accommodate the support of possible deflationary tokens, it is better
to check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Moreover, due to the USDT support
in Harvest, we need to exercise extra caution in monitoring possible subversion and inconsistency if
it turns into deflationary in the future.

Status The issue has been fixed by this commit: 8d464a1791a3d48d4b0318fb3c9207075cdede86.

Furthermore, it has been clarified from the team by providing the following elaboration and response:
“The system is not designed to work with deflationary tokens. If a token is turned into a

deflationary token afterwards, during withdrawal, we perform a Math.min on whatever is in the vault
and the rightful share. For now, all tokens are non-deflationary (USDT switch is off). As mentioned
in the security review document we provided, we do make sure that deflationary coins don’t go into
the reward pools, so LPTokenWrapper part is fine. (this is the reason we were using Uniswap LP
Tokens for some deflationary tokens like BASED in the pool launches).”

3.4 Improved Event Generation

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Controller

• Category: Status Codes [16]

• CWE subcategory: CWE-682 [8]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and monitoring tools.

Events can be emitted in a number of scenarios. One particular case is when system-wide pa-
rameters or settings are being changed. For example, Harvest has a number of risk parameters that
are dynamically adjustable via governance. However, the current implementation can be greatly
benefited by emitting related events when they are being changed.

If the following, we use the Controller contract as an example. This contract is a privileged one
responsible for controlling the mapping between vaults and strategies, specifying the allowed set of
hardWorkers, and configuring the feeRewardForwarder address.

93 f unc t i on se tFeeRewardForwarder (address _feeRewardForwarder) pub l i c on lyGove rnance {

18/53 PeckShield Audit Report #: 2020-52

https://github.com/harvest-finance/harvest/commit/8d464a1791a3d48d4b0318fb3c9207075cdede86

Public

94 r equ i r e (_feeRewardForwarder != address (0) , "new reward forwarder should not be
empty") ;

95 f eeRewardForwarder = _feeRewardForwarder ;
96 }

98 f unc t i on addVau l tAndSt ra tegy (address _vault , address _st ra t egy) ex te rna l
on lyGove rnance {

99 r equ i r e (_vault != address (0) , "new vault shouldn ’t be empty") ;
100 r equ i r e (! v a u l t s [_vault] , "vault already exists") ;
101 r equ i r e (_s t ra t egy != address (0) , "new strategy shouldn ’t be empty") ;

103 v a u l t s [_vaul t] = t rue ;
104 // adding happens while setting
105 I V a u l t (_vault) . s e t S t r a t e g y (_s t ra t egy) ;
106 }

Listing 3.5: Controller . sol

70 f unc t i on addHardWorker (address _worker) pub l i c on lyGove rnance {
71 r equ i r e (_worker != address (0) , "_worker must be defined") ;
72 hardWorkers [_worker] = t rue ;
73 }

75 f unc t i on removeHardWorker (address _worker) pub l i c on lyGove rnance {
76 r equ i r e (_worker != address (0) , "_worker must be defined") ;
77 hardWorkers [_worker] = f a l s e ;
78 }

Listing 3.6: Controller . sol

Though these settings and their changes greatly affect the overall Harvest operations, we however
notice related events are not emitted when they are being updated. As our suggestion, we feel strongly
the need of emitting related events when these settings are being changed, especially when a new
pair of vault and strategy are being added.

Also, when these events are emitted, there is a need to be precise. For example, the following
event from the statement emit Liquidating(crvBalance) (line 155) is suggested to be relocated to be
part of the if-then branch (right before line 157).

151 f unc t i on c l a imAndL iqu i da t eC rv () i n t e r n a l {
152 Mintr (min t r) . mint (poo l) ;
153 // claiming rewards and sending them to the master strategy
154 uint256 c r vBa l ance = IERC20 (c r v) . ba lanceOf (address (t h i s)) ;
155 emit L i q u i d a t i n g (c r vBa l ance) ;
156 i f (c r vBa l ance > 0) {
157 uint256 da iBa l a n c eBe f o r e = IERC20 (da i) . ba lanceOf (address (t h i s)) ;
158 IERC20 (c r v) . s a f eApprove (uni , 0) ;
159 IERC20 (c r v) . s a f eApprove (uni , c r vBa l ance) ;
160 // we can accept 1 as the minimum because this will be called only by a trusted

worker
161 IUniswapV2Router02 (un i) . swapExactTokensForTokens (
162 c rvBa lance , 1 , uniswap_CRV2DAI , address (t h i s) , block . timestamp

19/53 PeckShield Audit Report #: 2020-52

Public

163) ;
164 // now we have DAI
165 // pay fee before making yCRV
166 n o t i f y P r o f i t (da iBa l anceBe fo r e , IERC20 (da i) . ba lanceOf (address (t h i s))) ;

168 // liquidate if there is any DAI left
169 i f (IERC20 (da i) . ba lanceOf (address (t h i s)) > 0) {
170 yCurveFromDai () ;
171 }
172 // now we have yCRV
173 }
174 }

Listing 3.7: CRVStrategyYCRV.sol

Recommendation Emit necessary events to timely reflect protocol-wide setting changes.

Status The issue has been fixed by this commit: 8d464a1791a3d48d4b0318fb3c9207075cdede86.

3.5 Unused Import Removal in RewardToken

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: RewardToken

• Category: Coding Practices [14]

• CWE subcategory: CWE-561 [7]

Description

Harvest makes good use of a number of reference contracts, such as ERC20, ERC20Detailed, ERC20Capped
, ERC20Mintable, and Ownable, to facilitate its code implementation and organization. For example,
the RewardToken smart contract has so far imported at least five reference contracts. However, we
observe the inclusion of certain unused code or the presence of unnecessary redundancies that can
be safely removed.

For example, if we examine closely the RewardToken contract, some imports are really not necessary.
Specifically, the Ownable import is not necessary as it is not used at all in RewardToken. Also the IERC20

import needs to be replaced with ERC20.

1 pragma s o l i d i t y 0 . 5 . 1 6 ;
2
3 import "@openzeppelin/contracts/token/ERC20/IERC20.sol" ;
4 import "@openzeppelin/contracts/token/ERC20/ERC20Capped.sol" ;
5 import "@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol" ;
6 import "@openzeppelin/contracts/token/ERC20/ERC20Mintable.sol" ;
7 import "@openzeppelin/contracts/ownership/Ownable.sol" ;

20/53 PeckShield Audit Report #: 2020-52

https://github.com/harvest-finance/harvest/commit/8d464a1791a3d48d4b0318fb3c9207075cdede86

Public

8 import "./ Governable.sol" ;
9

10 cont ract RewardToken i s ERC20 , ERC20Detai led , ERC20Capped , Gove rnab l e {
11
12 uint256 pub l i c constant HARD_CAP = 5 ∗ (10 ∗∗ 6) ∗ (10 ∗∗ 18) ;
13
14 cons t ruc to r (address _storage) pub l i c
15 ERC20Detai led ("FARM Reward Token" , "FARM" , 18)
16 ERC20Capped (HARD_CAP)
17 Gove rnab l e (_storage) {
18 // msg.sender should not be a minter
19 r enounceMinte r () ;
20 // governance will become the only minter
21 _addMinter (gove rnance ()) ;
22 }
23
24 /**
25 * Overrides adding new minters so that only governance can authorized them.
26 */
27 f unc t i on addMinter (address _minter) pub l i c on lyGove rnance {
28 super . addMinter (_minter) ;
29 }
30 }

Listing 3.8: RewardToken.sol

Recommendation Remove unnecessary imports of reference contracts and revise existing ones
if necessary.

Status The issue has been fixed by this commit: 8d464a1791a3d48d4b0318fb3c9207075cdede86.

3.6 Simplified Logic in getReward()

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: StakeLPToken

• Category: Business Logics [15]

• CWE subcategory: CWE-770 [9]

Description

In the StakeLPToken contract, the getReward() routine is intended to obtain the calling user’s staking
rewards. The logic is rather straightforward in calculating possible reward, which, if not zero, is then
allocated to the calling (staking) user.

Our examination shows that the current implementation logic can be further optimized. In par-
ticular, the getReward() routine has a modifier, i.e., updateReward(msg.sender), which timely updates

21/53 PeckShield Audit Report #: 2020-52

https://github.com/harvest-finance/harvest/commit/8d464a1791a3d48d4b0318fb3c9207075cdede86

Public

the calling user’s (earned) rewards in rewards[msg.sender] (line 94).
94 f unc t i on getReward () pub l i c updateReward (msg . sender) {
95 u in t reward = earned (msg . sender) ;
96 i f (reward > 0) {
97 r ewards [msg . sender] = 0 ;
98 co r e . mintReward (msg . sender , reward) ;
99 emit RewardPaid (msg . sender , reward) ;

100 }
101 }

Listing 3.9: StakeLPToken.sol

Having the modifier updateReward(), there is no need to re-calculate the earned reward for the
caller msg.sender. In other words, we can simply re-use the calculated rewards[msg.sender] and assign
it to the reward variable (line 95).

62 mod i f i e r updateReward (address account) {
63 updatePro toco l I ncome () ;
64 i f (account != address (0)) {
65 r ewards [account] = _earned (rewardPerTokenStored , account) ;
66 userRewardPerTokenPaid [account] = rewardPerTokenStored ;
67 }
68 _;
69 }

Listing 3.10: StakeLPToken.sol

Recommendation Avoid the duplicated calculation of the caller’s reward in getReward(), which
also leads to (small) beneficial reduction of associated gas cost.

94 f unc t i on getReward () pub l i c updateReward (msg . sender) {
95 u in t reward = rewards [msg . sender] ;
96 i f (reward > 0) {
97 r ewards [msg . sender] = 0 ;
98 co r e . mintReward (msg . sender , reward) ;
99 emit RewardPaid (msg . sender , reward) ;

100 }
101 }

Listing 3.11: StakeLPToken.sol

Status The issue has been confirmed. However, considering this contract is directly based on
Synthetix, the team considers the less changes there are, the better. Therefore, the team decides to
intentionally keep it as is for the time being.

22/53 PeckShield Audit Report #: 2020-52

Public

3.7 Consistent Handling of Vault Investment Fraction

• ID: PVE-007

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Vault

• Category: Business Logics [15]

• CWE subcategory: CWE-837 [10]

Description

In Harvest, there is a one-to-one mapping between a vault and its strategy. Within the vault, there is
a pair of parameters, i.e., vaultFractionToInvestDenominator and vaultFractionToInvestNumerator, that
specify the desired percentage of funds for investment. This pair parameter can be directly specified
when a new vault is being deployed or dynamically reconfigured via setVaultFractionToInvest().

In the following, we outline the code for both constructor() and setVaultFractionToInvest(). If
we pay attention to the sanity checks on the above pair of parameters, we notice constructor()

allows for the case of _toInvestNumerator == _toInvestDenominator, but this case is not allowed in
setVaultFractionToInvest().

36 cons t ruc to r (address _storage ,
37 address _under l y ing ,
38 uint256 _toInvestNumerator ,
39 uint256 _toInves tDenominator
40) ERC20Deta i led (
41 s t r i n g (ab i . encodePacked ("FARM_" , ERC20Deta i led (_unde r l y i ng) . symbol ())) ,
42 s t r i n g (ab i . encodePacked ("f" , ERC20Deta i led (_unde r l y i ng) . symbol ())) ,
43 ERC20Detai led (_unde r l y i ng) . d e c ima l s ()
44) C o n t r o l l a b l e (_storage) pub l i c {
45 u n d e r l y i n g = IERC20 (_unde r l y i ng) ;
46 r equ i r e (_to Inves tNumerator <= _toInvestDenominator , "cannot invest more than 100%") ;
47 r equ i r e (_to Inves tDenominator != 0 , "cannot divide by 0") ;
48 v au l t F r a c t i o nTo I n v e s tDenom ina t o r = _to Inves tDenominator ;
49 v au l t F r a c t i o nTo I n v e s tNume r a t o r = _toInves tNumerator ;
50 und e r l y i n gUn i t = 10 ∗∗ uint256 (ERC20Detai led (address (u n d e r l y i n g)) . d e c ima l s ()) ;
51 }

Listing 3.12: Vault. sol

144 f unc t i on s e tV a u l t F r a c t i o nTo I n v e s t (uint256 numerator , uint256 denominator) ex te rna l
on lyGove rnance {

145 r equ i r e (denominator > 0 , "denominator must be greater than 0") ;
146 r equ i r e (numerator < denominator , "denominator must be greater than numerator") ;
147 v au l t F r a c t i o nTo I n v e s tNume r a t o r = numerator ;
148 v au l t F r a c t i o nTo I n v e s tDenom ina t o r = denominator ;
149 }

Listing 3.13: Vault. sol

23/53 PeckShield Audit Report #: 2020-52

Public

For consistency, it is suggested to apply the same criteria when validating the same parameters.

Recommendation Be consistent in validating the pair of parameters that specify the vault’s
investment percentage, i.e., vaultFractionToInvestDenominator and vaultFractionToInvestNumerator.
We suggest to modify the constructor() routine to disallow the equal case.

Status The issue has been fixed by this commit: 8d464a1791a3d48d4b0318fb3c9207075cdede86.

3.8 Possible Revert in withdrawToVault()

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SNXRewardStrategy

• Category: Coding Practices [14]

• CWE subcategory: CWE-1099 [3]

Description

To facilitate the interaction between a vault and its strategy, Harvest defines a set of standard
interfaces that are required and exported in strategy instances. Some example interfaces include
withdrawToVault(), withdrawAllToVault(), salvage(), investedUnderlyingBalance(), doHardWork(), and
depositArbCheck(). Note that withdrawToVault() and withdrawAllToVault() are used to transfer funds
currently held in strategy to the associated vault contract.

During our analysis of the SNXRewardStrategy contract, we notice a corner case that may cause
withdrawToVault() to fail. To elaborate, we show its code snippet below.

230 /*
231 * Withdraws all the asset to the vault
232 */
233 f unc t i on withdrawToVault (uint256 amount) pub l i c r e s t r i c t e d {
234 // Typically there wouldn ’t be any amount here
235 // however , it is possible because of the emergencyExit
236 i f (amount > und e r l y i n g . ba lanceOf (address (t h i s))) {
237 // While we have the check above , we still using SafeMath below
238 // for the peace of mind (in case something gets changed in between)
239 uint256 needToWithdraw = amount . sub (u n d e r l y i n g . ba lanceOf (address (t h i s))) ;
240 r ewardPoo l . withdraw (Math . min (rewardPoo l . ba lanceOf (address (t h i s)) , needToWithdraw))

;
241 }
242
243 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , amount) ;
244 }

Listing 3.14: SNXRewardStrategy.sol

24/53 PeckShield Audit Report #: 2020-52

https://github.com/harvest-finance/harvest/commit/8d464a1791a3d48d4b0318fb3c9207075cdede86

Public

The function logic is straightforward: it first determines whether the current strategy contract
holds sufficient funds to satisfy the withdraw request. If yes, it directly transfers the request funds;
Otherwise, it needs to withdraw from the rewardPool. However, the rewardPool case may bring the
following scenario when rewardPool.balanceOf(address(this))< needToWithdraw (line 240). In other
words, the total available balance, including rewardPool, may be smaller than the requested amount.
As a result, the final transfer with the requested amount (line 243) fails.

Recommendation Detect whether the balance is sufficient and accordingly adjust the amount
being transferred out if not. An example revision is shown below:

230 /*
231 * Withdraws all the asset to the vault
232 */
233 f unc t i on withdrawToVault (uint256 amount) pub l i c r e s t r i c t e d {
234 // Typically there wouldn ’t be any amount here
235 // however , it is possible because of the emergencyExit
236 i f (amount > und e r l y i n g . ba lanceOf (address (t h i s))) {
237 // While we have the check above , we still using SafeMath below
238 // for the peace of mind (in case something gets changed in between)
239 uint256 needToWithdraw = amount . sub (u n d e r l y i n g . ba lanceOf (address (t h i s))) ;
240 r ewardPoo l . withdraw (Math . min (rewardPoo l . ba lanceOf (address (t h i s)) , needToWithdraw))

;
241 }
242
243 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , Math . min (amount , u n d e r l y i n g . ba lanceOf (address

(t h i s)))) ;
244 }

Listing 3.15: SNXRewardStrategy.sol

Status This issue has been through a few rounds of discussions. It has come to conclusion that
by design, the revert is expected when the balance is insufficient to satisfy the withdrawToVault()

demand.

25/53 PeckShield Audit Report #: 2020-52

Public

3.9 Logic Error in CRVStrategyStable::depositArbCheck()

• ID: PVE-009

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: CRVStrategyStable

• Category: Business Logics [15]

• CWE subcategory: CWE-841 [11]

Description

As mentioned in Section 3.8, Harvest defines a number of APIs which each strategy is required
to implement. Here, we discuss one particular interface, i.e., depositArbCheck(). This interface is
designed to prevent arbitrage opportunities from being aggressively exploited. In particular, it detects
the price slippage from previous checkpoints and block new deposits if the deviation is above the
prescribed threshold arbTolerance (3% in current deployment).

To elaborate, we show the detection logic below. If the current price currentPrice is large than
the latest checkpoint curvePriceCheckpoint and the deviation is more than arbTolerance percentage,
it is considered an arbitrage attempt and the protocol will block it. However, we find out that the
detection logic is flawed. In fact, the current depositArbCheck() implementation always returns true.

104 f unc t i on depos i tArbCheck () pub l i c view re tu rn s (bool) {
105 uint256 c u r r e n t P r i c e = under l y ingVa lueFromYCrv (y c r vUn i t) ;
106 i f (c u r r e n t P r i c e > cu r v eP r i c eChe c kpo i n t) {
107 re tu rn c u r r e n t P r i c e . mul (100) . d i v (c u r v eP r i c eChe c kpo i n t) > 100 − a rbTo l e r anc e ;
108 } e l s e {
109 re tu rn cu r v eP r i c eChe c kpo i n t . mul (100) . d i v (c u r r e n t P r i c e) > 100 − a rbTo l e r anc e ;
110 }
111 }
112
113 f unc t i on s e tA rbTo l e r anc e (uint256 t o l e r a n c e) ex te rna l on lyGove rnance {
114 r equ i r e (t o l e r a n c e <= 100 , "at most 100") ;
115 a rbTo l e r anc e = t o l e r a n c e ;
116 }

Listing 3.16: CRVStrategyStable.sol

Specifically, if we examine the case currentPrice > curvePriceCheckpoint (line 106), it is guaran-
teed that the following statement in line 107 is evaluated true. A proper implementation needs to
revised as follows:

104 f unc t i on depos i tArbCheck () pub l i c view re tu rn s (bool) {
105 uint256 c u r r e n t P r i c e = under l y ingVa lueFromYCrv (y c r vUn i t) ;
106 i f (c u r r e n t P r i c e > cu r v eP r i c eChe c kpo i n t) {
107 re tu rn c u r r e n t P r i c e . mul (100)) < (100 + a rbTo l e r anc e) . mul (c u r v eP r i c eChe c kpo i n t)
108 } e l s e {
109 re tu rn cu r v eP r i c eChe c kpo i n t . mul (100) < (100 + a rbTo l e r anc e) . mul (c u r r e n t P r i c e) ;

26/53 PeckShield Audit Report #: 2020-52

Public

110 }
111 }
112
113 f unc t i on s e tA rbTo l e r anc e (uint256 t o l e r a n c e) ex te rna l on lyGove rnance {
114 r equ i r e (t o l e r a n c e <= 100 , "at most 100") ;
115 a rbTo l e r anc e = t o l e r a n c e ;
116 }

Listing 3.17: CRVStrategyStable.sol

Recommendation Revise the depositArbCheck() logic to reflect the intended purpose.

Status The issue has been fixed by this commit: 48adf02d98b5bad2b426d7b833548aeddd62d2f7.

3.10 Inconsistent/Misplaced Comments Among Multiple
Contracts

• ID: PVE-010

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CRVStrategyStable, CRVStrategyYCRV

• Category: Coding Practices [14]

• CWE subcategory: CWE-1116 [4]

Description

Documentations, including comments embedded in the code, are indispensable in our auditing process
for a better understanding of the overall protocol design and the underlying implementation. It is also
valuable when there is need to maintain, refactor, or extend the current codebase. Our review process
exposes a number of occasions where certain comments are inconsistent, misleading, or completely
misplaced. In the following, we show three representative cases.

Case I The first example is the strategy contract, i.e., CRVStrategyYCRV. This contract is
designed to invest farmers’ assets (held in vault), harvest growing yields, and sell any gains, if any,
to the original asset. In the following, we show two helper routines, i.e., withdrawToVault() and
withdrawAllToVault(), that are used to withdraw funds back to vault. However, both comments
above respective routines can be more precise in stating the withdrawed funds are returned back to
the vault, not pool. Note the pool here actually means the gauge!

113 /**
114 * Withdraws the yCRV tokens to the pool in the specified amount.
115 */
116 f unc t i on withdrawToVault (uint256 amountUnder ly ing) ex te rna l r e s t r i c t e d {

27/53 PeckShield Audit Report #: 2020-52

https://github.com/harvest-finance/harvest/commit/48adf02d98b5bad2b426d7b833548aeddd62d2f7

Public

117 withdrawYCrvFromPool (amountUnder ly ing) ;
118 i f (IERC20 (u n d e r l y i n g) . ba l anceOf (address (t h i s)) < amountUnder ly ing) {
119 c l a imAndL iqu i da t eC rv () ;
120 }
121 uint256 t oT r a n s f e r = Math . min (IERC20 (u n d e r l y i n g) . ba lanceOf (address (t h i s)) ,

amountUnder ly ing) ;
122 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , t oT r a n s f e r) ;
123 }
124
125 /**
126 * Withdraws all the yCRV tokens to the pool.
127 */
128 f unc t i on wi thd rawAl lToVau l t () ex te rna l r e s t r i c t e d {
129 c l a imAndL iqu i da t eC rv () ;
130 withdrawYCrvFromPool (maxUint) ;
131 uint256 balance = IERC20 (u n d e r l y i n g) . ba lanceOf (address (t h i s)) ;
132 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , balance) ;
133 }

Listing 3.18: CRVStrategyYCRV.sol

Case II The second example is two other functions defined in the same CRVStrategyYCRV contact.
These two functions are doHardWork() and investedUnderlyingBalance(). The comment of doHardWork
() states that "Claims and liquidates CRV into yCRV, and then invests all underlying." However,
this strategy indeed claims and liquidates CRV, but not into yCRV. Instead, CRV is claimed and liquidated
into the underlying asset (e.g., DAI or other stablecoins).

The second function investedUnderlyingBalance(), as the name indicates, intends to query the
invested amount denominated at the underlying token. However, the current comment reads "Claims

and liquidates CRV into yCRV, and then invests all underlying", which apparently is copied from
the first function without any modification.

176 /**
177 * Claims and liquidates CRV into yCRV , and then invests all underlying.
178 */
179 f unc t i on doHardWork () pub l i c r e s t r i c t e d {
180 c l a imAndL iqu i da t eC rv () ;
181 i n v e s t A l l U n d e r l y i n g () ;
182 }
183
184 /**
185 * Claims and liquidates CRV into yCRV , and then invests all underlying.
186 */
187 f unc t i on i n v e s t e dUnd e r l y i n gBa l a n c e () pub l i c view re tu rn s (uint256) {
188 re tu rn Gauge (poo l) . ba lanceOf (address (t h i s)) . add (
189 IERC20 (u n d e r l y i n g) . ba lanceOf (address (t h i s))
190) ;
191 }

Listing 3.19: CRVStrategyYCRV.sol

28/53 PeckShield Audit Report #: 2020-52

Public

Case III The third example is two functions, i.e., yTokenValueFromYCrv() and underlyingValueFromYCrv

() in the CRVStrategyStable contract. They are simply misplaced and need to switched with each
other to better explain the purpose of each function!

267 /**
268 * Returns the value of yCRV in underlying token accounting for slippage and fees.
269 */
270 f unc t i on yTokenValueFromYCrv (uint256 yc r vBa l ance) pub l i c view re tu rn s (uint256) {
271 re tu rn under l y ingVa lueFromYCrv (y c r vBa l anc e) // this is in DAI , we will convert to

yDAI
272 . mul (10 ∗∗ 18)
273 . d i v (yERC20 (yVau l t) . g e t P r i c eP e r F u l l S h a r e ()) ; // function getPricePerFullShare () has

18 decimals for all tokens
274 }
275
276 /**
277 * Returns the value of yCRV in y-token (e.g., yCRV -> yDai) accounting for slippage

and fees.
278 */
279 f unc t i on under l y ingVa lueFromYCrv (uint256 yc r vBa l ance) pub l i c view re tu rn s (uint256) {
280 re tu rn I P r i c eC o n v e r t o r (c o n v e r t o r) . yCrvToUnder l y ing (yc rvBa lance , uint256 (t oken Index))

;
281 }

Listing 3.20: CRVStrategyStable.sol

Recommendation Revise the above code comments to make them coherent with respective
functions.

Status The issue has been fixed by this commit: 8d464a1791a3d48d4b0318fb3c9207075cdede86.

3.11 Improved Asset Consistency Between Vaults and Strategies

• ID: PVE-011

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CRVStrategyStable, CRVStrategyYCRV

• Category: Coding Practices [14]

• CWE subcategory: CWE-1099 [3]

Description

As mentioned in Section 3.7, there is a one-to-one mapping between a vault and its strategy. To
properly link a vault with its strategy, it is naturally for the two to operate on the same underlying
asset. For example, the VaultDAI vault allows for DAI-based deposits and withdraws. The associated

29/53 PeckShield Audit Report #: 2020-52

https://github.com/harvest-finance/harvest/commit/8d464a1791a3d48d4b0318fb3c9207075cdede86

Public

strategy, i.e., a CRVStrategyStable-based instance, naturally has DAI as the underlying asset. If these
two have different underlying assets, the link should not be successful.

If we examine the setStrategy() routine in the vault contract, this routine allows for dynamic
binding of the vault with a new strategy (line 138). A successful binding needs to satisfy a number
of requirements. One specific one is shown as follows: require(IStrategy(_strategy).underlying()==

address(underlying), "Vault underlying must match Strategy underlying") (line 130). Apparently,
this requirement guarantees the consistency of the underlying asset between the vault and its asso-
ciated strategy.

128 f unc t i on s e t S t r a t e g y (address _st ra t egy) pub l i c on l yCon t r o l l e rO rGov e r n an c e {
129 r equ i r e (_s t ra t egy != address (0) , "new _strategy cannot be empty") ;
130 r equ i r e (I S t r a t e g y (_s t ra t egy) . u n d e r l y i n g () == address (u n d e r l y i n g) , "Vault underlying

must match Strategy underlying") ;
131 r equ i r e (I S t r a t e g y (_s t ra t egy) . v a u l t () == address (t h i s) , "the strategy does not belong

to this vault") ;
132
133 i f (address (_s t ra t egy) != address (s t r a t e g y)) {
134 i f (address (s t r a t e g y) != address (0)) { // if the original strategy (no underscore)

is defined
135 u n d e r l y i n g . sa f eApprove (address (s t r a t e g y) , 0) ;
136 s t r a t e g y . w i thd rawAl lToVau l t () ;
137 }
138 s t r a t e g y = I S t r a t e g y (_s t ra t egy) ;
139 u n d e r l y i n g . sa f eApprove (address (s t r a t e g y) , 0) ;
140 u n d e r l y i n g . sa f eApprove (address (s t r a t e g y) , uint256 (~0)) ;
141 }
142 }

Listing 3.21: Vaults . sol

However, if we examine the constructor() of various strategy contracts (e.g., CRVStrategyStable,
CRVStrategySwerve, and CRVStrategyWRenBTC), the requirement of having the same underlying asset is
not enforced. A new strategy deployment with an ill-provided list of arguments with an unmatched
underlying asset may cause unintended consequences, including possible asset loss. With that, we
suggest to maintain an invariant by ensuring the consistency of the underlying asset when a new
strategy is being deployed.

72 cons t ruc to r (
73 address _storage ,
74 address _under ly ing ,
75 address _vault ,
76 address _ycrvVault ,
77 address _yVault ,
78 uint256 _tokenIndex ,
79 address _ycrv ,
80 address _curveProtoco l ,
81 address _conver to r
82)
83 Co n t r o l l a b l e (_storage) pub l i c {

30/53 PeckShield Audit Report #: 2020-52

Public

84 v a u l t = _vault ;
85 y c r vVau l t = _ycrvVau l t ;
86 u n d e r l y i n g = _unde r l y i ng ;
87 t oken Index = TokenIndex (_tokenIndex) ;
88 yVau l t = _yVault ;
89 y c r v = _ycrv ;
90 cu r ve = _curvePro toco l ;
91 c o n v e r t o r = _conver to r ;
92
93 // set these tokens to be not salvageable
94 unsa l vagab l eToken s [u n d e r l y i n g] = t rue ;
95 unsa l vagab l eToken s [yVau l t] = t rue ;
96 unsa l vagab l eToken s [y c r v] = t rue ;
97 unsa l vagab l eToken s [y c r vVau l t] = t rue ;
98
99 y c r vUn i t = 10 ∗∗ 18 ;

100 // starting with a stable price , the mainnet will override this value
101 cu r v eP r i c eChe c kpo i n t = yc r vUn i t ;
102 }

Listing 3.22: CRVStrategyStable.sol

Recommendation Ensure the consistency of the underlying asset between the vault and its
associated strategy. An example revision is shown below. Note three strategy contracts or variants
need to be revisited: CRVStrategyStable, CRVStrategySwerve, and CRVStrategyWRenBTC.

72 cons t ruc to r (
73 address _storage ,
74 address _under ly ing ,
75 address _vault ,
76 address _ycrvVault ,
77 address _yVault ,
78 uint256 _tokenIndex ,
79 address _ycrv ,
80 address _curveProtoco l ,
81 address _conver to r
82)
83 Co n t r o l l a b l e (_storage) pub l i c {
84 r equ i r e (I V a u l t (_vault) . u n d e r l y i n g () == _under ly ing , "vault does not support yCRV") ;
85 v a u l t = _vault ;
86 y c r vVau l t = _ycrvVau l t ;
87 u n d e r l y i n g = _unde r l y i ng ;
88 t oken Index = TokenIndex (_tokenIndex) ;
89 yVau l t = _yVault ;
90 y c r v = _ycrv ;
91 cu r ve = _curvePro toco l ;
92 c o n v e r t o r = _conver to r ;
93
94 // set these tokens to be not salvageable
95 unsa l vagab l eToken s [u n d e r l y i n g] = t rue ;
96 unsa l vagab l eToken s [yVau l t] = t rue ;
97 unsa l vagab l eToken s [y c r v] = t rue ;

31/53 PeckShield Audit Report #: 2020-52

Public

98 unsa l vagab l eToken s [y c r vVau l t] = t rue ;
99

100 y c r vUn i t = 10 ∗∗ 18 ;
101 // starting with a stable price , the mainnet will override this value
102 cu r v eP r i c eChe c kpo i n t = yc r vUn i t ;
103 }

Listing 3.23: CRVStrategyStable.sol

Status This issue has been confirmed. Note that the current implementation also performs
necessary sanity checks in setStrategy(), which ensures that the vault’s underlying asset is the same
as strategy’s underlying asset. Because of that, the team decides there is no such need.

3.12 Possible Partial Withdrawal With withdrawAllToVault()

• ID: PVE-012

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: CRVStrategyStable

• Category: Business Logics [15]

• CWE subcategory: CWE-841 [11]

Description

As mentioned in Section 3.8, Harvest defines a number of standard APIs which each strategy is
required to implement. In this section, we discuss one particular interface, i.e., withdrawAllToVault

(). This interface is designed to withdraw all available underlying assets back to the linked vault

contract. This may happen when a new strategy is activated to replace an old one.
To elaborate, we show the withdrawAllToVault() logic below. The full withdrawal is implemented

in a helper routine named yCurveToUnderlying() (line 206). However, a close examination of this
helper routine shows it may not always achieve the intended full withdrawal.

198 /**
199 * Withdraws all assets from the vault. We ask the yCRV vault to give us our entire

yCRV balance
200 * and then convert it to the underlying asset using the Curve protocol.
201 */
202 f unc t i on wi thd rawAl lToVau l t () ex te rna l r e s t r i c t e d {
203 uint256 s h a r e s = IERC20 (y c r vVau l t) . ba lanceOf (address (t h i s)) ;
204 I V a u l t (y c r vVau l t) . withdraw (s h a r e s) ;
205 // withdraw everything until there is only dust left
206 yCurveToUnder l y ing (uint256 (~0)) ;
207 uint256 a c t u a lBa l a n c e = IERC20 (u n d e r l y i n g) . ba lanceOf (address (t h i s)) ;
208 i f (a c t u a lBa l a n c e > 0) {
209 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , a c t u a lBa l a n c e) ;
210 }

32/53 PeckShield Audit Report #: 2020-52

Public

211 }

Listing 3.24: CRVStrategyStable.sol

To understand the reason, we show below the current yCurveToUnderlying() implementation. Its
logic is not complicated: Firstly it determines the available amount of yToken for withdrawal; Next it
removes the corresponding liquidity of that amount from the curve pool; Finally the returned amount
of yToken is converted (line 171 − 173) back to the underlying asset. (In our case, it is a stablecoin.)

144 /**
145 * Uses the Curve protocol to convert the yCRV back into the underlying asset. If it

cannot acquire
146 * the limit amount , it will acquire the maximum it can.
147 */
148 f unc t i on yCurveToUnder l y ing (uint256 u n d e r l y i n g L im i t) i n t e r n a l {
149 uint256 yc r vBa l anc e = IERC20 (y c r v) . ba lanceOf (address (t h i s)) ;
150
151 // this is the maximum number of y-tokens we can get for our yCRV
152 uint256 yTokenMaximumAmount = yTokenValueFromYCrv (y c r vBa l anc e) ;
153 i f (yTokenMaximumAmount == 0) {
154 re tu rn ;
155 }
156
157 // ensure that we will not overflow in the conversion
158 uint256 yTokenDesiredAmount = und e r l y i n g L im i t == uint256 (~0) ?
159 yTokenMaximumAmount : yTokenValueFromUnder ly ing (u n d e r l y i n g L im i t) ;
160
161 uint256 [4] memory yTokenAmounts = wrapCoinAmount (
162 Math . min (yTokenMaximumAmount , yTokenDesiredAmount)) ;
163 uint256 yUnde r l y i n gBa l an c eBe f o r e = IERC20 (yVau l t) . ba lanceOf (address (t h i s)) ;
164 IERC20 (y c r v) . s a f eApprove (curve , 0) ;
165 IERC20 (y c r v) . s a f eApprove (curve , y c r vBa l anc e) ;
166 I Cu r v eF i (cu r v e) . r emove_ l i qu i d i t y_ imba l ance (
167 yTokenAmounts , y c r vBa l anc e
168) ;
169 // now we have yUnderlying asset
170 uint256 yUnde r l y i n gBa l a n c eA f t e r = IERC20 (yVau l t) . ba lanceOf (address (t h i s)) ;
171 i f (yUnde r l y i n gBa l a n c eA f t e r > yUnde r l y i n gBa l an c eBe f o r e) {
172 // we received new yUnderlying tokens for yCRV
173 yERC20 (yVau l t) . withdraw (yUnde r l y i n gBa l a n c eA f t e r . sub (yUnde r l y i n gBa l an c eBe f o r e)) ;
174 }
175 }

Listing 3.25: CRVStrategyStable.sol

As we are calling yCurveToUnderlying(uint256(~0)) with the intent of a full withdrawal, the with-
drawal of only the difference between yUnderlyingBalanceBefore and yUnderlyingBalanceAfter, i.e.,
yUnderlyingBalanceAfter.sub(yUnderlyingBalanceBefore) (line 173), is not sufficient. In fact, to en-
able full withdrawal back to vault, we need to initialize yUnderlyingBalanceBefore to be 0 (line 163).

Recommendation Revise the yCurveToUnderlying() logic to be compatible with full withdrawal.

33/53 PeckShield Audit Report #: 2020-52

Public

An example revision is shown below:

144 /**
145 * Uses the Curve protocol to convert the yCRV back into the underlying asset. If it

cannot acquire
146 * the limit amount , it will acquire the maximum it can.
147 */
148 f unc t i on yCurveToUnder l y ing (uint256 u n d e r l y i n g L im i t) i n t e r n a l {
149 uint256 yc r vBa l anc e = IERC20 (y c r v) . ba lanceOf (address (t h i s)) ;
150
151 // this is the maximum number of y-tokens we can get for our yCRV
152 uint256 yTokenMaximumAmount = yTokenValueFromYCrv (y c r vBa l anc e) ;
153 i f (yTokenMaximumAmount == 0) {
154 re tu rn ;
155 }
156
157 // ensure that we will not overflow in the conversion
158 uint256 yTokenDesiredAmount = und e r l y i n g L im i t == uint256 (~0) ?
159 yTokenMaximumAmount : yTokenValueFromUnder ly ing (u n d e r l y i n g L im i t) ;
160
161 uint256 [4] memory yTokenAmounts = wrapCoinAmount (
162 Math . min (yTokenMaximumAmount , yTokenDesiredAmount)) ;
163 uint256 yUnde r l y i n gBa l an c eBe f o r e = un d e r l y i n g L im i t == uint256 (~0) ? 0 : IERC20 (yVau l t

) . ba lanceOf (address (t h i s)) ;
164 IERC20 (y c r v) . s a f eApprove (curve , 0) ;
165 IERC20 (y c r v) . s a f eApprove (curve , y c r vBa l anc e) ;
166 I Cu r v eF i (cu r v e) . r emove_ l i qu i d i t y_ imba l ance (
167 yTokenAmounts , y c r vBa l anc e
168) ;
169 // now we have yUnderlying asset
170 uint256 yUnde r l y i n gBa l a n c eA f t e r = IERC20 (yVau l t) . ba lanceOf (address (t h i s)) ;
171 i f (yUnde r l y i n gBa l a n c eA f t e r > yUnde r l y i n gBa l an c eBe f o r e) {
172 // we received new yUnderlying tokens for yCRV
173 yERC20 (yVau l t) . withdraw (yUnde r l y i n gBa l a n c eA f t e r . sub (yUnde r l y i n gBa l an c eBe f o r e)) ;
174 }
175 }

Listing 3.26: CRVStrategyStable.sol

Status This issue has been confirmed. The team has made extra efforts in clarifying that “this
is not a security issue as this doesn’t cause any accounting issue for the users and the contract would
not have yVault tokens normally. If you follow the logic, the investment converts the underlying
to yTokens, then from yTokens to yCRV immediately to the yCRV vault. The only way that there
would be some yTokens here is that someone intentionally send it to the strategy. It is also simple
to resolve and digest the tokens here. We only need to call doHardwork that converts all yTokens to
yCRV along the execution, then it’s gone.”

34/53 PeckShield Audit Report #: 2020-52

Public

3.13 Authenticated salvage() From onlyGovernance

• ID: PVE-013

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SNXRewardStrategy

• Category: Security Features [12]

• CWE subcategory: CWE-285 [5]

Description

Besides a variety of normal operations, Harvest also gives considerations of accidentally transferred
assets into various Harvest contracts. In particular, it develops a helper routine named salvage()

. As the name indicates, it is mainly used for the very purpose of retrieving back other locked
assets. To avoid legitimate assets held in current contract from being affected, salvage() imposes
two restrictions: the first one is the token being retrieved must not belong to unsalvagableTokens; the
second one is the function must be invoked via governance. The unsalvagableTokens array defines
the list tokens that should not participate in the salvage.

This is a nice feature to recover otherwise lost funds. Our analysis shows certain inconsistency
across different contracts with the salvage() support. In the following, we show the comparison
between CRVStrategyStable and SNXRewardStrategy. Apparently, the CRVStrategyStable’s version of
salvage() is properly enforced by onlyGovernance while the SNXRewardStrategy version is enforced by
onlyControllerOrGovernance. While both controller and governance are considered trustworthy, it is
important to be consistent!

239 /**
240 * Salvages a token. We cannot salvage the shares in the yCRV pool , yCRV tokens , or

underlying
241 * assets.
242 */
243 f unc t i on s a l v a g e (address r e c i p i e n t , address token , uint256 amount) pub l i c

on lyGove rnance {
244 // To make sure that governance cannot come in and take away the coins
245 r equ i r e (! un sa l v agab l eToken s [token] , "token is defined as not salvageable") ;
246 IERC20 (token) . s a f eT r a n s f e r (r e c i p i e n t , amount) ;
247 }

Listing 3.27: CRVStrategyStable.sol

261 /*
262 * Governance or Controller can claim coins that are somehow transferred into the

contract
263 * Note that they cannot come in take away coins that are used and defined in the

strategy itself
264 * Those are protected by the "unsalvagableTokens ". To check , see where those are

being flagged.

35/53 PeckShield Audit Report #: 2020-52

Public

265 */
266 f unc t i on s a l v a g e (address r e c i p i e n t , address token , uint256 amount) ex te rna l

on l yCon t r o l l e rO rGov e r n an c e {
267 // To make sure that governance cannot come in and take away the coins
268 r equ i r e (! un sa l v agab l eToken s [token] , "token is defined as not salvagable") ;
269 IERC20 (token) . s a f eT r a n s f e r (r e c i p i e n t , amount) ;
270 }

Listing 3.28: SNXRewardStrategy.sol

Moreover, we notice current savage() supports a number of ERC20-compliant tokens. However,
it does not support of salvaging ETH tokens.

Recommendation Make a consistent access control policy on salvage by strictly enforcing it
with the onlyGovernance modifier. Also, add the new ETH support in savage().

Status This issue has been confirmed. And here is the team’s response ”Our design has
progressed over time, and we now rely only on governance to perform the salvage. Only the authorized
party is allowed to salvage the tokens, and only a subset that does not take immediate part in the
reward liquidation flow.” Considering the fact that this routine is already guarded by trusted entities,
we agree there is no need for further revision.

3.14 Gas Optimization in withdrawToVault()

• ID: PVE-014

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CRVStrategyStable

• Category: Coding Practices [14]

• CWE subcategory: CWE-1050 [2]

Description

While reviewing the withdrawToVault() execution logic, we notice a potential optimization to execute
investAllUnderlying() only when necessary. Especially, the withdrawToVault() logic is straightforward
in firstly determining the current ycrvVault balance, then withdrawing and converting all of them
into the underlying asset, next handling the withdraw request, and finally re-investing all remaining
funds accordingly to the current strategy.

Note that if the withdraw request completely drains current funds, there is no need to further
call investAllUnderlying(). Therefore, we can simply add a check up-front to detect this case. By
doing so, we can not only simplify the execution logic, but also reduce the gas cost.

177 /**
178 * Withdraws an underlying asset from the strategy to the vault in the specified amount

by asking

36/53 PeckShield Audit Report #: 2020-52

Public

179 * the yCRV vault for yCRV (currently all of it), and then removing imbalanced
liquidity from

180 * the Curve protocol. The rest is deposited back to the yCRV vault. If the amount
requested cannot

181 * be obtained , the method will get as much as we have.
182 */
183 f unc t i on withdrawToVault (uint256 amountUnder ly ing) ex te rna l r e s t r i c t e d {
184 // If we want to be more accurate , we need to calculate how much yCRV we will need

here
185 uint256 s h a r e s = IERC20 (y c r vVau l t) . ba lanceOf (address (t h i s)) ;
186 I V a u l t (y c r vVau l t) . withdraw (s h a r e s) ;
187 yCurveToUnder l y ing (amountUnder ly ing) ;
188 // we can transfer the asset to the vault
189 uint256 a c t u a lBa l a n c e = IERC20 (u n d e r l y i n g) . ba lanceOf (address (t h i s)) ;
190 i f (a c t u a lBa l a n c e > 0) {
191 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , Math . min (amountUnder ly ing , a c t u a lBa l a n c e)) ;
192 }
193
194 // invest back the rest
195 i n v e s t A l l U n d e r l y i n g () ;
196 }

Listing 3.29: CRVStrategyStable.sol

Recommendation Optimize the execution path to invoke investAllUnderlying() only when
necessary.

177 /**
178 * Withdraws an underlying asset from the strategy to the vault in the specified amount

by asking
179 * the yCRV vault for yCRV (currently all of it), and then removing imbalanced

liquidity from
180 * the Curve protocol. The rest is deposited back to the yCRV vault. If the amount

requested cannot
181 * be obtained , the method will get as much as we have.
182 */
183 f unc t i on withdrawToVault (uint256 amountUnder ly ing) ex te rna l r e s t r i c t e d {
184 // If we want to be more accurate , we need to calculate how much yCRV we will need

here
185 uint256 s h a r e s = IERC20 (y c r vVau l t) . ba lanceOf (address (t h i s)) ;
186 I V a u l t (y c r vVau l t) . withdraw (s h a r e s) ;
187 yCurveToUnder l y ing (amountUnder ly ing) ;
188 // we can transfer the asset to the vault
189 uint256 a c t u a lBa l a n c e = IERC20 (u n d e r l y i n g) . ba lanceOf (address (t h i s)) ;
190 i f (a c t u a lBa l a n c e > 0) {
191 IERC20 (u n d e r l y i n g) . s a f eT r a n s f e r (vau l t , Math . min (amountUnder ly ing , a c t u a lBa l a n c e)) ;
192 // invest back the rest
193 I f (a c tua lBa l ance>amountUnder ly ing) { i n v e s t A l l U n d e r l y i n g () ; }
194 }
195 }

Listing 3.30: CRVStrategyStable.sol

37/53 PeckShield Audit Report #: 2020-52

Public

Status This issue has been confirmed.

3.15 Possible Front-Running For Reduced Return

• ID: PVE-015

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: CRVStrategyYCRV

• Category: Time and State [13]

• CWE subcategory: CWE-362 [6]

Description

In Harvest, a number of strategy contracts have been designed and implemented to invest farmers’
assets (held in vaults), harvest growing yields, and sell any gains, if any, to the original asset.

Using the CRVStrategyYCRV strategy as an example, a pre-configured worker can call doHardWork()
that basically collects any pending rewards (via claimAndLiquidateCrv()-- line 180) and swaps them
to the underlying asset for re-investment (via investAllUnderlying() – line 181).

176 /**
177 * Claims and liquidates CRV into yCRV , and then invests all underlying.
178 */
179 f unc t i on doHardWork () pub l i c r e s t r i c t e d {
180 c l a imAndL iqu i da t eC rv () ;
181 i n v e s t A l l U n d e r l y i n g () ;
182 }

Listing 3.31: CRVStrategyYCRV.sol

The claimAndLiquidateCrv() routine deserves our attention. Since this one directly collects re-
wards, if any, and brings actual gains for previous investment. We notice the collected rewards are
routed to UniswapV2 in order to swap them to the underlying token for next-round of re-investment
and yielding. And the swap operation does not specify any restriction on possible slippage and is
therefore vulnerable to possible front-running attacks, resulting in a smaller gain for this round of
yielding.

151 f unc t i on c l a imAndL iqu i da t eC rv () i n t e r n a l {
152 Mintr (min t r) . mint (poo l) ;
153 // claiming rewards and sending them to the master strategy
154 uint256 c r vBa l ance = IERC20 (c r v) . ba lanceOf (address (t h i s)) ;
155 emit L i q u i d a t i n g (c r vBa l ance) ;
156 i f (c r vBa l ance > 0) {
157 uint256 da iBa l a n c eBe f o r e = IERC20 (da i) . ba lanceOf (address (t h i s)) ;
158 IERC20 (c r v) . s a f eApprove (uni , 0) ;
159 IERC20 (c r v) . s a f eApprove (uni , c r vBa l ance) ;
160 // we can accept 1 as the minimum because this will be called only by a trusted

worker

38/53 PeckShield Audit Report #: 2020-52

Public

161 IUniswapV2Router02 (un i) . swapExactTokensForTokens (
162 c rvBa lance , 1 , uniswap_CRV2DAI , address (t h i s) , block . timestamp
163) ;
164 // now we have DAI
165 // pay fee before making yCRV
166 n o t i f y P r o f i t (da iBa l anceBe fo r e , IERC20 (da i) . ba lanceOf (address (t h i s))) ;
167
168 // liquidate if there is any DAI left
169 i f (IERC20 (da i) . ba lanceOf (address (t h i s)) > 0) {
170 yCurveFromDai () ;
171 }
172 // now we have yCRV
173 }
174 }

Listing 3.32: CRVStrategyYCRV.sol

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a
large trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-
back of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a
loss and brings a smaller return as expected to the trading user or the strategy contract in our case
because the swap rate is lowered by the preceding sell. As a mitigation, we may consider specifying
the restriction on possible slippage caused by the trade or referencing the TWAP or time-weighted

average price of UniswapV2. Nevertheless, we need to acknowledge that this is largely inherent to
current blockchain infrastructure and there is still a need to continue the search efforts for an effective
defense.

Recommendation Develop an effective mitigation to the above front-running attack to better
protect the interests of farming users.

Status This issue has been confirmed. Note that this is a common issue for any trade in
a decentralized exchange and there is no effective mitigation that is currently available. However,
certain best practices can be applied, including the use of limiting slippages or setting necessary
expiry timestamps.

39/53 PeckShield Audit Report #: 2020-52

Public

3.16 Optimized claimAndLiquidateCrv() For Improved
Investment

• ID: PVE-016

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CRVStrategyStable

• Category: Business Logics [15]

• CWE subcategory: CWE-841 [11]

Description

In last section, we have examined the claimAndLiquidateCrv() routine for a possible front-running
attack. In this section, we continue our focus on this routine and report a possible optimization.

To elaborate, we show below the implementation of the claimAndLiquidateCrv() routine. It pro-
ceeds by firstly claiming possible CRV rewards (line 152) and then liquidating the rewards (lines
156 − 173). The liquidation process is basically a swap trade (on the popular UniswapV2 platform)
to sell CRV for DAI. After that, the returned DAI gains will be deposited into the curve pool as our
next-round of investment (line 170).

151 f unc t i on c l a imAndL iqu i da t eC rv () i n t e r n a l {
152 Mintr (min t r) . mint (poo l) ;
153 // claiming rewards and sending them to the master strategy
154 uint256 c r vBa l ance = IERC20 (c r v) . ba lanceOf (address (t h i s)) ;
155 emit L i q u i d a t i n g (c r vBa l ance) ;
156 i f (c r vBa l ance > 0) {
157 uint256 da iBa l a n c eBe f o r e = IERC20 (da i) . ba lanceOf (address (t h i s)) ;
158 IERC20 (c r v) . s a f eApprove (uni , 0) ;
159 IERC20 (c r v) . s a f eApprove (uni , c r vBa l ance) ;
160 // we can accept 1 as the minimum because this will be called only by a trusted

worker
161 IUniswapV2Router02 (un i) . swapExactTokensForTokens (
162 c rvBa lance , 1 , uniswap_CRV2DAI , address (t h i s) , block . timestamp
163) ;
164 // now we have DAI
165 // pay fee before making yCRV
166 n o t i f y P r o f i t (da iBa l anceBe fo r e , IERC20 (da i) . ba lanceOf (address (t h i s))) ;
167
168 // liquidate if there is any DAI left
169 i f (IERC20 (da i) . ba lanceOf (address (t h i s)) > 0) {
170 yCurveFromDai () ;
171 }
172 // now we have yCRV
173 }
174 }

Listing 3.33: CRVStrategyYCRV.sol

40/53 PeckShield Audit Report #: 2020-52

Public

Notice that the conversion (line 170) of any pending DAI balance to yCRV only occurs on the
condition when non-zero CRV rewards are claimed. However, there is no need to restrict ourselves to
this condition only. The fact of defining yCurveFromDai() as a public function motivates us to move
its call from inside the if-then branch (line 156) in claimAndLiquidateCrv() to outside. By doing so,
every call to doHardWork() will automatically and timely convert any pending DAI balance to yCRV to
maximize the investment return.

Recommendation Optimize the implementation by moving the yCurveFromDai() call outside.

151 f unc t i on c l a imAndL iqu i da t eC rv () i n t e r n a l {
152 Mintr (min t r) . mint (poo l) ;
153 // claiming rewards and sending them to the master strategy
154 uint256 c r vBa l ance = IERC20 (c r v) . ba lanceOf (address (t h i s)) ;
155 emit L i q u i d a t i n g (c r vBa l ance) ;
156 i f (c r vBa l ance > 0) {
157 uint256 da iBa l a n c eBe f o r e = IERC20 (da i) . ba lanceOf (address (t h i s)) ;
158 IERC20 (c r v) . s a f eApprove (uni , 0) ;
159 IERC20 (c r v) . s a f eApprove (uni , c r vBa l ance) ;
160 // we can accept 1 as the minimum because this will be called only by a trusted

worker
161 IUniswapV2Router02 (un i) . swapExactTokensForTokens (
162 c rvBa lance , 1 , uniswap_CRV2DAI , address (t h i s) , block . timestamp
163) ;
164 // now we have DAI
165 // pay fee before making yCRV
166 n o t i f y P r o f i t (da iBa l anceBe fo r e , IERC20 (da i) . ba lanceOf (address (t h i s))) ;
167 }
168
169 // liquidate if there is any DAI left
170 i f (IERC20 (da i) . ba lanceOf (address (t h i s)) > 0) {
171 yCurveFromDai () ;
172 }
173 // now we have yCRV
174 }

Listing 3.34: CRVStrategyYCRV.sol

Status This issue has been confirmed. In the meantime, the team considers that it may not
make much difference, because the excess DAI would be traded on the next iteration regardless.

41/53 PeckShield Audit Report #: 2020-52

Public

3.17 Overly-Privileged Governance-Controlling EOA

• ID: PVE-017

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: Controller

• Category: Security Features [12]

• CWE subcategory: CWE-285 [5]

Description

In Harvest, governance is a privileged role that sets up new vaults and new strategies, adjusts a
variety of protocol parameters, and assigns other system-wide other roles, e.g., controller, minter,
and hardworkers. With great privilege comes great responsibility. In this section, we examine the
governance subsystem in Harvest.

Our analysis shows that the governance role is indeed privileged, but it is currently controlled
by an externally owned account (EOA), which raises necessary concerns from the community. In
the following, we show the current state of privilege assignment in Harvest. Specifically, we kept
track of the current deployment of various contracts in Harvest, including six active vaults (and their
respective strategies), the controller, as well as current governance. Also, for each deployment, we
further extract the controlling contract or governance, if any. Our results are shown in Table 3.1.

Figure 3.1: The Current Governance Chain of Harvest

To further elaborate, we draw the governance chain based on the current deployment of Harvest
in Figure 3.1. We emphasize that the FARM token contract is also administrated by the governance

EOA that is authorized to add new minters to mint new FARM tokens. The current setup, if not
changed, may pose serious concerns for the future development and wider community adoption.

We notice that the mapping between current vaults and their strategies is properly set up.
Currently, they are all administrated by the same controller contract and this administration is
appropriate as the controller contract is indeed authorized to configure various aspects of vaults

42/53 PeckShield Audit Report #: 2020-52

Public

Table 3.1: Current Contract Deployment of Harvest (as of September 16, 2020)

Contract Address Controller/Governance
FARMToken 0xa0246c9032bc3a600820415ae600c6388619a14d 0xf00dd244228f51547f0563e60bca65a30fbf5f7f

DAI Vault 0xe85c8581e60d7cd32bbfd86303d2a4fa6a951dac 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

USDC Vault 0xc3f7ffb5d5869b3ade9448d094d81b0521e8326f 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

USDT Vault 0xc7ee21406bb581e741fbb8b21f213188433d9f2f 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

WBTC Vault 0xc07eb91961662d275e2d285bdc21885a4db136b0 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

renBTC Vault 0xfbe122d0ba3c75e1f7c80bd27613c9f35b81feec 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

crvRenBTC Vault 0x192e9d29d43db385063799bc239e772c3b6888f3 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

CRVStrategy
SwerveDAIMainnet 0x6ac7575a340a3dab2ae9ca07c4dbfc6bf8e7e281 0xf00dd244228f51547f0563e60bca65a30fbf5f7f

0x222412af183bceadefd72e4cb1b71f1889953b1c
CRVStrategy

SwerveUSDCMainnet 0x18c4325ae10fc84895c77c8310d6d98c748e9533 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

CRVStrategy
SwerveUSDTMainnet 0x01fcb5bc16e8d945ba276dccfee068231da4ce33 0xf00dd244228f51547f0563e60bca65a30fbf5f7f

0x222412af183bceadefd72e4cb1b71f1889953b1c
CRVStrategy

WBTCMainnet 0xe7048e7186cb6f12c566a6c8a818d9d41da6df19 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

CRVStrategy
RENBTCMainnet 0x2eadfb06f9d890eba80e999eaba2d445bc70f006 0xf00dd244228f51547f0563e60bca65a30fbf5f7f

0x222412af183bceadefd72e4cb1b71f1889953b1c
CRVStrategy

WRenBTCMixMainnet 0xaf2d2e5c5af90c782c008b5b287f20334eeb308e 0xf00dd244228f51547f0563e60bca65a30fbf5f7f
0x222412af183bceadefd72e4cb1b71f1889953b1c

Deployer 0xf00dd244228f51547f0563e60bca65a30fbf5f7f N/A

and their strategies, including the addition of new vaults, the configuration of new grey members,
the setting of hardworkers etc.

Figure 3.2: The Expected Governance Chain of Harvest

However, it is indeed worrisome that the final authority of the entire governance chain is still
controlled by an EOA account, i.e., 0xf00dd244228f51547f0563e60bca65a30fbf5f7f. This EOA address
happens to be the same deployer address of Harvest and also has the authority of adding minters

to inflate FARM tokens. It is also important to point out that the activation of a privileged operation
does not go through an appropriate timelock. In other words, current prototype setup assumes

43/53 PeckShield Audit Report #: 2020-52

https://etherscan.io/address/0xa0246c9032bc3a600820415ae600c6388619a14d
https://etherscan.io/address/0xe85c8581e60d7cd32bbfd86303d2a4fa6a951dac
https://etherscan.io/address/0xc3f7ffb5d5869b3ade9448d094d81b0521e8326f
https://etherscan.io/address/0xc7ee21406bb581e741fbb8b21f213188433d9f2f
https://etherscan.io/address/0xc07eb91961662d275e2d285bdc21885a4db136b0
https://etherscan.io/address/0xfbe122d0ba3c75e1f7c80bd27613c9f35b81feec
https://etherscan.io/address/0x192e9d29d43db385063799bc239e772c3b6888f3
https://etherscan.io/address/0x6ac7575a340a3dab2ae9ca07c4dbfc6bf8e7e281
https://etherscan.io/address/0x18c4325ae10fc84895c77c8310d6d98c748e9533
https://etherscan.io/address/0x01fcb5bc16e8d945ba276dccfee068231da4ce33
https://etherscan.io/address/0xe7048e7186cb6f12c566a6c8a818d9d41da6df19
https://etherscan.io/address/0x2eadfb06f9d890eba80e999eaba2d445bc70f006
https://etherscan.io/address/0xaf2d2e5c5af90c782c008b5b287f20334eeb308e

Public

trusted strategies. If a malicious one is introduced and linked with a current vault by successfully
bypassing the governance EOA’s scrutiny, it may immediately cause serious consequences, including
jeopardizing users’ funds.

The current administration setup may have the short-term benefit for rapid development and
iteration. However, such setup, if unchanged, will eventually hurt its own progress by negatively im-
pacting community engagement and adoption. With a proper community-based on-chain governance,
we expect its governance chain should be revised as follows:

Recommendation Promptly transfer the governance privileges from current EOA to the intended
governance contract, including the mintability of FARM and the administration of both vaults and
strategies. In addition, activate the normal on-chain community-based governance life-cycle and
ensure the intended trustless nature and high-quality distributed governance.

Status This issue has been confirmed. The team is taking measures to move away from the
EOA-based governance, but the details are still forthcoming. As one mitigation step, the team is
currently working on adding a timelock to reduce the amount of power the governance has over the
vaults.

44/53 PeckShield Audit Report #: 2020-52

Public

4 | Conclusion

In this audit, we thoroughly analyzed the design and implementation of the Harvest protocol. The
system presents a clean and consistent design that makes it distinctive and valuable alternative to
current yield farming offerings. The current code base is well organized and those identified issues
are promptly confirmed and fixed. However, one main concern is due to the fact that under current
deployment, the protocol-wide privilege management, including the mintability of FRAM, is not under
the control of a community-based governance.

As a final precaution, we need to emphasize that smart contracts as a whole are still in an early,
but exciting stage of development. To improve this report, we greatly appreciate any constructive
feedbacks or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

45/53 PeckShield Audit Report #: 2020-52

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [19, 20,
21, 22, 25].

• Result: Not found

• Severity: Critical

46/53 PeckShield Audit Report #: 2020-52

Public

5.1.5 Reentrancy

• Description: Reentrancy [28] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

47/53 PeckShield Audit Report #: 2020-52

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

48/53 PeckShield Audit Report #: 2020-52

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

49/53 PeckShield Audit Report #: 2020-52

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

50/53 PeckShield Audit Report #: 2020-52

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-1050: Excessive Platform Resource Consumption within a Loop. https://cwe.

mitre.org/data/definitions/1050.html.

[3] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[4] MITRE. CWE-1116: Inaccurate Comments. https://cwe.mitre.org/data/definitions/1116.html.

[5] MITRE. CWE-285: Improper Authorization. https://cwe.mitre.org/data/definitions/285.html.

[6] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[7] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[8] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[9] MITRE. CWE-770: Allocation of Resources Without Limits or Throttling. https://cwe.mitre.

org/data/definitions/770.html.

[10] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

51/53 PeckShield Audit Report #: 2020-52

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/1050.html
https://cwe.mitre.org/data/definitions/1050.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1116.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html

Public

[11] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[12] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[13] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[14] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[15] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[16] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[17] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[18] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[19] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[20] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[21] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[22] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

52/53 PeckShield Audit Report #: 2020-52

https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/

Public

[23] PeckShield. PeckShield Inc. https://www.peckshield.com.

[24] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[25] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[26] Synthetix Improvement Proposals. SIP 77: StakingRewards bug fix’s and Pausable stake().

https://sips.synthetix.io/sips/sip-77.

[27] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

[28] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

53/53 PeckShield Audit Report #: 2020-52

https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
https://sips.synthetix.io/sips/sip-77
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Harvest Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Sanity Checks And Less Friction in NotifyHelper
	Suggested Adherence of Checks-Effects-Interactions Pattern in HardRewards and Vaults
	Incompatibility with Deflationary/Rebasing Tokens
	Improved Event Generation
	Unused Import Removal in RewardToken
	Simplified Logic in getReward()
	Consistent Handling of Vault Investment Fraction
	Possible Revert in withdrawToVault()
	Logic Error in CRVStrategyStable::depositArbCheck()
	Inconsistent/Misplaced Comments Among Multiple Contracts
	Improved Asset Consistency Between Vaults and Strategies
	Possible Partial Withdrawal With withdrawAllToVault()
	Authenticated salvage() From onlyGovernance
	Gas Optimization in withdrawToVault()
	Possible Front-Running For Reduced Return
	Optimized claimAndLiquidateCrv() For Improved Investment
	Overly-Privileged Governance-Controlling EOA

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

